1
|
Weng Y, Yuan J, Cui X, Wang J, Chen H, Xu L, Chen X, Peng M, Song Q. The impact of tertiary lymphoid structures on tumor prognosis and the immune microenvironment in non-small cell lung cancer. Sci Rep 2024; 14:16246. [PMID: 39009684 PMCID: PMC11250816 DOI: 10.1038/s41598-024-64980-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/14/2024] [Indexed: 07/17/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is a common malignancy whose prognosis and treatment outcome are influenced by many factors. Some studies have found that tertiary lymphoid structures (TLSs) in cancer may contribute to prognosis and the prediction of immunotherapy efficacy However, the combined role of TLSs in NSCLC remains unclear. We accessed The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases to obtain mRNA sequencing data and clinical information as the TCGA cohort, and used our own sample of 53 advanced NSCLC as a study cohort. The samples were divided into TLS+ and TLS- groups by pathological tissue sections. Patients of the TLS+ group had a better OS (p = 0.022), PFS (p = 0.042), and DSS (p = 0.004) in the TCGA cohort, and the results were confirmed by the study cohort (PFS, p = 0.012). Furthermore, our result showed that the count and size of TLSs are closely associated with the efficacy of immunotherapy. In addition, the TLS+ group was associated with better immune status and lower tumor mutation load. In the tumor microenvironment (TME), the expression levels of CD4+ T cells and CD8+ T cells of different phenotypes were associated with TLSs. Overall, TLSs are a strong predictor of survival and immunotherapeutic efficacy in advanced NSCLC, and T cell-rich TLSs suggest a more ordered and active immune response site, which aids in the decision-making and application of immunotherapy in the clinic.
Collapse
Affiliation(s)
- Yiming Weng
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xue Cui
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jinsong Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Honglei Chen
- Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Li Xu
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinyi Chen
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Min Peng
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Qibin Song
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Amanya SB, Oyewole-Said D, Ernste KJ, Bisht N, Murthy A, Vazquez-Perez J, Konduri V, Decker WK. The mARS complex: a critical mediator of immune regulation and homeostasis. Front Immunol 2024; 15:1423510. [PMID: 38975338 PMCID: PMC11224427 DOI: 10.3389/fimmu.2024.1423510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
Over the course of evolution, many proteins have undergone adaptive structural changes to meet the increasing homeostatic regulatory demands of multicellularity. Aminoacyl tRNA synthetases (aaRS), enzymes that catalyze the attachment of each amino acid to its cognate tRNA, are such proteins that have acquired new domains and motifs that enable non-canonical functions. Through these new domains and motifs, aaRS can assemble into large, multi-subunit complexes that enhance the efficiency of many biological functions. Moreover, because the complexity of multi-aminoacyl tRNA synthetase (mARS) complexes increases with the corresponding complexity of higher eukaryotes, a contribution to regulation of homeostatic functions in multicellular organisms is hypothesized. While mARS complexes in lower eukaryotes may enhance efficiency of aminoacylation, little evidence exists to support a similar role in chordates or other higher eukaryotes. Rather, mARS complexes are reported to regulate multiple and variegated cellular processes that include angiogenesis, apoptosis, inflammation, anaphylaxis, and metabolism. Because all such processes are critical components of immune homeostasis, it is important to understand the role of mARS complexes in immune regulation. Here we provide a conceptual analysis of the current understanding of mARS complex dynamics and emerging mARS complex roles in immune regulation, the increased understanding of which should reveal therapeutic targets in immunity and immune-mediated disease.
Collapse
Affiliation(s)
- Sharon Bright Amanya
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Damilola Oyewole-Said
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Keenan J. Ernste
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Nalini Bisht
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Arnav Murthy
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Department of Natural Sciences, Rice University, Houston, TX, United States
| | - Jonathan Vazquez-Perez
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Vanaja Konduri
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - William K. Decker
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
3
|
Torii T, Yamauchi J. Molecular Pathogenic Mechanisms of Hypomyelinating Leukodystrophies (HLDs). Neurol Int 2023; 15:1155-1173. [PMID: 37755363 PMCID: PMC10538087 DOI: 10.3390/neurolint15030072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023] Open
Abstract
Hypomyelinating leukodystrophies (HLDs) represent a group of congenital rare diseases for which the responsible genes have been identified in recent studies. In this review, we briefly describe the genetic/molecular mechanisms underlying the pathogenesis of HLD and the normal cellular functions of the related genes and proteins. An increasing number of studies have reported genetic mutations that cause protein misfolding, protein dysfunction, and/or mislocalization associated with HLD. Insight into the mechanisms of these pathways can provide new findings for the clinical treatments of HLD.
