1
|
Krysa SJ, Brestoff JR. Brown fat fuels the fire in fever. J Lipid Res 2024; 65:100658. [PMID: 39332526 DOI: 10.1016/j.jlr.2024.100658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024] Open
Abstract
Fever is a host-pathogen defense mechanism in which the immune system drives a physiologic increase in core body temperature. For over 50 years, it has been known that the temperature of brown adipose tissue (BAT) is increased during the febrile response. However, recent studies suggested that the primary thermogenic protein Uncoupling protein 1 in brown adipocytes does not contribute to fever induction in mice, casting doubt about the functional contribution of BAT to fever. In a new set of studies, Li et al. (2024) provide compelling evidence that fatty acid oxidation is markedly increased in BAT in a Salmonella infection model of fever and strongly suggest that metabolic adaptation in BAT may play a critical role in the febrile response. This article re-opens the debate about how thermogenic and metabolic programs in BAT contribute to fever and raises new questions about whether BAT contributes to host defense against pathogens.
Collapse
Affiliation(s)
- Samantha J Krysa
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jonathan R Brestoff
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
Li M, Barros-Pinkelnig M, Weiss G, Rensen PCN, Kooijman S. Brown adipose tissue facilitates the fever response following infection with Salmonella enterica serovar Typhimurium in mice. J Lipid Res 2024; 65:100617. [PMID: 39128824 PMCID: PMC11407925 DOI: 10.1016/j.jlr.2024.100617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024] Open
Abstract
Brown adipose tissue (BAT) combusts lipids and glucose to generate heat. Via this process of nonshivering thermogenesis, BAT plays a pivotal role in thermoregulation in cold environments, but its contribution to immune-induced fever is less clear. Male APOE∗3-Leiden.CETP mice, a well-established model for human-like lipoprotein metabolism, and wild-type mice were given an intraperitoneal injection of Salmonella enterica serovar Typhimurium (S.tm). Energy expenditure and substrate utilization, plasma lipid levels, fatty acid (FA) uptake by adipose tissues, and lipid content and thermogenic markers in adipose tissues were examined. S.tm infection led to a set of characteristic symptoms, including elevated body temperature and decreased body weight. Whole-body energy expenditure was significantly decreased 72 h postinfection, but fat oxidation was increased and accompanied by a substantial reduction in plasma triglyceride (TG) levels as demonstrated in APOE∗3-Leiden.CETP mice. S.tm infection strongly increased uptake of FAs from TG-rich lipoproteins by BAT, which showed a positive correlation with body temperature in infected mice. Upon histological examination of BAT from wild-type or APOE∗3-Leiden.CETP mice, elevated levels of tyrosine hydroxylase were observed, indicative of stimulated sympathetic activity. In addition, the gene expression profile was consistent with more adrenergic stimulation, while lipid content was reduced. Furthermore, browning of white adipose tissue was observed, evidenced by a modest increase in TG-derived FA uptake, the presence of multilocular cells, and induction of uncoupling protein 1 expression. We proposed that BAT, or thermogenic adipose tissue in general, is involved in the maintenance of elevated body temperature upon invasive bacterial infection.
Collapse
Affiliation(s)
- Mohan Li
- Division of Endocrinology, and Einthoven Laboratory of Experimental Vascular Medicine, Deparment of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Günter Weiss
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Patrick C N Rensen
- Division of Endocrinology, and Einthoven Laboratory of Experimental Vascular Medicine, Deparment of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Sander Kooijman
- Division of Endocrinology, and Einthoven Laboratory of Experimental Vascular Medicine, Deparment of Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
3
|
Sharma AK, Khandelwal R, Wolfrum C. Futile cycles: Emerging utility from apparent futility. Cell Metab 2024; 36:1184-1203. [PMID: 38565147 DOI: 10.1016/j.cmet.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/15/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
Futile cycles are biological phenomena where two opposing biochemical reactions run simultaneously, resulting in a net energy loss without appreciable productivity. Such a state was presumed to be a biological aberration and thus deemed an energy-wasting "futile" cycle. However, multiple pieces of evidence suggest that biological utilities emerge from futile cycles. A few established functions of futile cycles are to control metabolic sensitivity, modulate energy homeostasis, and drive adaptive thermogenesis. Yet, the physiological regulation, implication, and pathological relevance of most futile cycles remain poorly studied. In this review, we highlight the abundance and versatility of futile cycles and propose a classification scheme. We further discuss the energetic implications of various futile cycles and their impact on basal metabolic rate, their bona fide and tentative pathophysiological implications, and putative drug interactions.
