1
|
Aikio M, Odeh HM, Wobst HJ, Lee BL, Chan Ú, Mauna JC, Mack KL, Class B, Ollerhead TA, Ford AF, Barbieri EM, Cupo RR, Drake LE, Smalley JL, Lin YT, Lam S, Thomas R, Castello N, Baral A, Beyer JN, Najar MA, Dunlop J, Gitler AD, Javaherian A, Kaye JA, Burslem GM, Brown DG, Donnelly CJ, Finkbeiner S, Moss SJ, Brandon NJ, Shorter J. Opposing roles of p38α-mediated phosphorylation and PRMT1-mediated arginine methylation in driving TDP-43 proteinopathy. Cell Rep 2025; 44:115205. [PMID: 39817908 DOI: 10.1016/j.celrep.2024.115205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/21/2024] [Accepted: 12/23/2024] [Indexed: 01/18/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder typically characterized by insoluble inclusions of hyperphosphorylated TDP-43. The mechanisms underlying toxic TDP-43 accumulation are not understood. Persistent activation of p38 mitogen-activated protein kinase (MAPK) is implicated in ALS. However, it is unclear how p38 MAPK affects TDP-43 proteinopathy. Here, we show that p38α MAPK inhibition reduces pathological TDP-43 phosphorylation, aggregation, cytoplasmic mislocalization, and neurotoxicity. Remarkably, p38α MAPK inhibition mitigates aberrant TDP-43 phenotypes in diverse ALS patient-derived motor neurons. p38α MAPK phosphorylates TDP-43 at pathological S409/S410 and S292, which reduces TDP-43 liquid-liquid phase separation (LLPS) but allows pathological TDP-43 aggregation. Moreover, we establish that PRMT1 methylates TDP-43 at R293. Importantly, S292 phosphorylation reduces R293 methylation, and R293 methylation reduces S409/S410 phosphorylation. Notably, R293 methylation permits TDP-43 LLPS and reduces pathological TDP-43 aggregation. Thus, strategies to reduce p38α-mediated TDP-43 phosphorylation and promote PRMT1-mediated R293 methylation could have therapeutic utility for ALS and related TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Mari Aikio
- AstraZeneca-Tufts Laboratory for Basic and Translational Neuroscience, Department of Neuroscience, Tufts University, Boston, MA 02111, USA; Neumora Therapeutics, Watertown, MA 02472, USA
| | - Hana M Odeh
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Heike J Wobst
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA 02451, USA
| | - Bo Lim Lee
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Úna Chan
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Jocelyn C Mauna
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; LiveLikeLou Center for ALS Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; University of Pittsburgh Brain Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Korrie L Mack
- Neumora Therapeutics, Watertown, MA 02472, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bradley Class
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA 02451, USA
| | - Thomas A Ollerhead
- AstraZeneca-Tufts Laboratory for Basic and Translational Neuroscience, Department of Neuroscience, Tufts University, Boston, MA 02111, USA
| | - Alice F Ford
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward M Barbieri
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ryan R Cupo
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lauren E Drake
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua L Smalley
- AstraZeneca-Tufts Laboratory for Basic and Translational Neuroscience, Department of Neuroscience, Tufts University, Boston, MA 02111, USA
| | - Yuan-Ta Lin
- Neumora Therapeutics, Watertown, MA 02472, USA
| | - Stephanie Lam
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Reuben Thomas
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Nicholas Castello
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Ashmita Baral
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Jenna N Beyer
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mohd A Najar
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John Dunlop
- Neumora Therapeutics, Watertown, MA 02472, USA; Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA 02451, USA
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ashkan Javaherian
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Julia A Kaye
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA; Taube/Koret Center for Neurodegenerative Disease Research, Gladstone Institutes, San Francisco, CA 94158, USA
| | - George M Burslem
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dean G Brown
- Hit Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA 02451, USA
| | - Christopher J Donnelly
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; LiveLikeLou Center for ALS Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; University of Pittsburgh Brain Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Steven Finkbeiner
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA; Taube/Koret Center for Neurodegenerative Disease Research, Gladstone Institutes, San Francisco, CA 94158, USA; Deparments of Neurology and Physiology, Neuroscience Graduate Program and Biomedical Sciences Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Stephen J Moss
- AstraZeneca-Tufts Laboratory for Basic and Translational Neuroscience, Department of Neuroscience, Tufts University, Boston, MA 02111, USA
| | - Nicholas J Brandon
- AstraZeneca-Tufts Laboratory for Basic and Translational Neuroscience, Department of Neuroscience, Tufts University, Boston, MA 02111, USA; Neumora Therapeutics, Watertown, MA 02472, USA; Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA 02451, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Guan J, Wu P, Liu M, Jiang C, Meng X, Wu X, Lu M, Fan Y, Gan L. Egln3 expression in microglia enhances the neuroinflammatory responses in Alzheimer's disease. Brain Behav Immun 2024; 125:21-32. [PMID: 39701332 DOI: 10.1016/j.bbi.2024.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/27/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024] Open
Abstract
Alzheimer's disease (AD), characterized by cognitive and behavioral abnormalities, is the most prevalent neurodegenerative disease worldwide. Neuroinflammation, which is induced by microglial activation, resulting in the expression of a multitude of inflammatory factors, is one of the principal characteristics of AD. Herein, we found that Egln3 is differentially expressed in microglia in the brains of AD mice. Egln3 is a member of the Egln family of proline hydroxylases, which regulates a variety of biological processes, including transcription, the cell cycle, and apoptosis, through hydroxylation, ubiquitylation, and participation in glycolysis. To further observe the effects of Egln3 on cognitive function, we utilized APP/PS1 mice as a pathological model of AD to conduct behavioral experiments and assess the expression levels of Aβ and inflammatory factors. The specific mechanisms by which Egln3 affects microglial activation were analyzed using in vitro experiments and transcriptome sequencing. The results of these analyses demonstrated that Egln3 is highly expressed in microglia in AD. Inhibition of Egln3 expression in the brains of APP/PS1 mice improves neuroinflammatory responses and cognitive function, indicating that a high expression of Egln3 promotes AD progression. Furthermore, our findings indicate that Egln3 could activate the MAPK pathway, which in turn contributes to the aggravation of neuroinflammation. Inhibition of the MAPK pathway results in attenuation of the pro-inflammatory state of microglia. Consequently, Egln3 may exacerbate neuroinflammation and promote AD progression via the MAPK pathway in microglia, making it a promising target for AD-related therapies.
