1
|
Trujano-Camacho S, Cantú-de León D, Pérez-Yepez E, Contreras-Romero C, Coronel-Hernandez J, Millan-Catalan O, Rodríguez-Dorantes M, López-Camarillo C, Gutiérrez-Ruiz C, Jacobo-Herrera N, Pérez-Plasencia C. HOTAIR Promotes the Hyperactivation of PI3K/Akt and Wnt/β-Catenin Signaling Pathways via PTEN Hypermethylation in Cervical Cancer. Cells 2024; 13:1484. [PMID: 39273054 PMCID: PMC11394386 DOI: 10.3390/cells13171484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
The mechanisms underlying the sustained activation of the PI3K/AKT and Wnt/β-catenin pathways mediated by HOTAIR in cervical cancer (CC) have not been extensively described. To address this knowledge gap in the literature, we explored the interactions between these pathways by driving HOTAIR expression levels in HeLa cells. Our findings reveal that HOTAIR is a key regulator in sustaining the activation of both signaling pathways. Specifically, altering HOTAIR expression-either by knockdown or overexpression-significantly influenced the transcriptional activity of the PI3K/AKT and Wnt/β-catenin pathways. Additionally, we discovered that HIF1α directly induces HOTAIR transcription, which in turn leads to the epigenetic silencing of the PTEN promoter via DNMT1. This process leads to the sustained activation of both pathways, highlighting a novel regulatory axis involving HOTAIR and HIF1α in cervical cancer. Our results suggest a new model in which HOTAIR sustains reciprocal activation of the PI3K/AKT and Wnt/β-catenin pathways through the HOTAIR/HIF1α axis, thereby contributing to the oncogenic phenotype of cervical cancer.
Collapse
Affiliation(s)
- Samuel Trujano-Camacho
- Experimental Biology PhD Program, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Ciudad de México 14080, Mexico
| | - David Cantú-de León
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Ciudad de México 14080, Mexico
| | - Eloy Pérez-Yepez
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Ciudad de México 14080, Mexico
| | - Carlos Contreras-Romero
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Ciudad de México 14080, Mexico
| | - Jossimar Coronel-Hernandez
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Ciudad de México 14080, Mexico
| | - Oliver Millan-Catalan
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Ciudad de México 14080, Mexico
| | | | - Cesar López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Ciudad de México 03100, Mexico
| | - Concepción Gutiérrez-Ruiz
- Laboratory of Experimental Medicine, Translational Medicine Unit, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan, Mexico City 14080, Mexico
- Department of Health Sciences, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
| | - Nadia Jacobo-Herrera
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Av. Vasco de Quiroga 15, Col. Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico
| | - Carlos Pérez-Plasencia
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Ciudad de México 14080, Mexico
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| |
Collapse
|
2
|
Shamsan E, Almezgagi M, Gamah M, Khan N, Qasem A, Chuanchuan L, Haining F. The role of PI3k/AKT signaling pathway in attenuating liver fibrosis: a comprehensive review. Front Med (Lausanne) 2024; 11:1389329. [PMID: 38590313 PMCID: PMC10999701 DOI: 10.3389/fmed.2024.1389329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
Excessive accumulation of extracellular matrix (ECM) components within the liver leads to a pathological condition known as liver fibrosis. Alcohol abuse, non-alcoholic fatty liver disease (NAFLD), autoimmune issues, and viral hepatitis cause chronic liver injury. Exploring potential therapeutic targets and understanding the molecular mechanisms involved in liver fibrosis are essential for the development of effective interventions. The goal of this comprehensive review is to explain how the PI3K/AKT signaling pathway contributes to the reduction of liver fibrosis. The potential of this pathway as a therapeutic target is investigated through a summary of results from in vivo and in vitro studies. Studies focusing on PI3K/AKT activation have shown a significant decrease in fibrosis markers and a significant improvement in liver function. The review emphasizes how this pathway may prevent ECM synthesis and hepatic stellate cell (HSC) activation, ultimately reducing the fibrotic response. The specific mechanisms and downstream effectors of the PI3K/AKT pathway in liver fibrosis constitute a rapidly developing field of study. In conclusion, the PI3K/AKT signaling pathway plays a significant role in attenuating liver fibrosis. Its complex role in regulating HSC activation and ECM production, demonstrated both in vitro and in vivo, underscores its potential as a effective therapeutic approach for managing liver fibrosis and slowing disease progression. A comprehensive review of this field provides valuable insights into its future developments and implications for clinical applications.
