1
|
Tao S, Fan J, Li J, Wu Z, Yao Y, Wang Z, Wu Y, Liu X, Xiao Y, Wei H. Extracellular vesicles derived from Lactobacillus johnsonii promote gut barrier homeostasis by enhancing M2 macrophage polarization. J Adv Res 2024:S2090-1232(24)00111-5. [PMID: 38508446 DOI: 10.1016/j.jare.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/19/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024] Open
Abstract
INTRODUCTION Diarrheic disease is a common intestinal health problem worldwide, causing great suffering to humans and animals. Precise manipulation strategies based on probiotics to combat diarrheic diseases have not been fully developed. OBJECTIVES The aim of this study was to investigate the molecular mechanisms by which probiotics manipulate macrophage against diarrheic disease. METHODS Metagenome reveals gut microbiome profiles of healthy and diarrheic piglets. Fecal microbial transplantation (FMT) was employed to explore the causal relationship between gut microbes and diarrhea. The protective role of probiotics and their derived extracellular vesicles (EVs) was investigated in ETEC K88-infected mice. Macrophage depletion was performed to assess the role of macrophages in EVs against diarrhea. Execution of in vitro cell co-culture and transcriptome analyses elucidated the molecular mechanisms by which EVs modulate the macrophage and intestinal epithelial barrier. RESULTS Escherichia coli was enriched in weaned diarrheic piglets, while Lactobacillus johnsonii (L. john) showed a negative correlation with Escherichia coli. The transmission of diarrheic illness symptoms was achieved by transferring fecal microbiota, but not metabolites, from diarrheic pigs to germ-free (GF) mice. L. john's intervention prevented the transmission of disease phenotypes from diarrheic piglets to GF mice. L. john also reduces the gut inflammation induced by ETEC K88. The EVs secreted by L. john demonstrated enhanced efficacy in mitigating the adverse impacts induced by ETEC K88 through the modulation of macrophage phenotype. In vitro experiments have revealed that EVs activate M2 macrophages in a manner that shuts down ERK, thereby inhibiting NLRP3 activation in intestinal epithelial cells. CONCLUSION Our results reveal that intestinal microbiota drives the onset of diarrheic disease and that probiotic-derived EVs ameliorate diarrheic disease symptoms by modulating macrophage phenotypes. These findings can enhance the advancement of innovative therapeutic approaches for diarrheic conditions based on probiotic-derived EVs.
Collapse
Affiliation(s)
- Shiyu Tao
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinping Fan
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingjing Li
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhifeng Wu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yong Yao
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhenyu Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Yujun Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Xiangdong Liu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Hong Wei
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
2
|
Zhu M, Zeng R, Wu D, Li Y, Chen T, Wang A. Research progress of the effects of bisphenol analogues on the intestine and its underlying mechanisms: A review. ENVIRONMENTAL RESEARCH 2024; 243:117891. [PMID: 38072107 DOI: 10.1016/j.envres.2023.117891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/26/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Bisphenol A (BPA) and its analogues have prompted rising concerns, especially in terms of human safety, due to its broad use and ubiquity throughout the ecosystem. Numerous studies reported various adverse effects of bisphenols, including developmental disorders, reproductive toxicity, cardiovascular toxicity, and so on. There is increasing evidence that bisphenols can enter the gastrointestinal tract. Consequently, it is important to investigate their effects on the intestine. Several in vivo and in vitro studies have examined the impacts of bisphenols on the intestine. Here, we summarized the literature concerning intestinal toxicity of bisphenols over the past decade and presented compelling evidence of the link between bisphenol exposure and intestinal disorders. Experiment studies revealed that even at low levels, bisphenols could promote intestinal barrier dysregulation, disrupt the composition and diversity of intestinal microbiota as well as induce an immunological response. Moreover, possible underlying mechanisms of these effects were discussed. Because of a lack of empirical data, the potential risk of bisphenol exposure in humans is still unidentified, particularly regarding intestinal disorders. Thus, we propose to conduct additional epidemiological investigations and animal experiments to elucidate the associations between bisphenol exposure and human intestinal health and reveal underlying mechanisms to develop preventative and therapeutic techniques.