Collapse
Affiliation(s)
- Anand Kumar Sharma
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
| | - Radhika Khandelwal
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Christian Wolfrum
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
| |
Collapse
|
4
|
Feng F, Ko HA, Truong TMT, Song WJ, Ko EJ, Kang I. Ginsenoside Rg3, enriched in red ginseng extract, improves lipopolysaccharides-induced suppression of brown and beige adipose thermogenesis with mitochondrial activation. Sci Rep 2024; 14:9157. [PMID: 38644456 PMCID: PMC11033271 DOI: 10.1038/s41598-024-59758-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 04/15/2024] [Indexed: 04/23/2024] Open
Abstract
Brown adipose tissue (BAT) which is a critical regulator of energy homeostasis, and its activity is inhibited by obesity and low-grade chronic inflammation. Ginsenoside Rg3, the primary constituent of Korean red ginseng (steamed Panax ginseng CA Meyer), has shown therapeutic potential in combating inflammatory and metabolic diseases. However, it remains unclear whether Rg3 can protect against the suppression of browning or activation of BAT induced by inflammation. In this study, we conducted a screening of ginsenoside composition in red ginseng extract (RGE) and explored the anti-adipogenic effects of both RGE and Rg3. We observed that RGE (exist 0.25 mg/mL of Rg3) exhibited significant lipid-lowering effects in adipocytes during adipogenesis. Moreover, treatment with Rg3 (60 μM) led to the inhibition of triglyceride accumulation, subsequently promoting enhanced fatty acid oxidation, as evidenced by the conversion of radiolabeled 3H-fatty acids into 3H-H2O with mitochondrial activation. Rg3 alleviated the attenuation of browning in lipopolysaccharide (LPS)-treated beige adipocytes and primary brown adipocytes by recovered by uncoupling protein 1 (UCP1) and the oxygen consumption rate compared to the LPS-treated group. These protective effects of Rg3 on inflammation-induced inhibition of beige and BAT-derived thermogenesis were confirmed in vivo by treating with CL316,243 (a beta-adrenergic receptor agonist) and LPS to induce browning and inflammation, respectively. Consistent with the in vitro data, treatment with Rg3 (2.5 mg/kg, 8 weeks) effectively reversed the LPS-induced inhibition of brown adipocyte features in C57BL/6 mice. Our findings confirm that Rg3-rich foods are potential browning agents that counteract chronic inflammation and metabolic complications.
Collapse
Affiliation(s)
- Fang Feng
- Department of Food Science and Nutrition, Jeju National University, Jeju, 63243, Korea
| | - Hyun-A Ko
- Department of Food Science and Nutrition, Jeju National University, Jeju, 63243, Korea
| | - Thi My Tien Truong
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Korea
| | - Woo-Jin Song
- College of Veterinary Medicine, Jeju National University, Jeju, 63243, Korea
| | - Eun-Ju Ko
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Korea
- College of Veterinary Medicine, Jeju National University, Jeju, 63243, Korea
| | - Inhae Kang
- Department of Food Science and Nutrition, Jeju National University, Jeju, 63243, Korea.
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Korea.
