1
|
Vijayan Y, James S, Viswanathan A, Aparna JS, Bindu A, Namitha NN, Anantharaman D, Babu Lankadasari M, Harikumar KB. Targeting acid ceramidase enhances antitumor immune response in colorectal cancer. J Adv Res 2024; 65:73-87. [PMID: 38142035 PMCID: PMC11518951 DOI: 10.1016/j.jare.2023.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023] Open
Abstract
INTRODUCTION Acid ceramidase (hereafter referred as ASAH1) is an enzyme in sphingolipid metabolism that converts pro-survival ceramide into sphingosine. ASAH1 has been shown to be overexpressed in certain cancers. However, the role of ASAH1 in colorectal cancer still remain elusive. OBJECTIVE The present study is aimed to understand how ASAH1 regulates colorectal cancer (CRC) progression and resistance to checkpoint inhibitor therapy. METHODS Both pharmacological and genetic silencing of ASAH1 was used in the study. In vitro experiments were done on human and mouse CRC cell lines. The in vivo studies were conducted in NOD-SCID and BALB/c mice models. The combination of ASAH1 inhibitor and checkpoint inhibitor was tested using a syngeneic tumor model of CRC. Transcriptomic and metabolomic analyses were done to understand the effect of ASAH1 silencing. RESULTS ASAH1 is overexpressed in human CRC cases, and silencing the expression resulted in the induction of immunological cell death (ICD) and mitochondrial stress. The ASAH1 inhibitor (LCL-521), either as monotherapy or in combination with an anti-PD-1 antibody, resulted in reduction of tumors and, through induction of type I and II interferon response, activation of M1 macrophages and T cells, leading to enhanced infiltration of cytotoxic T cells. Our findings supported that the combination of LCL-521 and ICIs, which enhances the antitumor responses, and ASAH1 can be a druggable target in CRC.
Collapse
Affiliation(s)
- Yadu Vijayan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, India; Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Shirley James
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, India
| | - Arun Viswanathan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, India; Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Jayasekharan S Aparna
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, India
| | - Anu Bindu
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, India
| | - Narayanan N Namitha
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, India
| | - Devasena Anantharaman
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, India
| | - Manendra Babu Lankadasari
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, India
| | - Kuzhuvelil B Harikumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, India.
| |
Collapse
|
2
|
Dhanabalan AK, Devadasan V, Haribabu J, Krishnasamy G. Machine learning models to identify lead compound and substitution optimization to have derived energetics and conformational stability through docking and MD simulations for sphingosine kinase 1. Mol Divers 2024:10.1007/s11030-024-10997-4. [PMID: 39417979 DOI: 10.1007/s11030-024-10997-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024]
Abstract
Sphingosine kinases (SphKs) are a group of important enzymes that circulate at low micromolar concentrations in mammals and have received considerable attention due to the roles they play in a broad array of biological processes including apoptosis, mutagenesis, lymphocyte migration, radio- and chemo-sensitization, and angiogenesis. In the present study, we constructed three classification models by four machine learning (ML) algorithms including naive bayes (NB), support vector machine (SVM), logistic regression, and random forest from 395 compounds. The generated ML models were validated by fivefold cross validation. Five different scaffold hit fragments resulted from SVM model-based virtual screening and docking results indicate that all the five fragments exhibit common hydrogen bond interaction a catalytic residue of SphK1. Further, molecular dynamics (MD) simulations and binding free energy calculation had been carried out with the identified five fragment leads and three cocrystal inhibitors. The best 15 fragments were selected. Molecular dynamics (MD) simulations showed that among these compounds, 7 compounds have favorable binding energy compared with cocrystal inhibitors. Hence, the study showed that the present lead fragments could act as potential inhibitors against therapeutic target of cancers and neurodegenerative disorders.