Collapse
Affiliation(s)
- Jiaxin Guan
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, Heilongjiang 150081, China
| | - Pengfei Wu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu 233030, China
| | - Meiling Liu
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, Heilongjiang 150081, China
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Xiangqi Meng
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Xiaowei Wu
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, Heilongjiang 150081, China
| | - Meijiao Lu
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, Heilongjiang 150081, China
| | - Ying Fan
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, Heilongjiang 150081, China
| | - Lu Gan
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, Heilongjiang 150081, China.
| |
Collapse
|
3
|
Zhou F, Zhao Y, Sun Y, Chen W. Molecular Insights into Tau Pathology and its Therapeutic Strategies in Alzheimer's Disease. J Integr Neurosci 2024; 23:197. [PMID: 39613463 DOI: 10.31083/j.jin2311197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 12/01/2024] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. The two major hallmarks of this disease are extracellular amyloid plaques and intracellular neurofibrillary tangles in the brain, accompanied by loss of neurons and synapses. The plaques and tangles mainly consist of amyloid-β (Aβ) and tau protein, respectively. Most of the therapeutic strategies for AD to date have focused on Aβ. However, there is still no effective therapy available. In recent years, the clinical therapeutic failure of targeting Aβ pathology has resulted in increased interest towards tau-based therapeutics. In the current review, we focus on the research progress regarding the pathological mechanisms of tau protein in this disease and discuss tau-targeting therapeutic strategies.
Collapse
Affiliation(s)
- Futao Zhou
- School of Basic Medicine, Gannan Medical University, 341000 Ganzhou, Jiangxi, China
| | - Yushi Zhao
- School of Basic Medicine, Gannan Medical University, 341000 Ganzhou, Jiangxi, China
| | - Yangyan Sun
- School of Basic Medicine, Gannan Medical University, 341000 Ganzhou, Jiangxi, China
| | - Wanjiao Chen
- School of Basic Medicine, Gannan Medical University, 341000 Ganzhou, Jiangxi, China
| |
Collapse
|
4
|
Deng X, Qiu Z, Chen X, Liu J, Wang X, Li J, Zhang J, Cui X, Fu Y, Jiang M. Exploring the potential mechanism of ginsenoside Rg1 to regulate ferroptosis in Alzheimer's disease based on network pharmacology. Eur J Pharmacol 2024; 979:176859. [PMID: 39067563 DOI: 10.1016/j.ejphar.2024.176859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVES To explore the pathogenesis of Alzheimer's disease (AD), the potential targets and signaling pathways of ginsenoside Rg1 against AD were investigated by network pharmacology. METHODS Ginsenoside Rg1 targets were identified through PubChem, PharmMapper, and Uniprot databases, while the GeneCards database was used to examine the respective targets of amyloid precursor protein (APP) and AD. Then, the common targets between ginsenoside Rg1 and APP were explored by the Venny tool, the interaction network diagram between the active components and the targets was built via Cytoscape software, as well as GO enrichment and KEGG pathway annotation analysis were performed. Furthermore, genes associated with ferroptosis were found by the GeneCards and FerrDb databases. Besides, the connection among ginsenoside Rg1, APP, ferroptosis, and AD was predicted and analyzed. Finally, the effects of ginsenosides Rg1 and liproxstain-1 on the proliferation and differentiation of APP/PS1 mice were evaluated by immunohistochemistry. RESULTS Ginsenoside Rg1, APP, ferroptosis, and AD had 12 hub genes. GO enrichment and KEGG pathway annotation analysis showed that EGFR, SRC, protein hydrolysis, protein phosphorylation, the Relaxin pathway, and the FoxO signaling pathway play an important role in the potential mechanism of ginsenoside Rg1's under regulation of ferroptosis anti-AD through the modulation of APP-related signaling pathways. The APP/PS1 mice experiment verified that ginsenosides Rg1 and liproxstain-1 can promote the proliferation and differentiation. CONCLUSION Ginsenoside Rg1, APP and ferroptosis may act on EGFR, SRC, the Relaxin and FoxO signaling pathways to regulate protein metabolism, protein phosphorylation and other pathways to improve AD symptoms.
Collapse
Affiliation(s)
- Xu Deng
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, 523808, China
| | - Zixiong Qiu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, 523808, China
| | - Xiaoshuai Chen
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, 523808, China
| | - Jiangxiu Liu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, 523808, China
| | - Xiaowei Wang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, 523808, China
| | - Jie Li
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, 523808, China
| | - Jiankai Zhang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, 523808, China
| | - Xiaojun Cui
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, 523808, China.
| | - Yuan Fu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, 523808, China.
| | - Mei Jiang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
5
|
Putri AF, Utomo DH, Tunjung WAS, Putri WA. Analysis of the anti-Alzheimer potential of bioactive compounds from Citrus hystrix DC. peel, leaf, and essential oil by network pharmacology. Heliyon 2024; 10:e33496. [PMID: 39050443 PMCID: PMC11267028 DOI: 10.1016/j.heliyon.2024.e33496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/30/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
Alzheimer's disease (AD) is the most known neurodegenerative disease, and its prevalence is predicted to increase significantly. Discovering novel drugs and treatments for AD is urgently needed. Drugs from natural products have been preferred lately due to their high potential and low toxicity. Citrus hystrix DC. (kaffir lime; KL) is one such herbal plant that is found abundantly in Southeast Asia with many biological activities. In this study, the potential of bioactive compounds from KL peel, leaf, and essential oil as anti-AD agents was explored using network pharmacology. First, the compounds were identified with KNApSAcK database and related literature. Subsequently, the targets of each corresponding compound were determined with SEA Search Server and Swiss Target Prediction, while the proteins associated with AD were identified using OMIM, GenCLiP3, and DisGeNET. Furthermore, a protein-protein interaction network and a compound-target interaction network were constructed to identify the most crucial proteins and compounds in the network by employing Cytoscape v3.9.1. The study continued with pathway enrichment analysis using STRING v1.7.1, molecular docking with PyRx and SwissDock, and molecular dynamics simulation with YASARA for further confirmation. Our results showed that almost all the secondary metabolites of KL targeted AD-associated genes, with oxypeucedanin and citrusoside A showing the highest anti-AD potential and targeting essential genes, EGFR and MAPK14, respectively. These targets were associated with inflammatory and oxidative stress pathways, indicating the potential mechanism of KL in attenuating AD clinical manifestation.
Collapse
Affiliation(s)
- Adhisa Fathirisari Putri
- Faculty of Biology, Universitas Gadjah Mada, Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia
- Bioinformatics Research Center, INBIO-Indonesia, Malang, 65162, Indonesia
| | - Didik Huswo Utomo
- Bioinformatics Research Center, INBIO-Indonesia, Malang, 65162, Indonesia
- Biosystem Education Center, Brawijaya University, Malang, 65145, Indonesia
| | - Woro Anindito Sri Tunjung
- Faculty of Biology, Universitas Gadjah Mada, Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia
| | - Wahyu Aristyaning Putri
- Faculty of Biology, Universitas Gadjah Mada, Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia
| |
Collapse
|
6
|
Tonti E, Dell’Omo R, Filippelli M, Spadea L, Salati C, Gagliano C, Musa M, Zeppieri M. Exploring Epigenetic Modifications as Potential Biomarkers and Therapeutic Targets in Glaucoma. Int J Mol Sci 2024; 25:2822. [PMID: 38474069 PMCID: PMC10932063 DOI: 10.3390/ijms25052822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Glaucoma, a complex and multifactorial neurodegenerative disorder, is a leading cause of irreversible blindness worldwide. Despite significant advancements in our understanding of its pathogenesis and management, early diagnosis and effective treatment of glaucoma remain major clinical challenges. Epigenetic modifications, encompassing deoxyribonucleic acid (DNA) methylation, histone modifications, and non-coding RNAs, have emerged as critical regulators of gene expression and cellular processes. The aim of this comprehensive review focuses on the emerging field of epigenetics and its role in understanding the complex genetic and molecular mechanisms underlying glaucoma. The review will provide an overview of the pathophysiology of glaucoma, emphasizing the intricacies of intraocular pressure regulation, retinal ganglion cell dysfunction, and optic nerve damage. It explores how epigenetic modifications, such as DNA methylation and histone modifications, can influence gene expression, and how these mechanisms are implicated in glaucomatous neurodegeneration and contribute to glaucoma pathogenesis. The manuscript discusses evidence from both animal models and human studies, providing insights into the epigenetic alterations associated with glaucoma onset and progression. Additionally, it discusses the potential of using epigenetic modifications as diagnostic biomarkers and therapeutic targets for more personalized and targeted glaucoma treatment.