Collapse
Affiliation(s)
- Min Zhu
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science, 210036, Nanjing, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Ran Zeng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China; School of Civil and Environmental Engineering, Harbin Institute of Technology, 518055, Shenzhen, China
| | - Dan Wu
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science, 210036, Nanjing, China
| | - Yuanyuan Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Ting Chen
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science, 210036, Nanjing, China.
| | - Aijie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology, 518055, Shenzhen, China.
| |
Collapse
|
3
|
Liu Z, Liu M, Wang H, Qin P, Di Y, Jiang S, Li Y, Huang L, Jiao N, Yang W. Glutamine attenuates bisphenol A-induced intestinal inflammation by regulating gut microbiota and TLR4-p38/MAPK-NF-κB pathway in piglets. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115836. [PMID: 38154151 DOI: 10.1016/j.ecoenv.2023.115836] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/14/2023] [Accepted: 12/12/2023] [Indexed: 12/30/2023]
Abstract
Bisphenol A (BPA), as a kind of widely exerted environmental hazardous material, brings toxicity to both humans and animals. This study aimed to investigate the role of glutamine (Gln) in intestinal inflammation and microbiota in BPA-challenged piglets. Thirty-two piglets were randomly divided into four groups according to 2 factors including BPA (0 vs. 0.1%) and Gln (0 vs. 1%) supplemented in basal diet for a 42-day feeding experiment. The results showed BPA exposure impaired piglet growth, induced intestinal inflammation and disturbed microbiota balance. However, dietary Gln supplementation improved the growth performance, while decreasing serum pro-inflammatory cytokine levels in BPA-challenged piglets. In addition, Gln attenuated intestinal mucosal damage and inflammation by normalizing the activation of toll-like receptor 4 (TLR4)-p38/MAPK-nuclear factor-kappa B (NF-κB) pathway caused by BPA. Moreover, dietary Gln supplementation decreased the abundance of Actinobacteriota and Proteobacteria, and attenuated the decreased abundance of Roseburia, Prevotella, Romboutsia and Phascolarctobacterium and the content of short-chain fatty acids in cecum contents caused by BPA exposure. Moreover, there exerted potential relevance between the gut microbiota and pro-inflammatory cytokines and cecal short-chain fatty acids. In conclusion, Gln is critical nutrition for attenuating BPA-induced intestinal inflammation, which is partially mediated by regulating microbial balance and suppressing the TLR4/p38 MAPK/NF-κB signaling.
Collapse
Affiliation(s)
- Zihao Liu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Min Liu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Huiru Wang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Pengxiang Qin
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Yanjiao Di
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Shuzhen Jiang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Yang Li
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Libo Huang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Ning Jiao
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China.
| | - Weiren Yang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China.
| |
Collapse
|
4
|
Liu H, Ma L, Fu J, Ma X, Gao Y, Xie Y, Yuan X, Wang Y, Yang W, Jiang S. Effect of zearalenone on the jejunum of weaned gilts through the Epac1/Rap1/JNK pathway. J Anim Sci 2024; 102:skae208. [PMID: 39051732 PMCID: PMC11367561 DOI: 10.1093/jas/skae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024] Open
Abstract
Zearalenone (ZEN) is a nonsteroidal estrogenic mycotoxin produced by Fusarium strains that is harmful to the intestinal health of animals and is widely present in contaminated crops. The objective of this study was to investigate the potential therapeutic target of ZEN-induced jejunal damage in weaned gilts. Sixteen weaned gilts either received a basal diet or a basal diet supplemented with 3.0 mg/kg ZEN in a 32-d experiment. The results showed that ZEN at the concentration of 3.0 mg/kg diet activated the inflammatory response and caused oxidative stress of gilts (P < 0.05). ZEN exposure resulted in the upregulation (P < 0.05) of the Exchange protein directly activated by the cAMP 1/Ras-related protein1/c-Jun N-terminal kinase (Epac1/Rap1/JNK) signaling pathway in the jejunum of gilts in vivo and in the intestinal porcine epithelial cells in vitro. The cell viability, EdU-positive cells, and the mRNA expression of B-cell lymphoma-2 (Bcl-2) were decreased, whereas the reactive oxygen species production and the mRNA expressions of Bcl-2-associated X (Bax) and Cysteine-aspartic acid protease 3 (Caspase3) were increased (P < 0.05) by ZEN. However, ZEN increased the mRNA expression of Bcl-2 and decreased the mRNA expressions of Bax and caspase3 (P < 0.05) after the Epac1 was blocked. These results collectively indicated that a 3.0 mg ZEN /kg diet induced jejunal damage via the Epac1/Rap1/JNK signaling pathway.