Collapse
Affiliation(s)
- Anantha Krishnan Dhanabalan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Velmurugan Devadasan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| | - Jebiti Haribabu
- Facultad de Medicina, Universidad de Atacama, Los Carreras 1579, 1532502, Copiapó, Chile
- Chennai Institute of Technology (CIT), Chennai, Tamil Nadu, 600069, India
| | - Gunasekaran Krishnasamy
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, Tamil Nadu, 600025, India.
| |
Collapse
|
3
|
Malacco NL, Michi AN, Siciliani E, Madrigal AG, Sternlieb T, Fontes G, King IL, Cestari I, Jardim A, Stevenson MM, Lopes F. Helminth-derived metabolites induce tolerogenic functional, metabolic, and transcriptional signatures in dendritic cells that attenuate experimental colitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.26.525718. [PMID: 39211070 PMCID: PMC11360915 DOI: 10.1101/2023.01.26.525718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory diseases in which abdominal pain, bloody diarrhea, weight loss, and fatigue collectively result in diminished quality of patient life. The disappearance of intestinal helminth infections in Western societies is associated with an increased prevalence of IBD and other immune-mediated inflammatory diseases. Evidence indicates that helminths induce tolerogenic dendritic cells (tolDCs), which promote intestinal tolerance and attenuate intestinal inflammation characteristic of IBD, but the exact mechanism is unclear. Helminth-derived excretory-secretory (HES) products including macromolecules, proteins, and polysaccharides have been shown to modulate the antigen presenting function of DCs with down-stream effects on effector CD4 + T cells. Previous studies indicate that DCs in helminth-infected animals induce tolerance to unrelated antigens and DCs exposed to HES display phenotypic and functional features of tolDCs. Here, we identify that nonpolar metabolites (HnpM) produced by a helminth, the murine gastrointestinal nematode Heligmosomoides polygyrus bakeri (Hpb), induce tolDCs as evidenced by decreased LPS-induced TNF and increased IL-10 secretion and reduced expression of MHC-II, CD86, and CD40. Furthermore, these DCs inhibited OVA-specific CD4 + T cell proliferation and induced CD4 + Foxp3 + regulatory T cells. Adoptive transfer of HnpM-induced tolDCs attenuated DSS-induced intestinal inflammation characteristic of IBD. Mechanistically, HnpM induced metabolic and transcriptional signatures in BMDCs consistent with tolDCs. Collectively, our findings provide groundwork for further investigation into novel mechanisms regulating DC tolerance and the role of helminth secreted metabolites in attenuating intestinal inflammation associated with IBD. Summary Sentence: Metabolites produced by Heligmosomoides polygyrus induce metabolic and transcriptional changes in DCs consistent with tolDCs, and adoptive transfer of these DCs attenuated DSS-induced intestinal inflammation.
Collapse
|
4
|
Huang L, Dai Y, Geng Z, He H, Hong F. Granulin in renal tubular epithelia is associated with interstitial inflammation and activates the TLR9-IFN-α pathway in lupus nephritis. Lupus 2024; 33:439-449. [PMID: 38334360 DOI: 10.1177/09612033241232575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
OBJECTIVE This study aimed to investigate the possible role of granulin (GRN) in activating the TLR9-IFN-α pathway in renal tubular epithelial cells (RTECs) and explore clues that RTECs regulate the micro-environment of inflammatory response in lupus nephritis (LN). METHODS Renal sections from 57 LN patients and 30 non-LN patients were sampled for histological study, and GRN overexpression RTECs were applied for cytological study. RESULTS In the histological study, GRN is highly expressed in LN RTECs with tubulointerstitial inflammation (TII) and well co-localized with TLR9. ROC analysis suggested a potential relationship between GRN expression in RTECs and therapeutic response. Moreover, IFN-α also highly expressed in LN RTECs with TII, and the intensity of IFN-α is positively correlated with the co-localization intensity of GRN and TLR9. In the cytological study, LN serum, especially serum from LN with TII, activates the expression of TLR9 in RTECs, and GRN engages the interaction of TLR9 to activate the expression of IFN-α in RTECs. While TLR9 inhibitors can suppress the expression of IFN-α in RTECs, the degree of inhibition is dose-dependent. CONCLUSION The expression of GRN in RTECs is associated with interstitial inflammation and therapeutic response. GRN may mediate the activation of the TLR9-IFN-α pathway in RTECs and involve in the micro-environment of inflammatory response in LN.