Collapse
Affiliation(s)
- Emanuele Tonti
- Eye Clinic, Policlinico Umberto I University Hospital, 00142 Rome, Italy; (E.T.)
| | - Roberto Dell’Omo
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, Via Francesco De Sanctis 1, 86100 Campobasso, Italy
| | - Mariaelena Filippelli
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, Via Francesco De Sanctis 1, 86100 Campobasso, Italy
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I University Hospital, 00142 Rome, Italy; (E.T.)
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Caterina Gagliano
- Faculty of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, Italy
- Eye Clinic, Catania University, San Marco Hospital, Viale Carlo Azeglio Ciampi, 95121 Catania, Italy
| | - Mutali Musa
- Department of Optometry, University of Benin, Benin City 300238, Nigeria
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
7
|
Feng L, Wang C, Zhang C, Zhang W, Song W. Role of epigenetic regulation in glaucoma. Biomed Pharmacother 2023; 168:115633. [PMID: 37806089 DOI: 10.1016/j.biopha.2023.115633] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023] Open
Abstract
Glaucoma is the world's leading irreversible blinding eye disease. Lowering intraocular pressure is currently the only effective clinical treatment. However, there is a lack of long-acting IOP-lowering drugs, and some patients still experience retinal ganglion cell loss even with good intraocular pressure control. Currently, there is no effective method for neuroprotection and regeneration in clinical practice for glaucoma. In recent years, epigenetics has been widely researched and reported for its role in glaucoma's neuroprotection and regeneration. This article reviews the changes in histone modifications, DNA methylation, non-coding RNA, and m6A methylation in glaucoma, aiming to provide new perspectives for glaucoma management, protection of retinal ganglion cells, and axon regeneration by understanding epigenetic alterations.
Collapse
Affiliation(s)
- Lemeng Feng
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China
| | - Chao Wang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China
| | - Cheng Zhang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China
| | - Wulong Zhang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China
| | - Weitao Song
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China.
| |
Collapse
|
8
|
Braun DJ, Frazier HN, Davis VA, Coleman MJ, Rogers CB, Van Eldik LJ. Early chronic suppression of microglial p38α in a model of Alzheimer's disease does not significantly alter amyloid-associated neuropathology. PLoS One 2023; 18:e0286495. [PMID: 37256881 PMCID: PMC10231773 DOI: 10.1371/journal.pone.0286495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/17/2023] [Indexed: 06/02/2023] Open
Abstract
The p38 alpha mitogen-activated protein kinase (p38α) is linked to both innate and adaptive immune responses and is under investigation as a target for drug development in the context of Alzheimer's disease (AD) and other conditions with neuroinflammatory dysfunction. While preclinical data has shown that p38α inhibition can protect against AD-associated neuropathology, the underlying mechanisms are not fully elucidated. Inhibitors of p38α may provide benefit via modulation of microglial-associated neuroinflammatory responses that contribute to AD pathology. The present study tests this hypothesis by knocking out microglial p38α and assessing early-stage pathological changes. Conditional knockout of microglial p38α was accomplished in 5-month-old C57BL/6J wild-type and amyloidogenic AD model (APPswe/PS1dE9) mice using a tamoxifen-inducible Cre/loxP system under control of the Cx3cr1 promoter. Beginning at 7.5 months of age, animals underwent behavioral assessment on the open field, followed by a later radial arm water maze test and collection of cortical and hippocampal tissues at 11 months. Additional endpoint measures included quantification of proinflammatory cytokines, assessment of amyloid burden and plaque deposition, and characterization of microglia-plaque dynamics. Loss of microglial p38α did not alter behavioral outcomes, proinflammatory cytokine levels, or overall amyloid plaque burden. However, this manipulation did significantly increase hippocampal levels of soluble Aβ42 and reduce colocalization of Iba1 and 6E10 in a subset of microglia in close proximity to plaques. The data presented here suggest that rather than reducing inflammation per se, the net effect of microglial p38α inhibition in the context of early AD-type amyloid pathology is a subtle alteration of microglia-plaque interactions. Encouragingly from a therapeutic standpoint, these data suggest no detrimental effect of even substantial decreases in microglial p38α in this context. Additionally, these results support future investigations of microglial p38α signaling at different stages of disease, as well as its relationship to phagocytic processes in this particular cell-type.
Collapse
Affiliation(s)
- David J. Braun
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, United States of America
| | - Hilaree N. Frazier
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | - Verda A. Davis
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | - Meggie J. Coleman
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | - Colin B. Rogers
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | - Linda J. Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
9
|
Zhang C, Wei C, Huang X, Hou C, Liu C, Zhang S, Zhao Z, Liu Y, Zhang R, Zhou L, Li Y, Yuan X, Zhang J. MPC-n (IgG) improves long-term cognitive impairment in the mouse model of repetitive mild traumatic brain injury. BMC Med 2023; 21:199. [PMID: 37254196 DOI: 10.1186/s12916-023-02895-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 05/09/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND Contact sports athletes and military personnel who suffered a repetitive mild traumatic brain injury (rmTBI) are at high risk of neurodegenerative diseases such as advanced dementia and chronic traumatic encephalopathy (CTE). However, due to the lack of specific biological indicators in clinical practice, the diagnosis and treatment of rmTBI are quite limited. METHODS We used 2-methacryloyloxyethyl phosphorylcholine (MPC)-nanocapsules to deliver immunoglobulins (IgG), which can increase the delivery efficiency and specific target of IgG while reducing the effective therapeutic dose of the drug. RESULTS Our results demonstrated that MPC-capsuled immunoglobulins (MPC-n (IgG)) significantly alleviated cognitive impairment, hippocampal atrophy, p-Tau deposition, and myelin injury in rmTBI mice compared with free IgG. Furthermore, MPC-n (IgG) can also effectively inhibit the activation of microglia and the release of inflammatory factors. CONCLUSIONS In the present study, we put forward an efficient strategy for the treatment of rmTBI-related cognitive impairment and provide evidence for the administration of low-dose IgG.