Collapse
Affiliation(s)
- Emad Shamsan
- College of Clinical Medicine, Qinghai University, Xining, China
- College of Medical Science, Taiz University, Taiz, Yemen
| | - Maged Almezgagi
- College of Clinical Medicine, Qinghai University, Xining, China
| | - Mohammed Gamah
- College of Clinical Medicine, Qinghai University, Xining, China
| | - Naveed Khan
- College of Clinical Medicine, Qinghai University, Xining, China
| | | | - Liu Chuanchuan
- College of Clinical Medicine, Qinghai University, Xining, China
- Qinghai University Affiliated Hospital, Xining, China
| | - Fan Haining
- College of Clinical Medicine, Qinghai University, Xining, China
- Qinghai University Affiliated Hospital, Xining, China
| |
Collapse
|
3
|
Madhukar G, Subbarao N. Potential inhibitors of RPS6KB2 and NRF2 in head and neck squamous cell carcinoma. J Biomol Struct Dyn 2024; 42:1875-1900. [PMID: 37160694 DOI: 10.1080/07391102.2023.2205946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/08/2023] [Indexed: 05/11/2023]
Abstract
Among the major altered pathways in head and neck squamous cell carcinoma, AKT/mTORC1/S6K and NRF2/KEAP1 pathway are quite significant. The overexpression and overstimulation of proteins from both these pathways makes them the promising candidates in cancer therapeutics. Inhibiting mTOR has been in research from past several decades but the tumour heterogeneity, and upregulation of several compensatory feed-back mechanisms, encourages to explore other downstream targets for inhibiting the pathway. One such downstream effectors of mTOR is S6K2. It is reported to be overexpressed in cancers such as head and neck cancer, breast cancer and prostate cancer. In case of NRF2/KEAP1 pathway, nuclear factor erythroid 2-related factor 2 (NFE2L2 or NRF2) is overexpressed in ∼90% of head and neck squamous cell carcinoma (HNSCC) cases. It associates with poor survival rate and therapeutic resistance in HNSCC treatment. NRF2 pathway is the primary antioxidant pathway in the cell which also serves pro-tumorigenic functions, such as repression of apoptosis, cell proliferation support and chemoresistance. The aim of this work was to explore S6K2 and NRF2 and identify novel and potential inhibitors against them for treating head and neck squamous cell carcinoma. Since the crystal structure of S6K2 was not available at the time of this study, we modelled its structure using homology modelling and performed high throughput screening, molecular dynamics simulations, free energy calculations and protein-ligand interaction studies to identify the inhibitors. We identified natural compounds Crocin and Gypenoside XVII against S6K2 and Chebulinic acid and Sennoside A against NRF2. This study provides a significant in-depth understanding of the two studied pathways and therefore can be used in the development of potential therapeutics against HNSCC.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Geet Madhukar
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
4
|
Wang T, Lu Z, Sun GF, He KY, Chen ZP, Qu XH, Han XJ. Natural Products in Liver Fibrosis Management: A Five-year Review. Curr Med Chem 2024; 31:5061-5082. [PMID: 38362686 DOI: 10.2174/0109298673288458240203064112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 02/17/2024]
Abstract
Liver fibrosis, characterized by the overproduction of extracellular matrix proteins within liver tissue, poses a rising global health concern. However, no approved antifibrotic drugs are currently available, highlighting the critical need for understanding the molecular mechanisms of liver fibrosis. This knowledge could not only aid in developing therapies but also enable early intervention, enhance disease prediction, and improve our understanding of the interaction between various underlying conditions and the liver. Notably, natural products used in traditional medicine systems worldwide and demonstrating diverse biochemical and pharmacological activities are increasingly recognized for their potential in treating liver fibrosis. This review aims to comprehensively understand liver fibrosis, emphasizing the molecular mechanisms and advancements in exploring natural products' antifibrotic potential over the past five years. It also acknowledges the challenges in their development and seeks to underscore their potency in enhancing patient prognosis and reducing the global burden of liver disease.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, P.R. China
| | - Zhuo Lu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, P.R. China
| | - Gui-Feng Sun
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, P.R. China
| | - Kai-Yi He
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, P.R. China
| | - Zhi-Ping Chen
- Department of Critical Care Medicine, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, P.R. China
| | - Xin-Hui Qu
- The Second Department of Neurology, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, P.R. China
| | - Xiao-Jian Han
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, P.R. China
- The Second Department of Neurology, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, P.R. China
| |
Collapse
|
5
|
Zhan Y, Liu Y, Yang R, Chen Q, Teng F, Huang Y, Jiang X, Wang Y, Yu B, Zhang D, Bao L, Liu X, Huang J. CircPTEN suppresses human clear cell renal carcinoma progression and resistance to mTOR inhibitors by targeting epigenetic modification. Drug Resist Updat 2023; 71:101003. [PMID: 37866104 DOI: 10.1016/j.drup.2023.101003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 10/24/2023]
Abstract
Renal cell carcinoma (RCC) is known to be the most commonly diagnosed kidney cancer. Clear cell RCC (ccRCC) represents approximately 85 % of diagnosed RCC cases. Targeted therapeutics, such as multi-targeted tyrosine kinase inhibitors (TKI) and mTOR inhibitors, are widely used in ccRCC therapy. However, patients treated with mTOR and TKI inhibitors easily acquire drug resistance, making the therapy less effective. Here, we demonstrated that circPTEN inhibits the expression of its parental gene PTEN by reducing methylation of the PTEN promotor and inhibits GLUT1 expression by reducing m6A methylation of GLUT1, which suppresses ccRCC progression and resistance to mTOR inhibitors.