Collapse
Affiliation(s)
- Lanting Huang
- Department of Nephrology, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China
| | - Yijun Dai
- Department of Rheumatology and Immunology, Fujian Provincial Hospital, Fuzhou, China
| | - Zhenbo Geng
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Fuzhou, China
| | - Hongyan He
- Department of Pathology, Fujian Provincial Hospital, Fuzhou, China
| | - Fuyuan Hong
- Department of Nephrology, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
5
|
Mohammed S, Bindu A, Viswanathan A, Harikumar KB. Sphingosine 1-phosphate signaling during infection and immunity. Prog Lipid Res 2023; 92:101251. [PMID: 37633365 DOI: 10.1016/j.plipres.2023.101251] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Sphingolipids are essential components of all eukaryotic membranes. The bioactive sphingolipid molecule, Sphingosine 1-Phosphate (S1P), regulates various important biological functions. This review aims to provide a comprehensive overview of the role of S1P signaling pathway in various immune cell functions under different pathophysiological conditions including bacterial and viral infections, autoimmune disorders, inflammation, and cancer. We covered the aspects of S1P pathways in NOD/TLR pathways, bacterial and viral infections, autoimmune disorders, and tumor immunology. This implies that targeting S1P signaling can be used as a strategy to block these pathologies. Our current understanding of targeting various components of S1P signaling for therapeutic purposes and the present status of S1P pathway inhibitors or modulators in disease conditions where the host immune system plays a pivotal role is the primary focus of this review.
Collapse
Affiliation(s)
- Sabira Mohammed
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala State 695014, India
| | - Anu Bindu
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala State 695014, India
| | - Arun Viswanathan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala State 695014, India; Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Kuzhuvelil B Harikumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala State 695014, India.
| |
Collapse
|
6
|
Martín-Hernández D, Muñoz-López M, Tendilla-Beltrán H, Caso JR, García-Bueno B, Menchén L, Leza JC. Immune System and Brain/Intestinal Barrier Functions in Psychiatric Diseases: Is Sphingosine-1-Phosphate at the Helm? Int J Mol Sci 2023; 24:12634. [PMID: 37628815 PMCID: PMC10454107 DOI: 10.3390/ijms241612634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Over the past few decades, extensive research has shed light on immune alterations and the significance of dysfunctional biological barriers in psychiatric disorders. The leaky gut phenomenon, intimately linked to the integrity of both brain and intestinal barriers, may play a crucial role in the origin of peripheral and central inflammation in these pathologies. Sphingosine-1-phosphate (S1P) is a bioactive lipid that regulates both the immune response and the permeability of biological barriers. Notably, S1P-based drugs, such as fingolimod and ozanimod, have received approval for treating multiple sclerosis, an autoimmune disease of the central nervous system (CNS), and ulcerative colitis, an inflammatory condition of the colon, respectively. Although the precise mechanisms of action are still under investigation, the effectiveness of S1P-based drugs in treating these pathologies sparks a debate on extending their use in psychiatry. This comprehensive review aims to delve into the molecular mechanisms through which S1P modulates the immune system and brain/intestinal barrier functions. Furthermore, it will specifically focus on psychiatric diseases, with the primary objective of uncovering the potential of innovative therapies based on S1P signaling.