Collapse
Affiliation(s)
- Heng Liu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China
| | - Lulu Ma
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jiawei Fu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China
| | - Xiangyu Ma
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China
| | - Yufei Gao
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China
| | - Yiping Xie
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China
| | - Xuejun Yuan
- College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| | - Yuxi Wang
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada
| | - Weiren Yang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China
| | - Shuzhen Jiang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
5
|
Qin P, Ma S, Li C, Di Y, Liu Z, Wang H, Li Y, Jiang S, Yang W, Jiao N. Cysteine Attenuates the Impact of Bisphenol A-Induced Oxidative Damage on Growth Performance and Intestinal Function in Piglets. TOXICS 2023; 11:902. [PMID: 37999554 PMCID: PMC10675709 DOI: 10.3390/toxics11110902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
Bisphenol A (BPA), a kind of environmental toxin, widely impacts daily life. Cysteine (Cys) is a nutritionally important amino acid for piglets. However, it remains unclear whether Cys can alleviate BPA-induced oxidative damage in piglets. The aim of the present study was to explore the protective effects of Cys in BPA-challenged piglets. A total of twenty-four piglets were divided into four groups that were further subdivided based on the type of exposure (with or without 0.1% BPA) in a basal or Cys diet for a 28 d feeding trial. The results showed that BPA exposure decreased the piglets' average daily weight gain by 14.9%, and decreased dry matter, crude protein and ether extract digestibility by 3.3%, 4.5% and 2.3%, respectively; these decreases were attenuated by Cys supplementation. Additionally, Cys supplementation restored BPA-induced decreases in superoxide dismutase (SOD) and glutathione (GSH), and increases in malondialdehyde (MDA) levels, in the serum and jejunum (p < 0.05). Moreover, BPA decreased the jejunal mRNA expression of antioxidant genes, which were restored by Cys supplementation (p < 0.05). Cys also restored BPA and increased serum D-lactate levels and diamine oxidase (DAO) activity, and BPA decreased jejunal disaccharidase activity (p < 0.05). Further investigations in this study showed that the protective effects of Cys were associated with restoring intestinal barrier integrity by improving the jejunal morphology and enhancing the mRNA expression of tight junction proteins (p < 0.05). Collectively, the results herein demonstrated that Cys supplementation attenuated the impact of BPA-induced oxidative damage on growth performance, nutrient digestibility and intestinal function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ning Jiao
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China; (P.Q.); (S.M.); (C.L.); (Y.D.); (Z.L.); (H.W.); (Y.L.); (S.J.); (W.Y.)