| |
Collapse
|
5
|
Fushuku S, Ushikai M, Arimura E, Komaki Y, Horiuchi M. Acute repeated cage exchange stress modifies urinary stress and plasma metabolic profiles in male mice. PLoS One 2023; 18:e0292649. [PMID: 37815996 PMCID: PMC10564260 DOI: 10.1371/journal.pone.0292649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023] Open
Abstract
Exposure to a novel environment is psychologically and physically stressful for humans and animals. The response has been reported to involve enhanced sympathetic nervous system activity, but changes in nutrient levels under stress are not fully understood. As a form of exposure to a novel environment, repeated cage exchange (CE, four times at 2-h intervals for 8 h from 08:00 h) during the light phase with no restraint on movement was applied to A/J mice, a strain particularly prone to stress. Body temperature was measured with a temperature-sensing microchip implanted in the interscapular region. The stress conditions and anxiety level were evaluated by measuring urinary catecholamines and corticosterone and by performing an anxiety-like behavior test, respectively. Major nutrients such as glucose, fatty acids, and amino acids in the plasma were also examined. CE mice showed a significant increase in body temperature with each CE. They also showed a significantly greater reduction of body weight change, more water intake, and higher levels of urinary catecholamines and corticosterone and anxiety-like behavior score than control mice. The model revealed a significantly lower plasma glucose level and higher levels of several essential amino acids, such as branched-chain amino acids and phenylalanine, than those of control mice. Meanwhile, free fatty acids and several amino acids such as arginine, aspartic acid, proline, threonine, and tryptophan in both sets of mice were significantly decreased from the corresponding levels at 08:00 h, while similar plasma levels were exhibited between mice with and without CE. In conclusion, repeated CE stress was associated with changes in glucose and amino acids in plasma. Although further study is needed to clarify how these changes are specifically linked to anxiety-like behavior, this study suggests the potential for nutritional intervention to counter stress in humans exposed to novel environments.
Collapse
Affiliation(s)
- Sayuri Fushuku
- Department of Hygiene and Health Promotion Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Miharu Ushikai
- Department of Hygiene and Health Promotion Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Emi Arimura
- Department of Hygiene and Health Promotion Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- Major in Food and Nutrition, Department of Life and Environmental Science, Kagoshima Prefectural College, Kagoshima, Japan
| | - Yuga Komaki
- Department of Hygiene and Health Promotion Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masahisa Horiuchi
- Department of Hygiene and Health Promotion Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
6
|
Wu G, Baumeister R, Heimbucher T. Molecular Mechanisms of Lipid-Based Metabolic Adaptation Strategies in Response to Cold. Cells 2023; 12:1353. [PMID: 37408188 PMCID: PMC10216534 DOI: 10.3390/cells12101353] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 07/07/2023] Open
Abstract
Temperature changes and periods of detrimental cold occur frequently for many organisms in their natural habitats. Homeothermic animals have evolved metabolic adaptation strategies to increase mitochondrial-based energy expenditure and heat production, largely relying on fat as a fuel source. Alternatively, certain species are able to repress their metabolism during cold periods and enter a state of decreased physiological activity known as torpor. By contrast, poikilotherms, which are unable to maintain their internal temperature, predominantly increase membrane fluidity to diminish cold-related damage from low-temperature stress. However, alterations of molecular pathways and the regulation of lipid-metabolic reprogramming during cold exposure are poorly understood. Here, we review organismal responses that adjust fat metabolism during detrimental cold stress. Cold-related changes in membranes are detected by membrane-bound sensors, which signal to downstream transcriptional effectors, including nuclear hormone receptors of the PPAR (peroxisome proliferator-activated receptor) subfamily. PPARs control lipid metabolic processes, such as fatty acid desaturation, lipid catabolism and mitochondrial-based thermogenesis. Elucidating the underlying molecular mechanisms of cold adaptation may improve beneficial therapeutic cold treatments and could have important implications for medical applications of hypothermia in humans. This includes treatment strategies for hemorrhagic shock, stroke, obesity and cancer.
Collapse
Affiliation(s)
- Gang Wu
- Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Ralf Baumeister
- Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Center for Biochemistry and Molecular Cell Research, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Thomas Heimbucher
- Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
7
|
Brain-to-BAT - and Back?: Crosstalk between the Central Nervous System and Thermogenic Adipose Tissue in Development and Therapy of Obesity. Brain Sci 2022; 12:brainsci12121646. [PMID: 36552107 PMCID: PMC9775239 DOI: 10.3390/brainsci12121646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
The body of mammals harbors two distinct types of adipose tissue: while cells within the white adipose tissue (WAT) store surplus energy as lipids, brown adipose tissue (BAT) is nowadays recognized as the main tissue for transforming chemical energy into heat. This process, referred to as 'non-shivering thermogenesis', is facilitated by the uncoupling of the electron transport across mitochondrial membranes from ATP production. BAT-dependent thermogenesis acts as a safeguarding mechanism under reduced ambient temperature but also plays a critical role in metabolic and energy homeostasis in health and disease. In this review, we summarize the evolutionary structure, function and regulation of the BAT organ under neuronal and hormonal control and discuss its mutual interaction with the central nervous system. We conclude by conceptualizing how better understanding the multifaceted communicative links between the brain and BAT opens avenues for novel therapeutic approaches to treat obesity and related metabolic disorders.