Collapse
Affiliation(s)
- David Martín-Hernández
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| | - Marina Muñoz-López
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| | - Hiram Tendilla-Beltrán
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), 72570 Puebla, Mexico;
| | - Javier R. Caso
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| | - Borja García-Bueno
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| | - Luis Menchén
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, Departamento de Medicina, Universidad Complutense, Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III (CIBEREHD, ISCIII), 28029 Madrid, Spain
| | - Juan C. Leza
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| |
Collapse
|
7
|
Zou F, Wang S, Xu M, Wu Z, Deng F. The role of sphingosine-1-phosphate in the gut mucosal microenvironment and inflammatory bowel diseases. Front Physiol 2023; 14:1235656. [PMID: 37560160 PMCID: PMC10407793 DOI: 10.3389/fphys.2023.1235656] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023] Open
Abstract
Sphingosine-1-phosphate (S1P), a type of bioactive sphingolipid, can regulate various cellular functions of distinct cell types in the human body. S1P is generated intracellularly by the catalysis of sphingosine kinase 1/2 (SphK1/2). S1P is transferred to the extracellular environment via the S1P transporter, binds to cellular S1P receptors (S1PRs) and subsequently activates S1P-S1PR downstream signaling. Dysbiosis of the intestinal microbiota, immune dysregulation and damage to epithelial barriers are associated with inflammatory bowel disease (IBD). Generally, S1P mainly exerts a proinflammatory effect by binding to S1PR1 on lymphocytes to facilitate lymphocyte migration to inflamed tissues, and increased S1P was found in the intestinal mucosa of IBD patients. Notably, there is an interaction between the distribution of gut bacteria and SphK-S1P signaling in the intestinal epithelium. S1P-S1PR signaling can also regulate the functions of intestinal epithelial cells (IECs) in mucosa, including cell proliferation and apoptosis. Additionally, increased S1P in immune cells of the lamina propria aggravates the inflammatory response by increasing the production of proinflammatory cytokines. Several novel drugs targeted at S1PRs have recently been used for IBD treatment. This review provides an overview of the S1P-S1PR signaling pathway and, in particular, summarizes the various roles of S1P in the gut mucosal microenvironment to deeply explore the function of S1P-S1PR signaling during intestinal inflammation and, more importantly, to identify potential therapeutic targets for IBD in the SphK-S1P-S1PR axis.
Collapse
Affiliation(s)
- Fei Zou
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan, China
| | - Su Wang
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan, China
| | - Mengmeng Xu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan, China
| | - Zengrong Wu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan, China
| | - Feihong Deng
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Kleuser B, Bäumer W. Sphingosine 1-Phosphate as Essential Signaling Molecule in Inflammatory Skin Diseases. Int J Mol Sci 2023; 24:ijms24021456. [PMID: 36674974 PMCID: PMC9863039 DOI: 10.3390/ijms24021456] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
Sphingolipids are crucial molecules of the mammalian epidermis. The formation of skin-specific ceramides contributes to the formation of lipid lamellae, which are important for the protection of the epidermis from excessive water loss and protect the skin from the invasion of pathogens and the penetration of xenobiotics. In addition to being structural constituents of the epidermal layer, sphingolipids are also key signaling molecules that participate in the regulation of epidermal cells and the immune cells of the skin. While the importance of ceramides with regard to the proliferation and differentiation of skin cells has been known for a long time, it has emerged in recent years that the sphingolipid sphingosine 1-phosphate (S1P) is also involved in processes such as the proliferation and differentiation of keratinocytes. In addition, the immunomodulatory role of this sphingolipid species is becoming increasingly apparent. This is significant as S1P mediates a variety of its actions via G-protein coupled receptors. It is, therefore, not surprising that dysregulation in the signaling pathways of S1P is involved in the pathophysiological conditions of skin diseases. In the present review, the importance of S1P in skin cells, as well as the immune cells of the skin, is elaborated. In particular, the role of the molecule in inflammatory skin diseases will be discussed. This is important because interfering with S1P signaling pathways may represent an innovative option for the treatment of inflammatory skin diseases.