Collapse
Affiliation(s)
- Chaonan Zhang
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Cheng Wei
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xingqi Huang
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Changxin Hou
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Chuan Liu
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Shu Zhang
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zilong Zhao
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yafan Liu
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ruiguang Zhang
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Lei Zhou
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ying Li
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xubo Yuan
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China.
| | - Jianning Zhang
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
10
|
Schnöder L, Quan W, Yu Y, Tomic I, Luo Q, Hao W, Peng G, Li D, Fassbender K, Liu Y. Deficiency of IKKβ in neurons ameliorates Alzheimer's disease pathology in APP- and tau-transgenic mice. FASEB J 2023; 37:e22778. [PMID: 36688823 DOI: 10.1096/fj.202201512r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/21/2022] [Accepted: 01/06/2023] [Indexed: 01/24/2023]
Abstract
In Alzheimer's disease (AD) brain, inflammatory activation regulates protein levels of amyloid-β-peptide (Aβ) and phosphorylated tau (p-tau), as well as neurodegeneration; however, the regulatory mechanisms remain unclear. We constructed APP- and tau-transgenic AD mice with deletion of IKKβ specifically in neurons, and observed that IKKβ deficiency reduced cerebral Aβ and p-tau, and modified inflammatory activation in both AD mice. However, neuronal deficiency of IKKβ decreased apoptosis and maintained synaptic proteins (e.g., PSD-95 and Munc18-1) in the brain and improved cognitive function only in APP-transgenic mice, but not in tau-transgenic mice. Additionally, IKKβ deficiency decreased BACE1 protein and activity in APP-transgenic mouse brain and cultured SH-SY5Y cells. IKKβ deficiency increased expression of PP2A catalytic subunit isoform A, an enzyme dephosphorylating cerebral p-tau, in the brain of tau-transgenic mice. Interestingly, deficiency of IKKβ in neurons enhanced autophagy as indicated by the increased ratio of LC3B-II/I in brains of both APP- and tau-transgenic mice. Thus, IKKβ deficiency in neurons ameliorates AD-associated pathology in APP- and tau-transgenic mice, perhaps by decreasing Aβ production, increasing p-tau dephosphorylation, and promoting autophagy-mediated degradation of BACE1 and p-tau aggregates in the brain. However, IKKβ deficiency differently protects neurons in APP- and tau-transgenic mice. Further studies are needed, particularly in the context of interaction between Aβ and p-tau, before IKKβ/NF-κB can be targeted for AD therapies.
Collapse
Affiliation(s)
- Laura Schnöder
- Department of Neurology, Saarland University, Homburg, Germany
| | - Wenqiang Quan
- Department of Neurology, Saarland University, Homburg, Germany
- Department of Clinical Laboratory, Tongji Hospital, Tongji University Medical School, Shanghai, China
| | - Ye Yu
- Department of Neurology, Saarland University, Homburg, Germany
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Inge Tomic
- Department of Neurology, Saarland University, Homburg, Germany
| | - Qinghua Luo
- Department of Neurology, Saarland University, Homburg, Germany
| | - Wenlin Hao
- Department of Neurology, Saarland University, Homburg, Germany
| | - Guoping Peng
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dong Li
- Department of Clinical Laboratory, Tongji Hospital, Tongji University Medical School, Shanghai, China
| | | | - Yang Liu
- Department of Neurology, Saarland University, Homburg, Germany
- Department of Clinical Laboratory, Tongji Hospital, Tongji University Medical School, Shanghai, China
| |
Collapse
|
11
|
Zhu XC, Zhu MZ, Lu J, Yao QY, Hu JW, Long WJ, Ruan SS, Dai WZ, Li R. MicroRNA-125a-3p Modulate Amyloid β-Protein through the MAPK Pathway in Alzheimer's Disease. Curr Alzheimer Res 2023; 20:471-480. [PMID: 37711111 DOI: 10.2174/1567205020666230913105811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/06/2023] [Accepted: 07/19/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND MicroRNA (miR)-125a-3p is reported to play an important role in some central nervous system diseases, such as Alzheimer's disease (AD). However, a study has not been conducted on the mechanism of miR-125a-3p in the pathological process of AD. METHODS First, we assessed the expression of miR-125a-3p in AD cohort. Subsequently, we altered the expressions of miR-125a-3p to assess its role in cell viability, cell apoptosis, amyloid-β (Aβ) metabolism, and synaptic activity. Finally, we identified its potential mechanism underlying AD pathology. RESULTS This study unveiled the potential function of miR-125a-3p through modulating amyloid precursor protein processing. Additionally, miR-125a-3p influenced cell survival and activated synaptic expression through the modulation of Aβ metabolism in the mitogen-activated protein kinase (MAPK) pathway via fibroblast growth factor receptor 2. CONCLUSION Our study indicates that targeting miR-125a-3p may be an applicable therapy for AD in the future. However, more in vitro and in vivo studies with more samples are needed to confirm these results.
Collapse
Affiliation(s)
- Xi-Chen Zhu
- Department of Neurology, the Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, Wuxi, Jiangsu Province, China
- Brain Institue, Jiangnan University, Wuxi, Jiangsu Province, China
- Department of Neurology, the Wuxi No. 2 People's Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu Province, China
- Department of Neurology, the Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Meng-Zhuo Zhu
- Department of Neurology, the Wuxi No. 2 People's Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu Province, China
| | - Jing Lu
- Department of Neurology, the Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Qing-Yu Yao
- Department of Neurology, the Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, Wuxi, Jiangsu Province, China
| | - Jia-Wei Hu
- Department of Neurology, the Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, Wuxi, Jiangsu Province, China
| | - Wen-Jun Long
- Department of Neurology, the Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, Wuxi, Jiangsu Province, China
| | - Sha-Sha Ruan
- Department of Neurology, the Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, Wuxi, Jiangsu Province, China
- Brain Institue, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Wen-Zhuo Dai
- Department of Neurology, the Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, Wuxi, Jiangsu Province, China
- Brain Institue, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Rong Li
- Department of Neurology, the Wuxi No. 2 People's Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu Province, China
- Department of Pharmacy, the Affiliated Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, Wuxi, Jiangsu Province, China
| |
Collapse
|
12
|
Ramón-Landreau M, Sánchez-Puelles C, López-Sánchez N, Lozano-Ureña A, Llabrés-Mas AM, Frade JM. E2F4DN Transgenic Mice: A Tool for the Evaluation of E2F4 as a Therapeutic Target in Neuropathology and Brain Aging. Int J Mol Sci 2022; 23:ijms232012093. [PMID: 36292945 PMCID: PMC9603043 DOI: 10.3390/ijms232012093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 12/03/2022] Open
Abstract
E2F4 was initially described as a transcription factor with a key function in the regulation of cell quiescence. Nevertheless, a number of recent studies have established that E2F4 can also play a relevant role in cell and tissue homeostasis, as well as tissue regeneration. For these non-canonical functions, E2F4 can also act in the cytoplasm, where it is able to interact with many homeostatic and synaptic regulators. Since E2F4 is expressed in the nervous system, it may fulfill a crucial role in brain function and homeostasis, being a promising multifactorial target for neurodegenerative diseases and brain aging. The regulation of E2F4 is complex, as it can be chemically modified through acetylation, from which we present evidence in the brain, as well as methylation, and phosphorylation. The phosphorylation of E2F4 within a conserved threonine motif induces cell cycle re-entry in neurons, while a dominant negative form of E2F4 (E2F4DN), in which the conserved threonines have been substituted by alanines, has been shown to act as a multifactorial therapeutic agent for Alzheimer’s disease (AD). We generated transgenic mice neuronally expressing E2F4DN. We have recently shown using this mouse strain that expression of E2F4DN in 5xFAD mice, a known murine model of AD, improved cognitive function, reduced neuronal tetraploidization, and induced a transcriptional program consistent with modulation of amyloid-β (Aβ) peptide proteostasis and brain homeostasis recovery. 5xFAD/E2F4DN mice also showed reduced microgliosis and astrogliosis in both the cerebral cortex and hippocampus at 3-6 months of age. Here, we analyzed the immune response in 1 year-old 5xFAD/E2F4DN mice, concluding that reduced microgliosis and astrogliosis is maintained at this late stage. In addition, the expression of E2F4DN also reduced age-associated microgliosis in wild-type mice, thus stressing its role as a brain homeostatic agent. We conclude that E2F4DN transgenic mice represent a promising tool for the evaluation of E2F4 as a therapeutic target in neuropathology and brain aging.