Collapse
|
8
|
Liu J, Zeng D, Luo J, Wang H, Xiong J, Chen X, Chen T, Sun J, Xi Q, Zhang Y. LPS-Induced Inhibition of miR-143 Expression in Brown Adipocytes Promotes Thermogenesis and Fever. Int J Mol Sci 2022; 23:13805. [PMID: 36430282 PMCID: PMC9696956 DOI: 10.3390/ijms232213805] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Fever is an important part of inflammatory response to infection. Although brown adipose tissue (BAT) thermogenesis is known to be potently influenced by systemic inflammation, the role of BAT during infection-induced fever remains largely unknown. Here, we injected mice with a low dose of LPS and found that low-dose LPS can directly induce thermogenesis of brown adipocytes. It is known that miR-143 is highly expressed in the BAT, and miR-143 knockout mice exhibited stronger thermogenesis under cold exposure. Interestingly, miR-143 was negatively correlated with an LPS-induced increase of TNFα and IL-6 mRNA levels, and the IL-6 pathway may mediate the inhibition of miR-143 expression. Moreover, miR-143 is down-regulated by LPS, and overexpression of miR-143 in brown adipocytes by lentivirus could rescue the enhancement of UCP1 protein expression caused by LPS, hinting miR-143 may be an important regulator of the thermogenesis in brown adipocytes. More importantly, the knockout of miR-143 further enhanced the LPS-induced increase of body temperature and BAT thermogenesis, and this result was further confirmed by in vitro experiments by using primary brown adipocytes. Mechanistically, adenylate cyclase 9 (AC9) is a new target gene of miR-143 and LPS increases BAT thermogenesis by a way of inhibiting miR-143 expression, a negative regulator for AC9. Our study considerably improves our collective understanding of the important function of miR-143 in inflammatory BAT thermogenesis.
Collapse
Affiliation(s)
- Jie Liu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Dewei Zeng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Huan Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiali Xiong
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xingping Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
9
|
Bredehöft J, Dolga AM, Honrath B, Wache S, Mazurek S, Culmsee C, Schoemaker RG, Gerstberger R, Roth J, Rummel C. SK-Channel Activation Alters Peripheral Metabolic Pathways in Mice, but Not Lipopolysaccharide-Induced Fever or Inflammation. J Inflamm Res 2022; 15:509-531. [PMID: 35115803 PMCID: PMC8800008 DOI: 10.2147/jir.s338812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/25/2021] [Indexed: 12/19/2022] Open
Abstract
Purpose Previously, we have shown that CyPPA (cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-pyrimidin-4-yl]-amine), a pharmacological small-conductance calcium-activated potassium (SK)–channel positive modulator, antagonizes lipopolysaccharide (LPS)-induced cytokine expression in microglial cells. Here, we aimed to test its therapeutic potential for brain-controlled sickness symptoms, brain inflammatory response during LPS-induced systemic inflammation, and peripheral metabolic pathways in mice. Methods Mice were pretreated with CyPPA (15 mg/kg IP) 24 hours before and simultaneously with LPS stimulation (2.5 mg/kg IP), and the sickness response was recorded by a telemetric system for 24 hours. A second cohort of mice were euthanized 2 hours after CyPPA or solvent treatment to assess underlying CyPPA-induced mechanisms. Brain, blood, and liver samples were analyzed for inflammatory mediators or nucleotide concentrations using immunohistochemistry, real-time PCR and Western blot, or HPLC. Moreover, we investigated CyPPA-induced changes of UCP1 expression in brown adipose tissue (BAT)–explant cultures. Results CyPPA treatment did not affect LPS-induced fever, anorexia, adipsia, or expression profiles of inflammatory mediators in the hypothalamus or plasma or microglial reactivity to LPS (CD11b staining and CD68 mRNA expression). However, CyPPA alone induced a rise in core body temperature linked to heat production via altered metabolic pathways like reduced levels of adenosine, increased protein content, and increased UCP1 expression in BAT-explant cultures, but no alteration in ATP/ADP concentrations in the liver. CyPPA treatment was accompanied by altered pathways, including NFκB signaling, in the hypothalamus and cortex, while circulating cytokines remained unaltered. Conclusion Overall, while CyPPA has promise as a treatment strategy, in particular according to results from in vitro experiments, we did not reveal anti-inflammatory effects during severe LPS-induced systemic inflammation. Interestingly, we found that CyPPA alters metabolic pathways inducing short hyperthermia, most likely due to increased energy turnover in the liver and heat production in BAT.