Collapse
Affiliation(s)
- Burkhard Kleuser
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise Str. 2+4, 14195 Berlin, Germany
- Correspondence: (B.K.); (W.B.)
| | - Wolfgang Bäumer
- Department of Veterinary Medicine, Institute of Pharmacology and Toxicology, Freie Universität Berlin, Koserstr. 20, 14195 Berlin, Germany
- Correspondence: (B.K.); (W.B.)
| |
Collapse
|
9
|
Youssef NS, Elzatony AS, Abdel Baky NA. Diacerein attenuate LPS-induced acute lung injury via inhibiting ER stress and apoptosis: Impact on the crosstalk between SphK1/S1P, TLR4/NFκB/STAT3, and NLRP3/IL-1β signaling pathways. Life Sci 2022; 308:120915. [PMID: 36055546 DOI: 10.1016/j.lfs.2022.120915] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/16/2022] [Accepted: 08/24/2022] [Indexed: 10/31/2022]
Abstract
AIMS Acute lung injury (ALI) is a life-threatening clinical problem with high mortality rate and limited treatments or preventive options that represents a major challenge for clinicians. Diacerein (DIA) is a multi-target anthraquinone derivative with potent anti-inflammatory action. The aim of this study is to assess the protective effect of DIA and its potential molecular targets against lipopolysaccharide (LPS)-induced ALI in rats. MATERIALS AND METHODS Adult male Sprague-Dawley rats were orally administrated DIA (50 mg/kg) for 5 consecutive days followed by a single intraperitoneal injection of LPS (5mg/kg). KEY FINDINGS DIA mitigated oxidative lung injury in LPS-challenged rats via significantly decreasing lung wet/dry (W/D) ratio, inflammatory cells infiltration, and lipid peroxidation, with concomitant elevation in enzymatic and non-enzymatic antioxidant levels in lung tissue. Likewise, DIA alleviated endoplasmic reticulum stress and markedly halted inflammation triggered by LPS challenge in pulmonary tissue by suppressing NLRP3/IL-1β and TLR4/NF-κB signaling with parallel decrease in proinflammatory cytokine levels. Interestingly, DIA down regulated Sphk1/S1P axis, reduced GSK-3β and STAT3 proteins expression, and markedly decreased caspase-3 besides increasing Bcl-2 levels in lung tissue of LPS-challenged animals. These biochemical findings was simultaneously associated with marked improvement in histological alterations of lung tissue. SIGNIFICANCE These findings verify the protective effect of DIA against LPS-induced ALI through targeting oxidative stress, endoplasmic reticulum stress, and apoptosis. Importantly, DIA halted the hyperinflammatory state triggered by LPS via multi-faceted inhibitory effect on different signaling pathways, hence DIA could potentially reduce mortality in patients with ALI.
Collapse
Affiliation(s)
- Nagwa Salah Youssef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Asmaa Sameer Elzatony
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Nayira A Abdel Baky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt.
| |
Collapse
|
10
|
Inhibition of SphK1/S1P Signaling Pathway Alleviates Fibrosis and Inflammation of Rat Myocardium after Myocardial Infarction. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5985375. [PMID: 35872958 PMCID: PMC9300330 DOI: 10.1155/2022/5985375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 11/25/2022]
Abstract
Objective The sphingosine kinase 1 (SphK1)/sphingosine-1-phosphate (S1P) signaling pathway is involved in fibrosis and inflammatory responses of myocardial tissue after myocardial infarction (MI). The purpose of our study was to explore the role of SphK1/S1P signaling pathway in myocardial injury after MI. Materials and Methods We used Sprague-Dawley (SD) rats to make MI models and detected the changes of SphK1 and S1P in rats at 1, 7, and 14 days after MI. SphK1 inhibitor PF543 was used to treat MI rats, and we detected the changes in myocardial function and structure in rats by cardiac function test, 2,3,5-triphenyl tetrazolium staining, and histological staining. In addition, we used H2O2 to induce H9c2 cell injury to investigate the effect of PF543 on the viability of myocardial cells. Results Myocardial tissue lesions and fibrosis were observed at 7 and 14 days after MI, and the expressions of SphK1 and S1P in the injured myocardial tissues increased significantly in day 7 and day 14 in comparison to the control group. After treatment of MI rats with PF543, the structure of rat myocardial tissue was significantly improved and the degree of fibrosis was reduced. After MI, the expression of α-SMA and collagen I in the myocardium of rats was significantly increased while PF543 decreased their expression. PF543 also improved the cardiac function of MI rats and reduced the expression of IL-1β, IL-6, and TNF-α in the serum. PF543 also increased the viability of H9c2 cells in vitro. Conclusions The inhibition of the SphK1/S1P signaling pathway contributed to the relief of myocardial injury in MI rats. PF543 improved the myocardial structure and function of MI rats and reduced the level of fibrosis and inflammation in MI rats.