Collapse
Affiliation(s)
- Tomohiro Torii
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji 192-0392, Japan
- Laboratory of Ion Channel Pathophysiology, Graduate School of Brain Science, Doshisha University, Kyotanabe-shi 610-0394, Japan
- Center for Research in Neurodegenerative Disease, Doshisha University, Kyotanabe-shi 610-0394, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji 192-0392, Japan
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya-ku 157-8535, Japan
| |
Collapse
|
4
|
Wang J, Cui X, Weng Y, Wei J, Chen X, Wang P, Wang T, Qin J, Peng M. Application of an angiogenesis-related genes risk model in lung adenocarcinoma prognosis and immunotherapy. Front Genet 2023; 14:1092968. [PMID: 36816016 PMCID: PMC9929558 DOI: 10.3389/fgene.2023.1092968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/09/2023] [Indexed: 02/04/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is an essential pathological subtype of non-small cell lung cancer and offers a severe problem for worldwide public health. There is mounting proof that angiogenesis is a crucial player in LUAD progression. Consequently, the purpose of this research was to construct a novel LUAD risk assessment model based on genetic markers related to angiogenesis. We accessed The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases for LUAD mRNA sequencing data and clinical information. Based on machine algorithms and bioinformatics, angiogenic gene-related risk scores (RS) were calculated. Patients in the high-risk category had a worse prognosis (p < 0.001) in the discovery TCGA cohort, and the results were confirmed by these three cohorts (validation TCGA cohort, total TCGA cohort, and GSE68465 cohort). Moreover, risk scores for genes involved in angiogenesis were independent risk factors for lung cancer in all four cohorts. The low-risk group was associated with better immune status and lower tumor mutational load. In addition, the somatic mutation study revealed that the low-risk group had a lower mutation frequency than the high-risk group. According to an analysis of tumor stem cell infiltration, HLA expression, and TIDE scores, the low-risk group had higher TIDE scores and HLA expression levels than the high-risk group, and the amount of tumor stem cell infiltration correlated with the risk score. In addition, high-risk groups may benefit from immune checkpoint inhibitors and targeted therapies. In conclusion, we developed an angiogenesis-related gene risk model to predict the prognosis of LUAD patients, which may aid in the classification of patients with LUAD and select medications for LUAD patients.
Collapse
Affiliation(s)
- Jinsong Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xue Cui
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiming Weng
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiayan Wei
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinyi Chen
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Peiwei Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tong Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jian Qin
- Central Laboratory, Renmin Hospital, Wuhan University, Wuhan, China,*Correspondence: Jian Qin, ; Min Peng,
| | - Min Peng
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China,*Correspondence: Jian Qin, ; Min Peng,
| |
Collapse
|
5
|
Kuske M, Haist M, Jung T, Grabbe S, Bros M. Immunomodulatory Properties of Immune Checkpoint Inhibitors-More than Boosting T-Cell Responses? Cancers (Basel) 2022; 14:1710. [PMID: 35406483 PMCID: PMC8996886 DOI: 10.3390/cancers14071710] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 12/11/2022] Open
Abstract
The approval of immune checkpoint inhibitors (ICI) that serve to enhance effector T-cell anti-tumor responses has strongly improved success rates in the treatment of metastatic melanoma and other tumor types. The currently approved ICI constitute monoclonal antibodies blocking cytotoxic T-lymphocyte-associated protein (CTLA)-4 and anti-programmed cell death (PD)-1. By this, the T-cell-inhibitory CTLA-4/CD80/86 and PD-1/PD-1L/2L signaling axes are inhibited. This leads to sustained effector T-cell activity and circumvents the immune evasion of tumor cells, which frequently upregulate PD-L1 expression and modulate immune checkpoint molecule expression on leukocytes. As a result, profound clinical responses are observed in 40-60% of metastatic melanoma patients. Despite the pivotal role of T effector cells for triggering anti-tumor immunity, mounting evidence indicates that ICI efficacy may also be attributable to other cell types than T effector cells. In particular, emerging research has shown that ICI also impacts innate immune cells, such as myeloid cells, natural killer cells and innate lymphoid cells, which may amplify tumoricidal functions beyond triggering T effector cells, and thus improves clinical efficacy. Effects of ICI on non-T cells may additionally explain, in part, the character and extent of adverse effects associated with treatment. Deeper knowledge of these effects is required to further develop ICI treatment in terms of responsiveness of patients to treatment, to overcome resistance to ICI and to alleviate adverse effects. In this review we give an overview into the currently known immunomodulatory effects of ICI treatment in immune cell types other than the T cell compartment.