Collapse
Affiliation(s)
- Morgan Ramón-Landreau
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas, 28002 Madrid, Spain
| | - Cristina Sánchez-Puelles
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas, 28002 Madrid, Spain
| | - Noelia López-Sánchez
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas, 28002 Madrid, Spain
| | - Anna Lozano-Ureña
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas, 28002 Madrid, Spain
| | - Aina M. Llabrés-Mas
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas, 28002 Madrid, Spain
| | - José M. Frade
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas, 28002 Madrid, Spain
- Cajal International Neuroscience Center, Consejo Superior de Investigaciones Científicas, UAH Science and Technology Campus, Avenida León 1, 28805 Alcalá de Henares, Spain
- Correspondence: ; Tel.: +34-91-585-4740
| |
Collapse
|
13
|
Borland H, Rasmussen I, Bjerregaard-Andersen K, Rasmussen M, Olsen A, Vilhardt F. α-synuclein build-up is alleviated via ESCRT-dependent endosomal degradation brought about by p38MAPK inhibition in cells expressing p25α. J Biol Chem 2022; 298:102531. [PMID: 36162505 PMCID: PMC9637583 DOI: 10.1016/j.jbc.2022.102531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 08/24/2022] [Accepted: 09/04/2022] [Indexed: 11/24/2022] Open
Abstract
α-synucleinopathy is driven by an imbalance of synthesis and degradation of α-synuclein (αSyn), causing a build up of αSyn aggregates and post-translationally modified species, which not only interfere with normal cellular metabolism but also by their secretion propagates the disease. Therefore, a better understanding of αSyn degradation pathways is needed to address α-synucleinopathy. Here, we used the nerve growth factor–differentiated catecholaminergic PC12 neuronal cell line, which was conferred α-synucleinopathy by inducible expression of αSyn and tubulin polymerization-promoting protein p25α. p25α aggregates αSyn, and imposes a partial autophagosome–lysosome block to mimic aspects of lysosomal deficiency common in neurodegenerative disease. Under basal conditions, αSyn was degraded by multiple pathways but most prominently by macroautophagy and Nedd4/Ndfip1-mediated degradation. We found that expression of p25α induced strong p38MAPK activity. Remarkably, when opposed by inhibitor SB203580 or p38MAPK shRNA knockdown, endolysosomal localization and degradation of αSyn increased, and αSyn secretion and cytotoxicity decreased. This effect was specifically dependent on Hsc70 and the endosomal sorting complex required for transport machinery, but different from classical microautophagy, as the αSyn Hsc70 binding motif was unnecessary. Furthermore, in a primary neuronal (h)-αSyn seeding model, p38MAPK inhibition decreased pathological accumulation of phosphorylated serine-129-αSyn and cytotoxicity. In conclusion, p38MAPK inhibition shifts αSyn degradation from various forms of autophagy to an endosomal sorting complex required for transport–dependent uptake mechanism, resulting in increased αSyn turnover and cell viability in p25α-expressing cells. More generally, our results suggest that under conditions of autophagolysosomal malfunction, the uninterrupted endosomal pathway offers a possibility to achieve disease-associated protein degradation.
Collapse
Affiliation(s)
- Helena Borland
- Dept. of Cellular and Molecular Medicine, The Panum Institute, The Faculty of Health Sciences, University of Copenhagen, Copenhagen 2200N, Denmark; Dept. of Cell Biology, H. Lundbeck A/S, 2500 Valby, Denmark.
| | - Izabela Rasmussen
- Dept. of Cellular and Molecular Medicine, The Panum Institute, The Faculty of Health Sciences, University of Copenhagen, Copenhagen 2200N, Denmark.
| | | | - Michel Rasmussen
- Dept. of Cellular and Molecular Medicine, The Panum Institute, The Faculty of Health Sciences, University of Copenhagen, Copenhagen 2200N, Denmark.
| | - Anders Olsen
- Dept. of Chemistry and Bioscience, The Faculty of Engineering and Science, University of Aalborg, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark.
| | - Frederik Vilhardt
- Dept. of Cellular and Molecular Medicine, The Panum Institute, The Faculty of Health Sciences, University of Copenhagen, Copenhagen 2200N, Denmark.
| |
Collapse
|
14
|
Lin H, Dixon SG, Hu W, Hamlett ED, Jin J, Ergul A, Wang GY. p38 MAPK Is a Major Regulator of Amyloid Beta-Induced IL-6 Expression in Human Microglia. Mol Neurobiol 2022; 59:5284-5298. [PMID: 35697992 PMCID: PMC9398979 DOI: 10.1007/s12035-022-02909-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/30/2022] [Indexed: 01/24/2023]
Abstract
The accumulation of amyloid beta (Aβ) plaques in the brain is a hallmark of Alzheimer's disease (AD) pathology. Microglial activation-mediated neuroinflammation has been implicated in the pathogenesis of AD and the expression levels of interleukin-6 (IL-6) were increased in the brains of AD patients. However, the mechanisms by which IL-6 expression is regulated in human microglia are incompletely understood. Here, we show that Aβ1-40 oligomers (Aβ40) dose-dependently stimulate IL-6 expression in HMC3 human microglial cells. Treatment with Aβ40 promotes the transcription of IL-6 and tumor necrosis factor α (TNFα) mRNAs in both HMC3 and THP-1 cells. Mechanistic studies reveal that Aβ40-induced increase of IL-6 secretion is associated with the activation of p38 mitogen-activated protein kinase (p38 MAPK). Inhibition of p38 MAPK by BIRB 796 or SB202190 abrogates Aβ40-induced increase of IL-6 production. Through analyzing brain specimens, we found that the immunoreactivity for IL-6 and phosphorylated (the activated form) p38 MAPK was markedly higher in microglia of AD patients than in age-matched control subjects. Moreover, our studies identified the co-localization of IL-6 with phosphorylated p38 MAPK in microglia in the cortices of AD patients. Taken together, these results indicate that p38 MAPK is a major regulator of Aβ-induced IL-6 production in human microglia, which suggests that targeting p38 MAPK may represent a new approach to ameliorate Aβ accumulation-induced neuroinflammation in AD.