Collapse
|
11
|
Bu Y, Wu H, Deng R, Wang Y. Therapeutic Potential of SphK1 Inhibitors Based on Abnormal Expression of SphK1 in Inflammatory Immune Related-Diseases. Front Pharmacol 2021; 12:733387. [PMID: 34737701 PMCID: PMC8560647 DOI: 10.3389/fphar.2021.733387] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/04/2021] [Indexed: 01/12/2023] Open
Abstract
Sphingosine kinase 1(SphK1) a key enzyme that catalyzes the conversion of sphingosine (Sph) to sphingosine 1-phosphate (S1P), so as to maintain the dynamic balance of sphingolipid-rheostat in cells and participate in cell growth and death, proliferation and migration, vasoconstriction and remodeling, inflammation and metabolism. The normal expression of SphK1 maintains the balance of physiological and pathological states, which is reflected in the regulation of inflammatory factor secretion, immune response in traditional immune cells and non-traditional immune cells, and complex signal transduction. However, abnormal SphK1 expression and activity are found in various inflammatory and immune related-diseases, such as hypertension, atherosclerosis, Alzheimer’s disease, inflammatory bowel disease and rheumatoid arthritis. In view of the therapeutic potential of regulating SphK1 and its signal, the current research is aimed at SphK1 inhibitors, such as SphK1 selective inhibitors and dual SphK1/2 inhibitor, and other compounds with inhibitory potency. This review explores the regulatory role of over-expressed SphK1 in inflammatory and immune related-diseases, and investigate the latest progress of SphK1 inhibitors and the improvement of disease or pathological state.
Collapse
Affiliation(s)
- Yanhong Bu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| | - Hong Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| | - Ran Deng
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| | - Yan Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| |
Collapse
|
12
|
Tian J, Huang T, Chang S, Wang Y, Fan W, Ji H, Wang J, Yang J, Kang J, Zhou Y. Role of sphingosine-1-phosphate mediated signalling in systemic lupus erythematosus. Prostaglandins Other Lipid Mediat 2021; 156:106584. [PMID: 34352381 DOI: 10.1016/j.prostaglandins.2021.106584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 07/02/2021] [Accepted: 07/26/2021] [Indexed: 12/17/2022]
Abstract
Systemic lupus erythematosus (SLE) is a highly prevalent autoimmune disease characterized by the malfunction of the immune system and the persistent presence of an inflammatory environment. Multiple organs can be affected during SLE, leading to heterogeneous manifestations, which eventually result in the death of patients. Due to the lack of understanding regarding the pathogenesis of SLE, the currently available treatments remain suboptimal. Sphingosine-1-phosphate (S1P) is a central bioactive lipid of sphingolipid metabolism, which serves a pivotal role in regulating numerous physiological and pathological processes. As a well-recognized regulator of lymphocyte trafficking, S1P has been shown to be closely associated with autoimmune diseases, including SLE. Importantly, S1P levels have been found to be elevated in patients with SLE. In murine models of lupus, the increased levels of S1P also contribute to disease activity and organ impairment. Moreover, data from several studies also support the hypothesis that S1P receptors and its producer-sphingosine kinases (SPHK) may serve as the potential targets for the treatment of SLE and its co-morbidities. Given the significant success that intervening with S1P signaling has achieved in treating multiple sclerosis, further exploration of its role in SLE is necessary. Therefore, the aim of the present review is to summarize the recent advances in understanding the potential mechanism by which S1P influences SLE, with a primary focus on its role in immune regulation and inflammatory responses.