Collapse
Affiliation(s)
| | | | | | | | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.K.); (M.H.); (T.J.); (S.G.)
| |
Collapse
|
6
|
Changes in the Proteome in the Development of Chronic Human Papillomavirus Infection-A Prospective Study in HIV Positive and HIV Negative Rwandan Women. Cancers (Basel) 2021; 13:cancers13235983. [PMID: 34885095 PMCID: PMC8656715 DOI: 10.3390/cancers13235983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Effects on the proteome when a high risk (HR)-HPV infection occurs, when it is cleared and when it becomes chronic were investigated. Moreover, biomarker panels that could identify cervical risk lesions were assessed. METHODS Cytology, HPV screening and proteomics were performed on cervical samples from Rwandan HIV+ and HIV- women at baseline, at 9 months, at 18 months and at 24 months. Biological pathways were identified using the String database. RESULTS The most significantly affected pathway when an incident HR-HPV infection occurred was neutrophil degranulation, and vesicle-mediated transport was the most significantly affected pathway when an HR-HPV infection was cleared; protein insertion into membrane in chronic HR-HPV lesions and in lesions where HR-HPVs were cleared were compared; and cellular catabolic process in high-grade lesions was compared to that in negative lesions. A four-biomarker panel (EIF1; BLOC1S5; LIMCH1; SGTA) was identified, which was able to distinguish chronic HR-HPV lesions from cleared HR-HPV/negative lesions (sensitivity 100% and specificity 91%). Another four-biomarker panel (ERH; IGKV2-30; TMEM97; DNAJA4) was identified, which was able to distinguish high-grade lesions from low-grade/negative lesions (sensitivity 100% and specificity 81%). CONCLUSIONS We have identified the biological pathways triggered in HR-HPV infection, when HR-HPV becomes chronic and when cervical risk lesions develop. Moreover, we have identified potential biomarkers that may help to identify women with cervical risk lesions.
Collapse
|
7
|
Konduri V, Oyewole-Said D, Vazquez-Perez J, Weldon SA, Halpert MM, Levitt JM, Decker WK. CD8 +CD161 + T-Cells: Cytotoxic Memory Cells With High Therapeutic Potential. Front Immunol 2021; 11:613204. [PMID: 33597948 PMCID: PMC7882609 DOI: 10.3389/fimmu.2020.613204] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022] Open
Abstract
NK1.1 and its human homolog CD161 are expressed on NK cells, subsets of CD4+ and CD8+ T cells, and NKT cells. While the expression of NK1.1 is thought to be inhibitory to NK cell function, it is reported to play both costimulatory and coinhibitory roles in T-cells. CD161 has been extensively studied and characterized on subsets of T-cells that are MR1-restricted, IL-17 producing CD4+ (TH17 MAIT cells) and CD8+ T cells (Tc17 cells). Non-MAIT, MR1-independent CD161-expressing T-cells also exist and are characterized as generally effector memory cells with a stem cell like phenotype. Gene expression analysis of this enigmatic subset indicates a significant enhancement in the expression of cytotoxic granzyme molecules and innate like stress receptors in CD8+NK1.1+/CD8+CD161+ cells in comparison to CD8+ cells that do not express NK1.1 or CD161. First identified and studied in the context of viral infection, the role of CD8+CD161+ T-cells, especially in the context of tumor immunology, is still poorly understood. In this review, the functional characteristics of the CD161-expressing CD8+ T cell subset with respect to gene expression profile, cytotoxicity, and tissue homing properties are discussed, and application of this subset to immune responses against infectious disease and cancer is considered.