| |
Collapse
|
6
|
Gao YN, Min L, Yang X, Wang JQ, Zheng N. The coexistence of aflatoxin M1 and ochratoxin A induced intestinal barrier disruption via the regulation of key differentially expressed microRNAs and long non-coding RNAs in BALB/c mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115428. [PMID: 37688864 DOI: 10.1016/j.ecoenv.2023.115428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/07/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023]
Abstract
Food safety can be seriously threatened by the existence of both aflatoxin M1 (AFM1) and ochratoxin A (OTA) in milk and corresponding products. The importance of intestine integrity in preserving human health is widely understood in vitro, but the fundamental processes by which AFM1 and OTA cause disruption of the intestinal barrier are as yet unknown, especially in vivo. Based on the analysis of the whole transcriptome of BALB/c mice, the competing endogenous RNA (ceRNA) regulation network was obtained in the current study. Each of 12 mice were separated into five treatments: saline solution treatment, 1.0% DMSO vehicle control treatment, 3.0 mg/kg b.w. individual AFM1 treatment (AFM1), 3.0 mg/kg b.w. individual OTA treatment (OTA), and combined mycotoxins treatment (AFM1 +OTA). The study period lasted 28 days. The jejunum tissue was collected for the histological assessment and whole transcriptome analysis, and the whole blood was collected, and determination of serum biochemical indicators. The phenotypic results demonstrated that AFM1 and OTA caused intestinal barrier disruption via an increased apoptosis level and decreased expression of tight junction (TJ) proteins. The ceRNA network demonstrated that AFM1 and OTA induced cell apoptosis through activating the expression of DUSP9 and suppressing the expression of PLA2G2D, which were regulated by differentially expressed microRNAs (DEmiRNAs) (miR-124-y, miR-194-z, miR-224-x, and miR-452-x) and differentially expressed long non-coding RNAs (DElncRNAs) (FUT8 and GPR31C). And AFM1 and OTA decreased TJ proteins via inhibiting the expression of PAK6, which was regulated by several important DEmiRNAs and DElncRNAs. These DE RNAs in intestinal integrity were involved in MAPK and Ras signaling pathway. Overall, our findings expand the current knowledge regarding the potential mechanisms of intestinal integrity disruption brought on by AFM1 and OTA in vivo.
Collapse
Affiliation(s)
- Ya-Nan Gao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Li Min
- Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xue Yang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jia-Qi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
7
|
Wang Y, Lai H, Zhang T, Wu J, Tang H, Liang X, Ren D, Huang J, Li W. Mitochondria of intestinal epithelial cells in depression: Are they at a crossroads of gut-brain communication? Neurosci Biobehav Rev 2023; 153:105403. [PMID: 37742989 DOI: 10.1016/j.neubiorev.2023.105403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
The role of gut dysbiosis in depression is well established. However, recent studies have shown that gut microbiota is regulated by intestinal epithelial cell (IEC) mitochondria, which has yet to receive much attention. This review summarizes the recent developments about the critical role of IEC mitochondria in actively maintaining gut microbiota, intestinal metabolism, and immune homeostasis. We propose that IEC mitochondrial dysfunction alters gut microbiota composition, participates in cell fate, mediates oxidative stress, activates the peripheral immune system, causes peripheral inflammation, and transmits peripheral signals through the vagus and enteric nervous systems. These pathological alterations lead to brain inflammation, disruption of the blood-brain barrier, activation of the hypothalamic-pituitary-adrenal axis, activation of microglia and astrocytes, induction of neuronal loss, and ultimately depression. Furthermore, we highlight the prospect of treating depression through the mitochondria of IECs. These new findings suggest that the mitochondria of IECs may be a newly found important factor in the pathogenesis of depression and represent a potential new strategy for treating depression.
Collapse
Affiliation(s)
- Yi Wang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China
| | - Han Lai
- School of Foreign Languages, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China
| | - Tian Zhang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China
| | - Jing Wu
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China
| | - Huiling Tang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China
| | - Xuanwei Liang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China
| | - Dandan Ren
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China
| | - Jinzhu Huang
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China.
| | - Weihong Li
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China.
| |
Collapse
|
8
|
Zheng J, Zheng SH, Ying XN. Vitamin D combined with compound glutamine for treatment of mesenteric lymphadenitis in preschool children: Efficacy and effect on cellular immune function. Shijie Huaren Xiaohua Zazhi 2023; 31:782-790. [DOI: 10.11569/wcjd.v31.i18.782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Mesenteric lymphadenitis (ML) is a major cause of acute diarrhoea in children and affects their health. The etiology of ML is not fully understood and is generally thought to be caused by respiratory viral or bacterial infections, which are closely related to immunocompromise. Vitamin D and compound glutamine have been shown to have immune-regulating effects. This study was conducted to investigate the effects of vitamin D combined with compound glutamine in children with ML.