Collapse
Affiliation(s)
- Jihua Tian
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Taiping Huang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Sijia Chang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanhong Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Weiping Fan
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - He Ji
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Juanjuan Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jia Yang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jing Kang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yun Zhou
- Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Shanxi Kidney Disease Institute, Taiyuan, Shanxi, China.
| |
Collapse
|
13
|
Bencze D, Fekete T, Pázmándi K. Type I Interferon Production of Plasmacytoid Dendritic Cells under Control. Int J Mol Sci 2021; 22:ijms22084190. [PMID: 33919546 PMCID: PMC8072550 DOI: 10.3390/ijms22084190] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
One of the most powerful and multifaceted cytokines produced by immune cells are type I interferons (IFNs), the basal secretion of which contributes to the maintenance of immune homeostasis, while their activation-induced production is essential to effective immune responses. Although, each cell is capable of producing type I IFNs, plasmacytoid dendritic cells (pDCs) possess a unique ability to rapidly produce large amounts of them. Importantly, type I IFNs have a prominent role in the pathomechanism of various pDC-associated diseases. Deficiency in type I IFN production increases the risk of more severe viral infections and the development of certain allergic reactions, and supports tumor resistance; nevertheless, its overproduction promotes autoimmune reactions. Therefore, the tight regulation of type I IFN responses of pDCs is essential to maintain an adequate level of immune response without causing adverse effects. Here, our goal was to summarize those endogenous factors that can influence the type I IFN responses of pDCs, and thus might serve as possible therapeutic targets in pDC-associated diseases. Furthermore, we briefly discuss the current therapeutic approaches targeting the pDC-type I IFN axis in viral infections, cancer, autoimmunity, and allergy, together with their limitations defined by the Janus-faced nature of pDC-derived type I IFNs.
Collapse
Affiliation(s)
- Dóra Bencze
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary; (D.B.); (T.F.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
| | - Tünde Fekete
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary; (D.B.); (T.F.)
| | - Kitti Pázmándi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary; (D.B.); (T.F.)
- Correspondence: ; Tel./Fax: +36-52-417-159
| |
Collapse
|
14
|
Ding T, Zhi Y, Xie W, Yao Q, Liu B. Rational design of SphK inhibitors using crystal structures aided by computer. Eur J Med Chem 2021; 213:113164. [PMID: 33454547 DOI: 10.1016/j.ejmech.2021.113164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/09/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
Abstract
Sphingosine kinases (SphKs) are lipid kinases that catalyze the phosphorylation of sphingosine (Sph) to sphingosine-1-phosphate (S1P). As a bioactive lipid, S1P plays a role outside and inside the cell to regulate biological processes. The overexpression of SphKs is related to a variety of pathophysiological conditions. Targeting the S1P signaling pathway is a potential treatment strategy for many diseases. SphKs are key kinases of the S1P signaling pathway. The SphK family includes two isoforms: SphK1 and SphK2. Determination of the co-crystal structure of SphK1 with various inhibitors has laid a solid foundation for the development of small molecule inhibitors targeting SphKs. This paper reviews the differences and connections between the two isoforms and the structure of SphK1 crystals, especially the structure of its Sph "J-shaped" channel binding site. This review also summarizes the recent development of SphK1 and SphK2 selective inhibitors and the exploration of the unresolved SphK2 structure.