Collapse
Affiliation(s)
- Houmin Lin
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, MSC908, Charleston, SC, 29425, USA
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Steven Grant Dixon
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, MSC908, Charleston, SC, 29425, USA
| | - Wei Hu
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, MSC908, Charleston, SC, 29425, USA
| | - Eric D Hamlett
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, MSC908, Charleston, SC, 29425, USA
| | - Junfei Jin
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Adviye Ergul
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, MSC908, Charleston, SC, 29425, USA
- Ralph H. Johnson VAMC, Charleston, SC, 29403, USA
| | - Gavin Y Wang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, MSC908, Charleston, SC, 29425, USA.
| |
Collapse
|
15
|
Anti-Inflammatory Activity of 4-(4-(Heptyloxy)phenyl)-2,4-dihydro-3 H-1,2,4-triazol-3-one via Repression of MAPK/NF-κB Signaling Pathways in β-Amyloid-Induced Alzheimer's Disease Models. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27155035. [PMID: 35956985 PMCID: PMC9370156 DOI: 10.3390/molecules27155035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 01/03/2023]
Abstract
Alzheimer’s disease (AD) is a major neurodegenerative disease, but so far, it can only be treated symptomatically rather than changing the process of the disease. Recently, triazoles and their derivatives have been shown to have potential for the treatment of AD. In this study, the neuroprotective effects of 4-(4-(heptyloxy)phenyl)-2,4-dihydro-3H-1,2,4-triazol-3-one (W112) against β-amyloid (Aβ)-induced AD pathology and its possible mechanism were explored both in vitro and in vivo. The results showed that W112 exhibits a neuroprotective role against Aβ-induced cytotoxicity in PC12 cells and improves the learning and memory abilities of Aβ-induced AD-like rats. In addition, the assays of the protein expression revealed that W112 reversed tau hyperphosphorylation and reduced the production of proinflammatory cytokines, tumor necrosis factor-α and interleukin-6, both in vitro and in vivo studies. Further study indicated that the regulation of mitogen-activated protein kinase/nuclear factor-κB pathways played a key role in mediating the neuroprotective effects of W112 against AD-like pathology. W112 may become a potential drug for AD intervention.
Collapse
|
16
|
Luo Q, Schnöder L, Hao W, Litzenburger K, Decker Y, Tomic I, Menger MD, Liu Y, Fassbender K. p38α‐MAPK‐deficient myeloid cells ameliorate symptoms and pathology of
APP
‐transgenic Alzheimer's disease mice. Aging Cell 2022; 21:e13679. [PMID: 35909315 PMCID: PMC9381888 DOI: 10.1111/acel.13679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/26/2022] [Accepted: 07/07/2022] [Indexed: 11/27/2022] Open
Abstract
Alzheimer's disease (AD), the most common cause of dementia in the elderly, is pathologically characterized by extracellular deposition of amyloid‐β peptides (Aβ) and microglia‐dominated inflammatory activation in the brain. p38α‐MAPK is activated in both neurons and microglia. How p38α‐MAPK in microglia contributes to AD pathogenesis remains unclear. In this study, we conditionally knocked out p38α‐MAPK in all myeloid cells or specifically in microglia of APP‐transgenic mice, and examined animals for AD‐associated pathologies (i.e., cognitive deficits, Aβ pathology, and neuroinflammation) and individual microglia for their inflammatory activation and Aβ internalization at different disease stages (e.g., at 4 and 9 months of age). Our experiments showed that p38α‐MAPK‐deficient myeloid cells were more effective than p38α‐MAPK‐deficient microglia in reducing cerebral Aβ and neuronal impairment in APP‐transgenic mice. Deficiency of p38α‐MAPK in myeloid cells inhibited inflammatory activation of individual microglia at 4 months but enhanced it at 9 months. Inflammatory activation promoted microglial internalization of Aβ. Interestingly, p38α‐MAPK‐deficient myeloid cells reduced IL‐17a‐expressing CD4‐positive lymphocytes in 9 but not 4‐month‐old APP‐transgenic mice. By cross‐breeding APP‐transgenic mice with Il‐17a‐knockout mice, we observed that IL‐17a deficiency potentially activated microglia and reduced Aβ deposition in the brain as shown in 9‐month‐old myeloid p38α‐MAPK‐deficient AD mice. Thus, p38α‐MAPK deficiency in all myeloid cells, but not only in microglia, prevents AD progression. IL‐17a‐expressing lymphocytes may partially mediate the pathogenic role of p38α‐MAPK in peripheral myeloid cells. Our study supports p38α‐MAPK as a therapeutic target for AD patients.
Collapse
Affiliation(s)
- Qinghua Luo
- Department of Neurology Saarland University Homburg Germany
- German Institute for Dementia Prevention (DIDP) Saarland University Homburg Germany
| | - Laura Schnöder
- Department of Neurology Saarland University Homburg Germany
- German Institute for Dementia Prevention (DIDP) Saarland University Homburg Germany
| | - Wenlin Hao
- Department of Neurology Saarland University Homburg Germany
- German Institute for Dementia Prevention (DIDP) Saarland University Homburg Germany
| | - Kathrin Litzenburger
- Department of Neurology Saarland University Homburg Germany
- German Institute for Dementia Prevention (DIDP) Saarland University Homburg Germany
| | - Yann Decker
- Department of Neurology Saarland University Homburg Germany
- German Institute for Dementia Prevention (DIDP) Saarland University Homburg Germany
| | - Inge Tomic
- Department of Neurology Saarland University Homburg Germany
- German Institute for Dementia Prevention (DIDP) Saarland University Homburg Germany
| | - Michael D. Menger
- Institute for Clinical and Experimental Surgery Saarland University Homburg Germany
| | - Yang Liu
- Department of Neurology Saarland University Homburg Germany
- German Institute for Dementia Prevention (DIDP) Saarland University Homburg Germany
| | - Klaus Fassbender
- Department of Neurology Saarland University Homburg Germany
- German Institute for Dementia Prevention (DIDP) Saarland University Homburg Germany
| |
Collapse
|
17
|
Cerebrospinal fluid tau levels are associated with abnormal neuronal plasticity markers in Alzheimer's disease. Mol Neurodegener 2022; 17:27. [PMID: 35346299 PMCID: PMC8962234 DOI: 10.1186/s13024-022-00521-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/13/2022] [Indexed: 12/15/2022] Open
Abstract
Background Increased total tau (t-tau) in cerebrospinal fluid (CSF) is a key characteristic of Alzheimer’s disease (AD) and is considered to result from neurodegeneration. T-tau levels, however, can be increased in very early disease stages, when neurodegeneration is limited, and can be normal in advanced disease stages. This suggests that t-tau levels may be driven by other mechanisms as well. Because tau pathophysiology is emerging as treatment target for AD, we aimed to clarify molecular processes associated with CSF t-tau levels. Methods We performed a proteomic, genomic, and imaging study in 1380 individuals with AD, in the preclinical, prodromal, and mild dementia stage, and 380 controls from the Alzheimer’s Disease Neuroimaging Initiative and EMIF-AD Multimodality Biomarker Discovery study. Results We found that, relative to controls, AD individuals with increased t-tau had increased CSF concentrations of over 400 proteins enriched for neuronal plasticity processes. In contrast, AD individuals with normal t-tau had decreased levels of these plasticity proteins and showed increased concentrations of proteins indicative of blood–brain barrier and blood-CSF barrier dysfunction, relative to controls. The distinct proteomic profiles were already present in the preclinical AD stage and persisted in prodromal and dementia stages implying that they reflect disease traits rather than disease states. Dysregulated plasticity proteins were associated with SUZ12 and REST signaling, suggesting aberrant gene repression. GWAS analyses contrasting AD individuals with and without increased t-tau highlighted several genes involved in the regulation of gene expression. Targeted analyses of SNP rs9877502 in GMNC, associated with t-tau levels previously, correlated in individuals with AD with CSF concentrations of 591 plasticity associated proteins. The number of APOE-e4 alleles, however, was not associated with the concentration of plasticity related proteins. Conclusions CSF t-tau levels in AD are associated with altered levels of proteins involved in neuronal plasticity and blood–brain and blood-CSF barrier dysfunction. Future trials may need to stratify on CSF t-tau status, as AD individuals with increased t-tau and normal t-tau are likely to respond differently to treatment, given their opposite CSF proteomic profiles. Supplementary Information The online version contains supplementary material available at 10.1186/s13024-022-00521-3.