AIM To evaluate the efficacy of vitamin D combined with compound glutamine in the treatment of ML in preschool children and analyze its influence on cellular immune function.
METHODS A total of 180 preschool children with ML treated at our hospital from December 2019 to December 2022 were included and randomly divided into either a control group or a study group. The control group (90 cases) was treated with compound glutamine alone, and the study group (90 cases) was treated with vitamin D combined with compound glutamine for 7 d. The therapeutic effects, adverse reactions, time to improvement of clinical symptoms, serum inflammatory factors [tumor necrosis factor-α (TNF-α), procalcitonin (PCT), and interleukin-8 (IL-8)], immune function indicators [immunoglobulin (Ig)A, IgG, CD3+ T cells, and CD4+/CD8+ ratio], and imaging indicators (lymph) were compared between the two groups. The patients were followed for 2 mo after treatment, and the recurrence rate of abdominal pain was statistically compared between the two groups.
RESULTS The total effective rate of the study group was 92.22% (83/90) compared with 86.67% (78/90) of the control group (P > 0.05). Fever subsided, abdominal pain disappeared, nausea/vomiting disappeared, and lymph node enlargement disappeared in a shorter time in the study group than in the control group (P < 0.05). The levels of serum PCT, TNF-α, and IL-8 in the study group were significantly lower than those in the control group after 3 days of treatment (P < 0.05). The serum levels of IgA, IgG, CD3+ T cells and CD4+/CD8+ ratio in the study group were higher than those in the control group after 3 days of treatment (P < 0.05). After 3 days of treatment, the longitudinal and transverse diameters of lymph nodes in the study group were shorter than those in the control group (P < 0.05). The incidence of adverse reactions in the study group was 2.22% (2/90) compared with 3.33% (3/90) in the control group (P > 0.05), and the recurrence rate of abdominal pain in the study group was 5.56% (5/90), lower than that in the control group (14.44%, 13/90) (P < 0.05).
CONCLUSION Vitamin D combined with compound glutamine in the treatment of preschool children with ML is safe and effective, can significantly inhibit the inflammatory response, improve immune function, promote the regression of symptoms, accelerate the recovery of disease, and reduce the recurrence rate.
Collapse
Affiliation(s)
- Jing Zheng
- Department of Pediatrics, The First People's Hospital of Daishan County, Zhoushan 316200, Zhejiang Province, China
| | - Sheng-Hua Zheng
- Department of Pediatrics, The First People's Hospital of Daishan County, Zhoushan 316200, Zhejiang Province, China
| | - Xue-Na Ying
- Department of Pediatrics, The First People's Hospital of Daishan County, Zhoushan 316200, Zhejiang Province, China
| |
Collapse
|
9
|
Chen F, Wang Y, Chen Y, Fan J, Zhang C, He X, Yang X. JNK molecule is a toxic target for IPEC-J2 cell barrier damage induced by T-2 toxin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115247. [PMID: 37453270 DOI: 10.1016/j.ecoenv.2023.115247] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/03/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
The most prevalent contaminated mycotoxin in feed and grain is T-2 toxin. The T-2 toxin's primary action target is the gut because it is the main organ of absorption. T-2 toxin can cause intestinal damage, but, few molecular mechanisms have been elucidated. It is important to discover the key pathways by which T-2 toxin causes enterotoxicity. In this research, IPEC-J2 cells are used as a cell model to investigate the function of the MAPK signaling pathway in T-2 toxin-induced intestinal epithelial cell damage. Throughout this research, T-2 toxin results in functional impairment in IPEC-J2 cells by reducing the TJ proteins Claudin, Occludin-1, ZO-1, N-cadherin, and CX-43 expression. T-2 toxin significantly reduced the survival of IPEC-J2 cells and increased LDH release in a dose-dependent way. T-2 toxin induced IPEC-J2 cell oxidative stress by raising ROS and MDA content, and mitochondrial damage was indicated by a decline in MMP and an increase in the opening degree of MPTP. T-2 toxin upregulated the expression of ERK, P38 and JNK, which triggered the MAPK signaling pathway. In addition, T-2 toxin caused IPEC-J2 cell inflammation responses reflected by increased the levels of inflammation-related factors IL-8, p65, P-p65 and IL-6, and down-regulated IL-10 expression level. Inhibition JNK molecule can ease IPEC-J2 cell functional impairment and inflammatory response. In conclusion, as a consequence of the T-2 toxin activating the JNK molecule, oxidative stress and mitochondrial damage are induced, which impair cellular inflammation.