Collapse
Affiliation(s)
- Tiandi Ding
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China
| | - Ying Zhi
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China
| | - Weilin Xie
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China
| | - Qingqiang Yao
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China.
| | - Bo Liu
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China.
| |
Collapse
|
15
|
Iwata Y, Kitajima S, Yamahana J, Shimomura S, Yoneda-Nakagawa S, Sakai N, Furuichi K, Ogura H, Sato K, Toyama T, Yamamura Y, Miyagawa T, Hara A, Shimizu M, Ohkawa R, Kurano M, Yatomi Y, Wada T. Higher serum levels of autotaxin and phosphatidylserine-specific phospholipase A 1 in patients with lupus nephritis. Int J Rheum Dis 2020; 24:231-239. [PMID: 33314787 DOI: 10.1111/1756-185x.14031] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/03/2020] [Accepted: 11/07/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Recent studies revealed that lysophospholipids (LPLs) and related molecules, such as autotaxin (ATX) and phosphatidylserine-specific phospholipase A1 (PS-PLA1 ), are candidates for novel biomarkers in melanoma, glaucoma and diabetic nephropathy. However, it is not clear whether serum levels of ATX/ PS-PLA1 would be associated with pathological and clinical findings of lupus nephritis (LN). METHODS In this retrospective cohort study, serum samples were collected from 39 patients with LN and 37 patients with other glomerular diseases. The serum levels of ATX and PS-PLA1 were evaluated for an association with renal pathology and clinical phenotypes of LN. RESULTS The serum levels of ATX and PS-PLA1 were higher in the patients with LN as compared to those with other glomerular diseases. Among the classes of LN, the patients with class IV showed the trend of lower serum levels of ATX. Moreover, the patients with lower levels of ATX exhibited higher scores of activity index (AI) and chronicity index (CI). The level of ATX tended to be negatively correlated with AI and CI. These results might be explained by the effect of treatment, because the serum levels of ATX and PS-PLA1 were inversely correlated with the daily amount of oral prednisolone. Moreover, they did not reflect the level of proteinuria or kidney survival in LN patients. CONCLUSION Although the serum levels of ATX and PS-PLA1 were affected by the treatment, these levels were higher in the patients with LN. The potential clinical benefits of these markers need to be clarified in further studies.
Collapse
Affiliation(s)
- Yasunori Iwata
- Division of Infection Control, Kanazawa University, Kanazawa, Japan.,Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Shinji Kitajima
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | | | - Shuji Shimomura
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | | | - Norihiko Sakai
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan.,Division of Blood Purification, Kanazawa University, Kanazawa, Japan
| | - Kengo Furuichi
- Division of Nephrology, Kanazawa Medical University School of Medicine, Ishikawa, Japan
| | - Hisayuki Ogura
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Koichi Sato
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Tadashi Toyama
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Yuta Yamamura
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Taro Miyagawa
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Akinori Hara
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Miho Shimizu
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Ryunosuke Ohkawa
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Makoto Kurano
- Department of Clinical Laboratory Medicine, University of Tokyo, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, University of Tokyo, Tokyo, Japan
| | - Takashi Wada
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
16
|
Ishay Y, Nachman D, Khoury T, Ilan Y. The role of the sphingolipid pathway in liver fibrosis: an emerging new potential target for novel therapies. Am J Physiol Cell Physiol 2020; 318:C1055-C1064. [PMID: 32130072 DOI: 10.1152/ajpcell.00003.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sphingolipids (SL) are a family of bioactive lipids and a major cellular membrane structural component. SLs include three main compounds: ceramide (Cer), sphingosine (Sp), and sphingosine-1-phosphate (S-1P), all of which have emerging roles in biological functions in cells, especially in the liver. They are under investigation in various liver diseases, including cirrhosis and end-stage liver disease. In this review, we provide an overview on the role of SLs in liver pathobiology and focus on their potential role in the development of hepatic fibrosis. We describe recent evidence and suggest SLs are a promising potential therapeutic target for the treatment of liver disease and fibrosis.
Collapse
Affiliation(s)
- Yuval Ishay
- Department of Internal Medicine A, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Dean Nachman
- Department of Internal Medicine A, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Tawfik Khoury
- Gastroenterology and Liver Units, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yaron Ilan
- Gastroenterology and Liver Units, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|