Collapse
Affiliation(s)
- Yangyang Zhan
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Third Affiliated hospital of Navy Medical University, 225 Changhai Road, Yangpu District, Shanghai, China
| | - Yang Liu
- Department of Orthopedics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Pudong District, Shanghai 200127, China
| | - Rui Yang
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Huangpu District, Shanghai 200003, China
| | - Qiong Chen
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Pudong District, Shanghai 200127, China
| | - Fei Teng
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Huangpu District, Shanghai 200003, China
| | - Yueying Huang
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Third Affiliated hospital of Navy Medical University, 225 Changhai Road, Yangpu District, Shanghai, China
| | - Xin Jiang
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Huangpu District, Shanghai 200003, China
| | - Yueming Wang
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Pudong District, Shanghai 200127, China
| | - Bin Yu
- WisGen Biosciences Inc., No.400 Fucheng Road, Baiyang Street, Qiantang District, Hangzhou 310000, Zhejiang, China
| | - Ding Zhang
- The Medical Department, 3D Medicines Inc., 118 Furonghua Road, Pudong District, Shanghai 201114, China
| | - Leilei Bao
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Third Affiliated hospital of Navy Medical University, 225 Changhai Road, Yangpu District, Shanghai, China.
| | - Xinli Liu
- Department of Digestive Oncology, Liaoning Cancer Hospital & Institute, Dalian University of Technology, 44 Xiaoheyan Road, Dadong District, Shenyang 110042, Liaoning Province, China.
| | - Jiwei Huang
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Pudong District, Shanghai 200127, China.
| |
Collapse
|
6
|
Devos H, Zoidakis J, Roubelakis MG, Latosinska A, Vlahou A. Reviewing the Regulators of COL1A1. Int J Mol Sci 2023; 24:10004. [PMID: 37373151 DOI: 10.3390/ijms241210004] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/28/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The collagen family contains 28 proteins, predominantly expressed in the extracellular matrix (ECM) and characterized by a triple-helix structure. Collagens undergo several maturation steps, including post-translational modifications (PTMs) and cross-linking. These proteins are associated with multiple diseases, the most pronounced of which are fibrosis and bone diseases. This review focuses on the most abundant ECM protein highly implicated in disease, type I collagen (collagen I), in particular on its predominant chain collagen type I alpha 1 (COLα1 (I)). An overview of the regulators of COLα1 (I) and COLα1 (I) interactors is presented. Manuscripts were retrieved searching PubMed, using specific keywords related to COLα1 (I). COL1A1 regulators at the epigenetic, transcriptional, post-transcriptional and post-translational levels include DNA Methyl Transferases (DNMTs), Tumour Growth Factor β (TGFβ), Terminal Nucleotidyltransferase 5A (TENT5A) and Bone Morphogenic Protein 1 (BMP1), respectively. COLα1 (I) interacts with a variety of cell receptors including integrinβ, Endo180 and Discoidin Domain Receptors (DDRs). Collectively, even though multiple factors have been identified in association to COLα1 (I) function, the implicated pathways frequently remain unclear, underscoring the need for a more spherical analysis considering all molecular levels simultaneously.