Collapse
Affiliation(s)
- Fengjuan Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002 Henan, China
| | - Youshuang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002 Henan, China
| | - Yunhe Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002 Henan, China
| | - Jiayan Fan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002 Henan, China
| | - Cong Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002 Henan, China
| | - Xiuyuan He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002 Henan, China
| | - Xu Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002 Henan, China.
| |
Collapse
|
10
|
Yao Y, Zhu W, Han D, Shi X, Xu S. New Insights into How Melatonin Ameliorates Bisphenol A-Induced Colon Damage: Inhibition of NADPH Oxidase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2566-2578. [PMID: 36633214 DOI: 10.1021/acs.jafc.2c07236] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Bisphenol A (BPA) is an endocrine disruptor, widely employed, and detected in many consumer products and food items. Oral intake poses a great threat to intestinal health. Melatonin (MT) stands out as an endogenous, dietary, and therapeutic molecule with potent antioxidant capacity. To explore the protective effect of MT against BPA-induced colon damage and the role of NADPH oxidase (NOX) in this process, we established mice and colonic epithelial cell (NCM460) models of BPA exposure and treated with MT. In vitro and in vivo results showed that MT ameliorated BPA-induced oxidative stress, DNA damage, and the G2/M cell cycle arrest. MT also downregulated the expression of NOX family-related genes, reversed the inhibition of the base excision repair (BER) pathway, promoted the activation of non-homologous end-joining (NHEJ) pathway, and suppressed the mRNA and protein expression of ATM, Chk1/2, and p53. Diphenyleneiodonium chloride (DPI), a NOX-specific inhibitor, also attenuated the toxic effects of BPA on NCM460 cells. Furthermore, molecular docking revealed that MT could bind to NOX. Conclusively, our finding suggested that MT can ameliorate BPA-induced colonic DNA damage by scavenging NOX-derived ROS, which further attenuates G2/M cell cycle arrest dependent on the ATM-Chk1/2-p53 axis.
Collapse
Affiliation(s)
- Yujie Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Wenjing Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Dongxu Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
11
|
Yao Y, Chen T, Wu H, Yang N, Xu S. Melatonin attenuates bisphenol A-induced colon injury by dual targeting mitochondrial dynamics and Nrf2 antioxidant system via activation of SIRT1/PGC-1α signaling pathway. Free Radic Biol Med 2023; 195:13-22. [PMID: 36549428 DOI: 10.1016/j.freeradbiomed.2022.12.081] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/17/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Industrial advancement has led to an increase in the production and usage of bisphenol A (BPA), thereby resulting in serious environmental pollution problems. BPA ingestion causes multiorgan toxicity. However, the exact mechanism underlying BPA-induced colon damage remains elusive. Moreover, no safe treatment is available to alleviate BPA-induced colon injury. Therefore, the in vivo and in vitro approaches were employed to detect the protective effects of melatonin (MT) on BPA-induced colon injury and to determine the underpinning molecular mechanisms. MT treatment of mice and the colonic epithelial cells NCM460 alleviated BPA-induced colon damage by inhibiting the mitochondrial dynamic imbalance, enhancing mitochondrial respiratory chain (MRC) complexes expression, reducing reactive oxygen species (ROS) production, and suppressing apoptosis and necroptosis. MT upregulated the proteins level of silent information regulator 1 (SIRT1) and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), which further increased the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and the downstream antioxidant target genes heme oxygenase-1 (HO-1) and NAD(P)H quinone redox enzyme-1 (NQO1). Treatment with the SIRT1 inhibitor EX527 effectively reversed the MT-induced upregulation of the aforementioned protein levels. Thus, the MT-activated Sirt1/PGC-1α signaling pathway restored the mitochondrial dynamic balance and activated the Nrf2 antioxidant axis to attenuate BPA-induced colon injury. These results demonstrate that MT supplementation may potentially mitigate BPA toxicity.