Collapse
Affiliation(s)
- Janne Bredehöft
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Amalia M Dolga
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Birgit Honrath
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
- Institute of Pharmacology and Clinical Pharmacy, Philipps University of Marburg, Marburg, Germany
| | - Sybille Wache
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Sybille Mazurek
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, Philipps University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior-CMBB, Giessen and Marburg, Germany
| | - Regien G Schoemaker
- Department of Neurobiology, GELIFES, University of Groningen, Groningen, Netherlands
| | - Rüdiger Gerstberger
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Joachim Roth
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany
- Center for Mind, Brain and Behavior-CMBB, Giessen and Marburg, Germany
| | - Christoph Rummel
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany
- Center for Mind, Brain and Behavior-CMBB, Giessen and Marburg, Germany
- Correspondence: Christoph Rummel Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Frankfurter Strasse 100, GiessenD-35392, GermanyTel +49 641 99 38155Fax +49 641 99 38159 Email
| |
Collapse
|
10
|
Yoneshiro T, Kataoka N, Walejko JM, Ikeda K, Brown Z, Yoneshiro M, Crown SB, Osawa T, Sakai J, McGarrah RW, White PJ, Nakamura K, Kajimura S. Metabolic flexibility via mitochondrial BCAA carrier SLC25A44 is required for optimal fever. eLife 2021; 10:66865. [PMID: 33944778 PMCID: PMC8137140 DOI: 10.7554/elife.66865] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/02/2021] [Indexed: 01/21/2023] Open
Abstract
Importing necessary metabolites into the mitochondrial matrix is a crucial step of fuel choice during stress adaptation. Branched chain-amino acids (BCAAs) are essential amino acids needed for anabolic processes, but they are also imported into the mitochondria for catabolic reactions. What controls the distinct subcellular BCAA utilization during stress adaptation is insufficiently understood. The present study reports the role of SLC25A44, a recently identified mitochondrial BCAA carrier (MBC), in the regulation of mitochondrial BCAA catabolism and adaptive response to fever in rodents. We found that mitochondrial BCAA oxidation in brown adipose tissue (BAT) is significantly enhanced during fever in response to the pyrogenic mediator prostaglandin E2 (PGE2) and psychological stress in mice and rats. Genetic deletion of MBC in a BAT-specific manner blunts mitochondrial BCAA oxidation and non-shivering thermogenesis following intracerebroventricular PGE2 administration. At a cellular level, MBC is required for mitochondrial BCAA deamination as well as the synthesis of mitochondrial amino acids and TCA intermediates. Together, these results illuminate the role of MBC as a determinant of metabolic flexibility to mitochondrial BCAA catabolism and optimal febrile responses. This study also offers an opportunity to control fever by rewiring the subcellular BCAA fate.