Collapse
|
18
|
Song H, Yang J, Yu W. Promoter Hypomethylation of TGFBR3 as a Risk Factor of Alzheimer’s Disease: An Integrated Epigenomic-Transcriptomic Analysis. Front Cell Dev Biol 2022; 9:825729. [PMID: 35310542 PMCID: PMC8924075 DOI: 10.3389/fcell.2021.825729] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by the abnormal deposition of amyloid-β (Aβ) plaques and tau tangles in the brain and accompanied with cognitive impairment. However, the fundamental cause of this disease remains elusive. To elucidate the molecular processes related to AD, we carried out an integrated analysis utilizing gene expression microarrays (GSE36980 and GSE5281) and DNA methylation microarray (GSE66351) in temporal cortex of AD patients from the Gene Expression Omnibus (GEO) database. We totally discovered 409 aberrantly methylated and differentially expressed genes. These dysregulated genes were significantly enriched in biological processes including cell part morphogenesis, chemical synaptic transmission and regulation of Aβ formation. Through convergent functional genomic (CFG) analysis, expression cross-validation and clinicopathological correlation analysis, higher TGFBR3 level was observed in AD and positively correlated with Aβ accumulation. Meanwhile, the promoter methylation level of TGFBR3 was reduced in AD and negatively associated with Aβ level and advanced Braak stage. Mechanically, TGFBR3 might promote Aβ production by enhancing β- and γ-secretase activities. Further investigation revealed that TGFBR3 may exert its functions via Synaptic vesicle cycle, Calcium signaling pathway and MAPK signal pathway by regulating hub genes GNB1, GNG3, CDC5L, DYNC1H1 and FBXW7. Overall, our findings highlighted TGFBR3 as an AD risk gene and might be used as a diagnostic biomarker and therapeutic target for AD treatment.
Collapse
Affiliation(s)
- Hui Song
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Jue Yang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| | - Wenfeng Yu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- *Correspondence: Wenfeng Yu,
| |
Collapse
|
19
|
Schnöder L, Tomic I, Schwindt L, Helm D, Rettel M, Schulz-Schaeffer W, Krause E, Rettig J, Fassbender K, Liu Y. P38α-MAPK phosphorylates Snapin and reduces Snapin-mediated BACE1 transportation in APP-transgenic mice. FASEB J 2021; 35:e21691. [PMID: 34118085 DOI: 10.1096/fj.202100017r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/18/2021] [Accepted: 05/07/2021] [Indexed: 11/11/2022]
Abstract
Amyloid β peptide (Aβ) is the major pathogenic molecule in Alzheimer's disease (AD). BACE1 enzyme is essential for the generation of Aβ. Deficiency of p38α-MAPK in neurons increases lysosomal degradation of BACE1 and decreases Aβ deposition in the brain of APP-transgenic mice. However, the mechanisms mediating effects of p38α-MAPK are largely unknown. In this study, we used APP-transgenic mice and cultured neurons and observed that deletion of p38α-MAPK specifically in neurons decreased phosphorylation of Snapin at serine, increased retrograde transportation of BACE1 in axons and reduced BACE1 at synaptic terminals, which suggests that p38α-MAPK deficiency promotes axonal transportation of BACE1 from its predominant locations, axonal terminals, to lysosomes in the cell body. In vitro kinase assay revealed that p38α-MAPK directly phosphorylates Snapin. By further performing mass spectrometry analysis and site-directed mutagenic experiments in SH-SY5Y cell lines, we identified serine residue 112 as a p38α-MAPK-phosphorylating site on Snapin. Replacement of serine 112 with alanine did abolish p38α-MAPK knockdown-induced reduction of BACE1 activity and protein level, and transportation to lysosomes in SH-SY5Y cells. Taken together, our study suggests that activation of p38α-MAPK phosphorylates Snapin and inhibits the retrograde transportation of BACE1 in axons, which might exaggerate amyloid pathology in AD brain.
Collapse
Affiliation(s)
- Laura Schnöder
- Department of Neurology, Saarland University, Homburg/Saar, Germany.,German Institute for Dementia Prevention (DIDP), Saarland University, Homburg/Saar, Germany
| | - Inge Tomic
- Department of Neurology, Saarland University, Homburg/Saar, Germany.,German Institute for Dementia Prevention (DIDP), Saarland University, Homburg/Saar, Germany
| | - Laura Schwindt
- Department of Neurology, Saarland University, Homburg/Saar, Germany.,German Institute for Dementia Prevention (DIDP), Saarland University, Homburg/Saar, Germany
| | - Dominic Helm
- European Molecular Biology Laboratory, Proteomics Core Facility, Heidelberg, Germany
| | - Mandy Rettel
- European Molecular Biology Laboratory, Proteomics Core Facility, Heidelberg, Germany
| | | | - Elmar Krause
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Jens Rettig
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Klaus Fassbender
- Department of Neurology, Saarland University, Homburg/Saar, Germany.,German Institute for Dementia Prevention (DIDP), Saarland University, Homburg/Saar, Germany
| | - Yang Liu
- Department of Neurology, Saarland University, Homburg/Saar, Germany.,German Institute for Dementia Prevention (DIDP), Saarland University, Homburg/Saar, Germany
| |
Collapse
|
20
|
Quan W, Luo Q, Hao W, Tomic I, Furihata T, Schulz-Schäffer W, Menger MD, Fassbender K, Liu Y. Haploinsufficiency of microglial MyD88 ameliorates Alzheimer's pathology and vascular disorders in APP/PS1-transgenic mice. Glia 2021; 69:1987-2005. [PMID: 33934399 DOI: 10.1002/glia.24007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 11/12/2022]
Abstract
Growing evidence indicates that innate immune molecules regulate microglial activation in Alzheimer's disease (AD); however, their effects on amyloid pathology and neurodegeneration remain inconclusive. Here, we conditionally deleted one allele of myd88 gene specifically in microglia in APP/PS1-transgenic mice by 6 months and analyzed AD-associated pathologies by 9 months. We observed that heterozygous deletion of myd88 gene in microglia decreased cerebral amyloid β (Aβ) load and improved cognitive function of AD mice, which was correlated with reduced number of microglia in the brain and inhibited transcription of inflammatory genes, for example, tnf-α and il-1β, in both brain tissues and individual microglia. To investigate mechanisms underlying the pathological improvement, we observed that haploinsufficiency of MyD88 increased microglial recruitment toward Aβ deposits, which might facilitate Aβ clearance. Microglia with haploinsufficient expression of MyD88 also increased vasculature in the brain of APP/PS1-transgenic mice, which was associated with up-regulated transcription of osteopontin and insulin-like growth factor genes in microglia. Moreover, MyD88-haploinsufficient microglia elevated protein levels of LRP1 in cerebral capillaries of APP/PS1-transgenic mice. Cell culture experiments further showed that treatments with interleukin-1β decreased LRP1 expression in pericytes. In summary, haploinsufficiency of MyD88 in microglia at a late disease stage attenuates pro-inflammatory activation and amyloid pathology, prevents the impairment of microvasculature and perhaps also protects LRP1-mediated Aβ clearance in the brain of APP/PS1-transgenic mice, all of which improves neuronal function of AD mice.