Collapse
Affiliation(s)
- Hanne Devos
- Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Jerome Zoidakis
- Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Maria G Roubelakis
- Laboratory of Biology, University of Athens School of Medicine, 11527 Athens, Greece
- Laboratory of Cell and Gene Therapy, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | | | - Antonia Vlahou
- Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
7
|
Wei M, Liu X, Tan Z, Tian X, Li M, Wei J. Ferroptosis: a new strategy for Chinese herbal medicine treatment of diabetic nephropathy. Front Endocrinol (Lausanne) 2023; 14:1188003. [PMID: 37361521 PMCID: PMC10289168 DOI: 10.3389/fendo.2023.1188003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Diabetic nephropathy (DN) is a serious microvascular complication of diabetes. It has become a leading cause of death in patients with diabetes and end-stage renal disease. Ferroptosis is a newly discovered pattern of programmed cell death. Its main manifestation is the excessive accumulation of intracellular iron ion-dependent lipid peroxides. Recent studies have shown that ferroptosis is an important driving factor in the onset and development of DN. Ferroptosis is closely associated with renal intrinsic cell (including renal tubular epithelial cells, podocytes, and mesangial cells) damage in diabetes. Chinese herbal medicine is widely used in the treatment of DN, with a long history and definite curative effect. Accumulating evidence suggests that Chinese herbal medicine can modulate ferroptosis in renal intrinsic cells and show great potential for improving DN. In this review, we outline the key regulators and pathways of ferroptosis in DN and summarize the herbs, mainly monomers and extracts, that target the inhibition of ferroptosis.
Collapse
Affiliation(s)
- Maoying Wei
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xingxing Liu
- Department of Emergency, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhijuan Tan
- Department of Traditional Chinese Medicine, The Seventh Hospital of Xingtai, Xingtai, Heibei, China
| | - Xiaochan Tian
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingdi Li
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junping Wei
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Wu YY, Xu YM, Lau ATY. Epigenetic effects of herbal medicine. Clin Epigenetics 2023; 15:85. [PMID: 37179342 PMCID: PMC10183144 DOI: 10.1186/s13148-023-01481-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/08/2023] [Indexed: 05/15/2023] Open
Abstract
Epigenetic memory is essential for life that governs the predefined functional features of cells. Recent evidence has indicated that the epigenetic modification provides a potential link to gene expression changes that may be involved in the development of various chronic diseases, and targeting the epigenome becomes a plausible method for treating diseases. Traditional herbal medicine has gradually entered the vision of researchers due to its low toxicity and its effectiveness in treating diseases. As a matter of fact, researchers found that the possessed epigenetic modification capacity of herbal medicine had the ability to combat the progression of the disease, such as various types of cancer, diabetes, inflammation, amnesia, liver fibrosis, asthma, and hypertension-induced renal injury. Studies on the epigenetic effects of herbal medicine will provide valuable insights into the molecular mechanisms of human diseases, which may lead to new therapeutic approaches and diagnoses. Thus, this review summarized the impact of herbal medicine and its bioactive components on disease epigenome as examples of how utilization of epigenetic plasticity could be useful as the basis for the future development of targeted therapies in chronic diseases.
Collapse
Affiliation(s)
- Yu-Yao Wu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Andy T Y Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China.
| |
Collapse
|
9
|
Zheng Y, Xie L, Yang D, Luo K, Li X. Small-molecule natural plants for reversing liver fibrosis based on modulation of hepatic stellate cells activation: An update. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 113:154721. [PMID: 36870824 DOI: 10.1016/j.phymed.2023.154721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Liver fibrosis (LF) is a trauma repair process carried out by the liver in response to various acute and chronic liver injuries. Its primary pathological characteristics are excessive proliferation and improper dismissal of the extracellular matrix, and if left untreated, it will progress into cirrhosis, liver cancer, and other diseases. Hepatic stellate cells (HSCs) activation is intimately associated to the onset of LF, and it is anticipated that addressing HSCs proliferation can reverse LF. Plant-based small-molecule medications have anti-LF properties, and their mechanisms of action involve suppression of extracellular matrix abnormally accumulating as well as anti-inflammation and anti-oxidative stress. New targeting HSC agents will therefore be needed to provide a potential curative response. PURPOSE The most recent HSC routes and small molecule natural plants that target HSC described domestically and internationally in recent years were examined in this review. METHODS The data was looked up using resources including ScienceDirect, CNKI, Web of Science, and PubMed. Keyword searches for information on hepatic stellate cells included "liver fibrosis", "natural plant", "hepatic stellate cells", "adverse reaction", "toxicity", etc. RESULTS: We discovered that plant monomers can target and control various pathways to prevent the activation and proliferation of HSC and promote the apoptosis of HSC in order to achieve the anti-LF effect in this work by compiling the plant monomers that influence many common pathways of HSC in recent years. It demonstrates the wide-ranging potential of plant monomers targeting different routes to combat LF, with a view to supplying new concepts and new strategies for natural plant therapy of LF as well as research and development of novel pharmaceuticals. The investigation of kaempferol, physalin B, and other plant monomers additionally motivated researchers to focus on the structure-activity link between the main chemicals and LF. CONCLUSION The creation of novel pharmaceuticals can benefit greatly from the use of natural components. They are often harmless for people, non-target creatures, and the environment because they are found in nature, and they can be employed as the starting chemicals for the creation of novel medications. Natural plants are valuable resources for creating new medications with fresh action targets because they feature original and distinctive action mechanisms.