Collapse
Affiliation(s)
- Takeshi Yoneshiro
- Diabetes Center and Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, United States.,Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Naoya Kataoka
- Department of Integrative Physiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jacquelyn M Walejko
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, United States
| | - Kenji Ikeda
- Diabetes Center and Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, United States.,Department of Molecular Endocrinology and Metabolism, Tokyo Medical and Dental University, Tokyo, Japan
| | - Zachary Brown
- Diabetes Center and Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, United States
| | - Momoko Yoneshiro
- Diabetes Center and Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, United States
| | - Scott B Crown
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, United States
| | - Tsuyoshi Osawa
- Division of Integrative Nutriomics and Oncology, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Juro Sakai
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.,Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Robert W McGarrah
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, United States.,Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, United States
| | - Phillip J White
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, United States.,Department of Medicine, Division of EndocrinologyMetabolism and Nutrition, Duke University School of Medicine, Durham, United States
| | - Kazuhiro Nakamura
- Department of Integrative Physiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shingo Kajimura
- Diabetes Center and Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, United States.,Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Durham, United States
| |
Collapse
|
11
|
Flinn B, Royce N, Gress T, Chowdhury N, Santanam N. Dual role for angiotensin-converting enzyme 2 in Severe Acute Respiratory Syndrome Coronavirus 2 infection and cardiac fat. Obes Rev 2021; 22:e13225. [PMID: 33660398 PMCID: PMC8013367 DOI: 10.1111/obr.13225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/25/2021] [Accepted: 02/04/2021] [Indexed: 12/15/2022]
Abstract
Angiotensin-converting enzyme 2 (ACE2) has been an increasingly prevalent target for investigation since its discovery 20 years ago. The finding that it serves a counterregulatory function within the traditional renin-angiotensin system, implicating it in cardiometabolic health, has increased its clinical relevance. Focus on ACE2's role in cardiometabolic health has largely centered on its apparent functions in the context of obesity. Interest in ACE2 has become even greater with the discovery that it serves as the cell receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), opening up numerous mechanisms for deleterious effects of infection. The proliferation of ACE2 within the literature coupled with its dual role in SARS-CoV-2 infection and obesity necessitates review of the current understanding of ACE2's physiological, pathophysiological, and potential therapeutic functions. This review highlights the roles of ACE2 in cardiac dysfunction and obesity, with focus on epicardial adipose tissue, to reconcile the data in the context of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Brendin Flinn
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Huntington, West Virginia, USA
| | - Nicholas Royce
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Huntington, West Virginia, USA
| | - Todd Gress
- Research Service, Hershel "Woody" Williams VA Medical Center, Huntington, West Virginia, USA
| | - Nepal Chowdhury
- Department of Cardiovascular and Thoracic Surgery, St. Mary's Heart Center, Huntington, WV, USA
| | - Nalini Santanam
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Huntington, West Virginia, USA
| |
Collapse
|
12
|
Harshaw C, Lanzkowsky J, Tran AQD, Bradley AR, Jaime M. Oxytocin and 'social hyperthermia': Interaction with β 3-adrenergic receptor-mediated thermogenesis and significance for the expression of social behavior in male and female mice. Horm Behav 2021; 131:104981. [PMID: 33878523 DOI: 10.1016/j.yhbeh.2021.104981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 02/07/2023]
Abstract
Oxytocin (OT) is a critical regulator of multiple facets of energy homeostasis, including brown adipose tissue (BAT) thermogenesis. Nevertheless, it is unclear what, if any, consequence the thermoregulatory and metabolic effects of OT have for the display of social behavior in adult rodents. Here, we examine the contribution of the OT receptor (OTR) and β3 adrenergic receptor (β3AR) to the increase in body temperature that typically accompanies social interaction (i.e., social hyperthermia; SH) and whether SH relates to the expression of social behavior in adult mice. Specifically, we examined how OTR antagonism via peripheral injection of L-368,899 (10 mg/kg) affects the expression of social behavior in C57BL/6J mice, in the presence of active/agonized versus antagonized β3AR, the receptor known to mediate stress-induced BAT thermogenesis. After drug treatment and a 30 min delay, mice were provided a 10 min social interaction test with an unfamiliar, same-sex conspecific. We hypothesized that OTR and β3AR/BAT interact to influence behavior during social interaction, with at least some effects of OT on social behavior dependent upon OT's thermal effects via β3AR/BAT. We found that OTR-mediated temperature elevation is largely responsible for SH during social interaction in mice-albeit not substantially via β3AR-dependent BAT thermogenesis. Further, our results reveal a complex relationship between OTR, β3AR, social hyperthermia and the display of specific social behaviors, with SH most closely associated with anxiety and/or vigilance-related behaviors-that is, behaviors that antagonize or interfere with the initiation of close, non-agonistic social behavior.
Collapse
Affiliation(s)
- Christopher Harshaw
- Department of Psychology, University of New Orleans, New Orleans, LA, United States of America.