Collapse
Affiliation(s)
- Yujie Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ting Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hao Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Naixi Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
12
|
Hu J, Ling Z, Li W, Su Z, Lu J, Zeng Q, Cheng B, Tao X. Glutamine promotes the proliferation of epithelial cells via mTOR/S6 pathway in oral lichen planus. J Oral Pathol Med 2023; 52:150-160. [PMID: 36459062 DOI: 10.1111/jop.13391] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND Although abnormal cell proliferation and apoptosis are associated with the pathogenesis of oral lichen planus (OLP), the exactly mechanism of which is not yet known. It has been reported that glutamine (Gln) can promote cell proliferation and inhibit apoptosis of various tumor cells. This study aims to evaluate the effect of Gln metabolism on the balance of proliferation and apoptosis in epithelial cells of OLP. METHODS Thirty human OLP specimens and 11 normal controls were stained by immunohistochemistry to detect the levels of proliferation and Gln metabolism related proteins. Then, the critical role of Gln in cell proliferation and apoptosis was determined by Gln deprivation or treatment with glutaminase inhibitor (CB-839) to intervene Gln metabolism in human gingival epithelial cells. Cell proliferation was detected using CCK8, p-mTOR and p-S6 proteins were detected using Western Blot, cell apoptosis and cell cycle were detected using flow cytometry, and cell stress was detected using immunofluorescence. RESULTS Compared with normal controls, OLP specimens showed higher levels of Ki-67 and Gln metabolism-related proteins, including Gln transporter (ASCT2), glutaminase (GLS), and pathway proteins (p-mTOR and p-S6). In vitro, Gln promoted cell proliferation and simultaneously upregulated the activity of mTOR/S6 pathway. Moreover, rapamycin, an mTOR pathway inhibitor, could effectively block the Gln-induced cell proliferation. MHY1485, an mTOR pathway agonist, could effectively reverse the decline of cell proliferation under Gln deprivation. In addition, inhibiting Gln metabolism caused the accumulation of intracellular radical oxygen species (ROS) and induced cell apoptosis. However, N-acetylcysteine reversed this state and then decreased cell apoptosis by eliminating intracellular ROS. CONCLUSION Gln metabolism is essential to maintain the balance of proliferation and apoptosis in oral epithelial cells, and inhibition of Gln metabolism may have a beneficial effect on OLP treatment.
Collapse
Affiliation(s)
- Jiaqi Hu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Zihang Ling
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Wei Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Zhangci Su
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Jingyi Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Qi Zeng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Bin Cheng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xiaoan Tao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
13
|
Yang M, Zhang X, Zhao S, Shao R, Fan K, Hu K, Zhang L, Yang Y. Protective effects of glutamine on lipopolysaccharide/D-galactosamine-induced fulminant hepatitis in mice. Exp Biol Med (Maywood) 2023; 248:70-78. [PMID: 36259626 PMCID: PMC9989145 DOI: 10.1177/15353702221126562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Fulminant hepatitis remains a critical health problem owing to its high mortality rate and the lack of effective therapies. An increasing number of studies have shown that glutamine supplementation provides protective benefits in inflammation-related disorders, but the pharmacological significance of glutamine in lipopolysaccharide (LPS)/D-galactosamine (D-Gal)-induced fulminant hepatitis remains unclear. In the present study, the potential effects of glutamine on LPS/D-Gal-induced fulminant hepatitis were investigated. Pretreatment with glutamine decreased plasma activities of alanine and aspartate aminotransferases, and ameliorated hepatic morphological abnormalities in LPS/D-Gal-exposed mice. Glutamine pretreatment also inhibited LPS/D-Gal-induced tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) production. In addition, glutamine pretreatment decreased the level of cleaved cysteinyl aspartate-specific proteinase 3 (caspase-3), suppressed the activities of caspase-3, caspase-8, and caspase-9, and reduced the number of cells positive for TdT-mediated dUTP nick-end labeling in LPS/D-Gal-challenged mice. Interestingly, post-treatment with glutamine also provided protective benefits against LPS/D-Gal-induced acute liver injury, although these effects were less robust than those of glutamine pre-treatment. Thus, glutamine may have potential value as a pharmacological intervention in fulminant hepatitis.