Collapse
Affiliation(s)
- Vanaja Konduri
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Damilola Oyewole-Said
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Jonathan Vazquez-Perez
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Scott A Weldon
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Matthew M Halpert
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Jonathan M Levitt
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States.,Scott Department of Urology, Baylor College of Medicine, Houston, TX, United States
| | - William K Decker
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States.,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
8
|
Wang P, Wang Y, Jiang Y, Li M, Li G, Qiao Q. Immune Cluster and PPI Network Analyses Identified CXCR3 as a Key Node of Immunoregulation in Head and Neck Cancer. Front Oncol 2021; 10:564306. [PMID: 33585188 PMCID: PMC7874192 DOI: 10.3389/fonc.2020.564306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/30/2020] [Indexed: 12/09/2022] Open
Abstract
The tumor microenvironment (TME) is significantly associated with clinical outcomes and therapeutic efficacy. However, the landscape of the head and neck cancer (HNC) microenvironment is not fully understood. Therefore, we divided HNCs into three classes according to differences in the TME to determine effective personalized treatments. We explored the immune landscape of head and neck cancer by analysing the gene expression profile of 501 cases from the Cancer Genome Atlas (TCGA) data portal and validated our findings in 270 cases from the Gene Expression Omnibus (GEO) database. The levels of immune components in the tumor microenvironment were evaluated via single-sample gene set enrichment (ssGSEA) analysis. The HNCs were clustered into an Immunity-H group, Immunity-M group and Immunity-L group according to 40 immune components in the tumor microenvironment. DNA damage and HLA genes play an important role in immune regulation. The patients in the Immunity-H group had a favourable survival compared with patients in the Immunity-M group and the Immunity-L group. The patients in the Immunity-H group and Immunity-M group could benefit from radiotherapy. In addition, the Immunity-L group showed the lowest immunophenoscore and had poor response to anti-PD-1 treatment. CXCR3 was demonstrated to be downregulated in the Immunity-L group, which was related to shorter OS in the TCGA and GEO databases, suggesting CXCR3 as a potential therapeutic target. Taken together, our findings proposed three new microenvironment-related phenotypes of HNCs and suggested that CXCR3 played a major role in immune regulation and could be a novel therapeutic target, providing a reference for clinical decisions and research directions in the future.
Collapse
Affiliation(s)
- Ping Wang
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Yanli Wang
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Yuanjun Jiang
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Minghong Li
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, China
| | - Guang Li
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Qiao Qiao
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Oyewole-Said D, Konduri V, Vazquez-Perez J, Weldon SA, Levitt JM, Decker WK. Beyond T-Cells: Functional Characterization of CTLA-4 Expression in Immune and Non-Immune Cell Types. Front Immunol 2020; 11:608024. [PMID: 33384695 PMCID: PMC7770141 DOI: 10.3389/fimmu.2020.608024] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/05/2020] [Indexed: 12/23/2022] Open
Abstract
The immune response consists of a finely-tuned program, the activation of which must be coupled with inhibitory mechanisms whenever initiated. This ensures tight control of beneficial anti-pathogen and anti-tumor responses while preserving tissue integrity, promoting tissue repair, and safeguarding against autoimmunity. A cogent example of this binary response is in the mobilization of co-stimulatory and co-inhibitory signaling in regulating the strength and type of a T-cell response. Of particular importance is the costimulatory molecule CD28 which is countered by CTLA-4. While the role of CD28 in the immune response has been thoroughly elucidated, many aspects of CTLA-4 biology remain controversial. The expression of CD28 is largely constrained to constitutive expression in T-cells and as such, teasing out its function has been somewhat simplified by a limited and specific expression profile. The expression of CTLA-4, on the other hand, while reported predominantly in T-cells, has also been described on a diverse repertoire of cells within both lymphoid and myeloid lineages as well as on the surface of tumors. Nonetheless, the function of CTLA-4 has been mostly described within the context of T-cell biology. The focus on T-cell biology may be a direct result of the high degree of amino acid sequence homology and the co-expression pattern of CD28 and CTLA-4, which initially led to the discovery of CTLA-4 as a counter receptor to CD28 (for which a T-cell-activating role had already been described). Furthermore, observations of the outsized role of CTLA-4 in Treg-mediated immune suppression and the striking phenotype of T-cell hyperproliferation and resultant disease in CTLA-4−/− mice contribute to an appropriate T-cell-centric focus in the study of CTLA-4. Complete elucidation of CTLA-4 biology, however, may require a more nuanced understanding of its role in a context other than that of T-cells. This makes particular sense in light of the remarkable, yet limited utility of anti-CTLA-4 antibodies in the treatment of cancers and of CTLA-4-Ig in autoimmune disorders like rheumatoid arthritis. By fully deducing the biology of CTLA-4-regulated immune homeostasis, bottlenecks that hinder the widespread applicability of CTLA-4-based immunotherapies can be resolved.
Collapse
Affiliation(s)
- Damilola Oyewole-Said
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Vanaja Konduri
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Jonathan Vazquez-Perez
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Scott A Weldon
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Jonathan M Levitt
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States.,Scott Department of Urology, Baylor College of Medicine, Houston, TX, United States
| | - William K Decker
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States.,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|