| | - Jessica Lanzkowsky
- Department of Psychology, University of New Orleans, New Orleans, LA, United States of America
| | | | - Alana Rose Bradley
- Department of Psychology, University of New Orleans, New Orleans, LA, United States of America
| | - Mark Jaime
- Division of Science, Indiana University-Purdue University, Columbus, Columbus, IN, United States of America
| |
Collapse
|
13
|
Bal NC, Gupta SC, Pant M, Sopariwala DH, Gonzalez-Escobedo G, Turner J, Gunn JS, Pierson CR, Harper SQ, Rafael-Fortney JA, Periasamy M. Is Upregulation of Sarcolipin Beneficial or Detrimental to Muscle Function? Front Physiol 2021; 12:633058. [PMID: 33732165 PMCID: PMC7956958 DOI: 10.3389/fphys.2021.633058] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/21/2021] [Indexed: 11/25/2022] Open
Abstract
Sarcolipin (SLN) is a regulator of sarco/endo plasmic reticulum Ca2+-ATPase (SERCA) pump and has been shown to be involved in muscle nonshivering thermogenesis (NST) and energy metabolism. Interestingly, SLN expression is significantly upregulated both during muscle development and in several disease states. However, the significance of altered SLN expression in muscle patho-physiology is not completely understood. We have previously shown that transgenic over-expression of SLN in skeletal muscle is not detrimental, and can promote oxidative metabolism and exercise capacity. In contrast, some studies have suggested that SLN upregulation in disease states is deleterious for muscle function and ablation of SLN can be beneficial. In this perspective article, we critically examine both published and some new data to determine the relevance of SLN expression to disease pathology. The new data presented in this paper show that SLN levels are induced in muscle during systemic bacterial (Salmonella) infection or lipopolysaccharides (LPS) treatment. We also present data showing that SLN expression is significantly upregulated in different types of muscular dystrophies including myotubular myopathy. These data taken together reveal that upregulation of SLN expression in muscle disease is progressive and increases with severity. Therefore, we suggest that increased SLN expression should not be viewed as the cause of the disease; rather, it is a compensatory response to meet the higher energy demand of the muscle. We interpret that higher SLN/SERCA ratio positively modulate cytosolic Ca2+ signaling pathways to promote mitochondrial biogenesis and oxidative metabolism to meet higher energy demand in muscle.
Collapse
Affiliation(s)
- Naresh C Bal
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Subash C Gupta
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States.,Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Meghna Pant
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States
| | - Danesh H Sopariwala
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States
| | - Geoffrey Gonzalez-Escobedo
- Departments of Microbiology and Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Joanne Turner
- Departments of Microbiology and Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Texas Biomedical Research Institute, San Antonio, TX, United States
| | - John S Gunn
- Departments of Microbiology and Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Christopher R Pierson
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pathology, The Ohio State University, Columbus, OH, United States.,Department of Biomedical Education and Anatomy, The Ohio State University, Columbus, OH, United States
| | - Scott Q Harper
- Department of Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, United States
| | - Jill A Rafael-Fortney
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States
| | - Muthu Periasamy
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States.,Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
14
|
Tupone D, Cetas JS. In a model of SAH-induced neurogenic fever, BAT thermogenesis is mediated by erythrocytes and blocked by agonism of adenosine A1 receptors. Sci Rep 2021; 11:2752. [PMID: 33531584 PMCID: PMC7854628 DOI: 10.1038/s41598-021-82407-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/20/2021] [Indexed: 11/09/2022] Open
Abstract
Neurogenic fever (NF) after subarachnoid hemorrhage (SAH) is a major cause of morbidity that is associated with poor outcomes and prolonged stay in the neurointensive care unit (NICU). Though SAH is a much more common cause of fever than sepsis in the NICU, it is often a diagnosis of exclusion, requiring significant effort to rule out an infectious source. NF does not respond to standard anti-pyretic medications such as COX inhibitors, and lack of good medical therapy has led to the introduction of external cooling systems that have their own associated problems. In a rodent model of SAH, we measured the effects of injecting whole blood, blood plasma, or erythrocytes on the sympathetic nerve activity to brown adipose tissue and on febrile thermogenesis. We demonstrate that following SAH the acute activation of brown adipose tissue leading to NF, is not dependent on PGE2, that subarachnoid space injection of whole blood or erythrocytes, but not plasma alone, is sufficient to trigger brown adipose tissue thermogenesis, and that activation of adenosine A1 receptors in the CNS can block the brown adipose tissue thermogenic component contributing to NF after SAH. These findings point to a distinct thermogenic mechanism for generating NF, compared to those due to infectious causes, and will hopefully lead to new therapies.
Collapse
Affiliation(s)
- Domenico Tupone
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126, Bologna, Italy. .,Department of Neurological Surgery, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA.
| | - Justin S Cetas
- Department of Neurological Surgery, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA.,Portland VA Health Care System, Portland, OR, USA
| |
Collapse
|