Collapse
Affiliation(s)
- Mengxin Yang
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing 400016, China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Xinyue Zhang
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing 400016, China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Shuang Zhao
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing 400016, China
| | - Ruyue Shao
- Clinical Medical School, Chongqing Medical and Pharmaceutical College, Chongqing 400016, China
| | - Kerui Fan
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing 400016, China
| | - Kai Hu
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing 400016, China
| | - Li Zhang
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing 400016, China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Yongqiang Yang
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing 400016, China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
14
|
Pan Z, He X, Shao Y, Chen W, Fang B. ROS/JNK-mediated lysosomal injury in rat intestinal epithelial-6 cells during heat stress. J Therm Biol 2022; 109:103326. [DOI: 10.1016/j.jtherbio.2022.103326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/28/2022] [Accepted: 09/09/2022] [Indexed: 10/14/2022]
|
15
|
The Prostate-Associated Gene 4 (PAGE4) Could Play a Role in the Development of Benign Prostatic Hyperplasia under Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7041739. [PMID: 35633887 PMCID: PMC9135540 DOI: 10.1155/2022/7041739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/19/2022] [Accepted: 05/05/2022] [Indexed: 11/18/2022]
Abstract
Benign prostatic hyperplasia (BPH) is a common disease in elderly men with uncertain molecular mechanism, and oxidative stress (OS) has also been found associated with BPH development. Recently, we found that prostate-associated gene 4 (PAGE4) was one of the most significantly changed differentially expressed genes (DEGs) in BPH, which can protect cells against stress stimulation. However, the exact role of PAGE4 in BPH remains unclear. This study is aimed at exploring the effect of PAGE4 in BPH under OS. Human prostate tissues and cultured WPMY-1 and PrPF cells were utilized. The expression and localization of PAGE4 were determined with qRT-PCR, Western blotting, and immunofluorescence staining. OS cell models induced with H2O2 were treated with PAGE4 silencing or PAGE4 overexpression or inhibitor (N-acetyl-L-cysteine (NAC)) of OS. The proliferation activity, apoptosis, OS markers, and MAPK signaling pathways were detected by CCK-8 assay, flow cytometry analysis, and Western blotting. PAGE4 was shown to be upregulated in human hyperplastic prostate and mainly located in the stroma. Acute OS induced with H2O2 increased PAGE4 expression (which was prevented by OS inhibitor), apoptosis, cell cycle arrest, and reactive oxygen species (ROS) accumulation in WPMY-1 and PrPF cells. siPAGE4 plus H2O2 potentiated H2O2 effect via reducing the p-ERK1/2 level and increasing p-JNK1/2 level. Consistently, overexpression of PAGE4 offset the effect of H2O2 and partially reversed the PAGE4 silencing effect. However, knocking down and overexpression of PAGE4 alone determined no significant effects. Our novel data demonstrated that augmented PAGE4 promotes cell survival by activating p-ERK1/2 and decreases cell apoptosis by inhibiting p-JNK1/2 under the OS, which could contribute to the development of BPH.
Collapse
|