Collapse
Affiliation(s)
- Wenqiang Quan
- Department of Neurology, Saarland University, Homburg, Germany.,German Institute for Dementia Prevention (DIDP), Saarland University, Homburg, Germany.,Department of Clinical Laboratory, Tongji Hospital, Tongji University Medical School, Shanghai, China
| | - Qinghua Luo
- Department of Neurology, Saarland University, Homburg, Germany.,German Institute for Dementia Prevention (DIDP), Saarland University, Homburg, Germany
| | - Wenlin Hao
- Department of Neurology, Saarland University, Homburg, Germany.,German Institute for Dementia Prevention (DIDP), Saarland University, Homburg, Germany
| | - Inge Tomic
- Department of Neurology, Saarland University, Homburg, Germany.,German Institute for Dementia Prevention (DIDP), Saarland University, Homburg, Germany
| | - Tomomi Furihata
- Department of Clinical Pharmacy and Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | | | - Michael D Menger
- Department of Experimental Surgery, Saarland University, Homburg, Germany
| | - Klaus Fassbender
- Department of Neurology, Saarland University, Homburg, Germany.,German Institute for Dementia Prevention (DIDP), Saarland University, Homburg, Germany
| | - Yang Liu
- Department of Neurology, Saarland University, Homburg, Germany.,German Institute for Dementia Prevention (DIDP), Saarland University, Homburg, Germany
| |
Collapse
|
21
|
Abstract
This paper was aimed to analyze the microRNA (miRNA) signatures in Alzheimer disease (AD) and find the significant expressions of miRNAs, their target genes, the functional enrichment analysis of the confirmed genes, and potential drug treatment. The miRNA expression information of the gene expression profile data was downloaded from the Gene Expression Omnibus database. The total data sample size is 1309, including 1021 AD samples and 288 normal samples. A total of 21 differentially expressed miRNAs were obtained, of which 16 (hsa-miR-6761-3p, hsa-miR-6747-3p, hsa-miR-6875-3p, hsa-miR-6754-3p, hsa-miR-6736-3p, hsa-miR-6762-3p, hsa-miR-6787-3p, hsa-miR-208a-5p, hsa-miR-6740-3p, hsa-miR-6778-3p, hsa-miR-595, hsa-miR-6753-3p, hsa-miR-4747-3p, hsa-miR-3646, hsa-miR-6716-3p and hsa-miR-4435) were up-regulated and 5 (hsa-miR-125a-3p, hsa-miR-22-3p, hsa-miR-24-3p, hsa-miR-6131 and hsa-miR-125b-1-3p) were down-regulated in AD. A total of 6 miRNAs (hsa-miR-595, hsa-miR-3646, hsa-miR-4435 hsa-miR-125a-3p, hsa-miR-22-3p and hsa-miR-24-3p) and 78 miRNA-disease-related gene sub-networks were predicted, and 116 ceRNA regulatory relationship pairs, and the ceRNA regulatory network were obtained. The results of enrichment analysis suggested that the main target pathways of several miRNAs differentially expressed in AD were mitogen-activated protein kinase signal pathway. According to the prediction results of Drug-Gene Interaction database 2.0, we obtained 53 pairs of drug-gene interaction, including 7 genes (PTGS2, EGFR, CALM1, PDE4D, FGFR2, HMGCR, cdk6) and 53 drugs. We hope our results are helpful to find a viable way to prevent, delay the onset, diagnose, and treat AD.
Collapse
Affiliation(s)
- Liu Lu
- Department of Neurology, The Affiliated WuXi No.2 People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Wen-Zhuo Dai
- Department of Neurology, The Affiliated WuXi No.2 People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Xi-Chen Zhu
- Department of Neurology, The Affiliated WuXi No.2 People’s Hospital of Nanjing Medical University, Wuxi, China
- Department of Neurology, the WuXi NO.2 People’s Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu, China
| | - Tao Ma
- Department of Neurology, The Affiliated WuXi No.2 People’s Hospital of Nanjing Medical University, Wuxi, China
- Department of Neurology, the WuXi NO.2 People’s Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu, China
| |
Collapse
|
22
|
Germann UA, Alam JJ. P38α MAPK Signaling-A Robust Therapeutic Target for Rab5-Mediated Neurodegenerative Disease. Int J Mol Sci 2020; 21:E5485. [PMID: 32751991 PMCID: PMC7432772 DOI: 10.3390/ijms21155485] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/25/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022] Open
Abstract
Multifactorial pathologies, involving one or more aggregated protein(s) and neuroinflammation are common in major neurodegenerative diseases, such as Alzheimer's disease and dementia with Lewy bodies. This complexity of multiple pathogenic drivers is one potential explanation for the lack of success or, at best, the partial therapeutic effects, respectively, with approaches that have targeted one specific driver, e.g., amyloid-beta, in Alzheimer's disease. Since the endosome-associated protein Rab5 appears to be a convergence point for many, if not all the most prominent pathogenic drivers, it has emerged as a major therapeutic target for neurodegenerative disease. Further, since the alpha isoform of p38 mitogen-activated protein kinase (p38α) is a major regulator of Rab5 activity and its effectors, a biology that is distinct from the classical nuclear targets of p38 signaling, brain-penetrant selective p38α kinase inhibitors provide the opportunity for significant therapeutic advances in neurogenerative disease through normalizing dysregulated Rab5 activity. In this review, we provide a brief summary of the role of Rab5 in the cell and its association with neurodegenerative disease pathogenesis. We then discuss the connection between Rab5 and p38α and summarize the evidence that through modulating Rab5 activity there are therapeutic opportunities in neurodegenerative diseases for p38α kinase inhibitors.
Collapse
|