Collapse
Affiliation(s)
- Yu Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Long Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dejun Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kaipei Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
10
|
Lyu SY, Xiao W, Cui GZ, Yu C, Liu H, Lyu M, Kuang QY, Xiao EH, Luo YH. Role and mechanism of DNA methylation and its inhibitors in hepatic fibrosis. Front Genet 2023; 14:1124330. [PMID: 37056286 PMCID: PMC10086238 DOI: 10.3389/fgene.2023.1124330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Liver fibrosis is a repair response to injury caused by various chronic stimuli that continually act on the liver. Among them, the activation of hepatic stellate cells (HSCs) and their transformation into a myofibroblast phenotype is a key event leading to liver fibrosis, however the mechanism has not yet been elucidated. The molecular basis of HSC activation involves changes in the regulation of gene expression without changes in the genome sequence, namely, via epigenetic regulation. DNA methylation is a key focus of epigenetic research, as it affects the expression of fibrosis-related, metabolism-related, and tumor suppressor genes. Increasing studies have shown that DNA methylation is closely related to several physiological and pathological processes including HSC activation and liver fibrosis. This review aimed to discuss the mechanism of DNA methylation in the pathogenesis of liver fibrosis, explore DNA methylation inhibitors as potential therapies for liver fibrosis, and provide new insights on the prevention and clinical treatment of liver fibrosis.
Collapse
Affiliation(s)
- Shi-Yi Lyu
- Department of Radiology, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Wang Xiao
- Department of Gastrointestinal Surgery, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Guang-Zu Cui
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Cheng Yu
- Department of Radiology, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Huan Liu
- Department of Radiology, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Min Lyu
- Department of Radiology, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Qian-Ya Kuang
- Department of Radiology, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - En-Hua Xiao
- Department of Radiology, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Yong-Heng Luo
- Department of Radiology, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| |
Collapse
|
11
|
Ting L, Feng Y, Zhou Y, Tong Z, Dong Z. IL-27 induces autophagy through regulation of the DNMT1/lncRNA MEG3/ERK/p38 axis to reduce pulmonary fibrosis. Respir Res 2023; 24:67. [PMID: 36869378 PMCID: PMC9985266 DOI: 10.1186/s12931-023-02373-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
PURPOSE Previous studies have shown that interleukin-27 (IL-27) can reduce bleomycin (BLM)-induced pulmonary fibrosis (PF). However, the underlying mechanism by which IL-27 attenuates PF is not fully clear. METHODS In this research, we used BLM to construct a PF mouse model, and MRC-5 cells stimulated by transforming growth factor-β1 (TGF-β1) were used to construct a PF model in vitro. The lung tissue status was observed by Masson and hematoxylin and eosin (HE) staining. To detect gene expression, RT‒qPCR was used. The protein levels were detected by western blotting and immunofluorescence staining. EdU and ELISA were used to detect cell proliferation viability and hydroxyproline (HYP) content, respectively. RESULTS Aberrant IL-27 expression was observed in BLM-induced mouse lung tissues, and the use of IL-27 attenuated mouse lung tissue fibrosis. TGF-β1 induced autophagy inhibition in MRC-5 cells, and IL-27 alleviated MRC-5 cell fibrosis by activating autophagy. The mechanism is inhibition of DNA methyltransferase 1 (DNMT1)-mediated lncRNA MEG3 methylation and ERK/p38 signaling pathway activation. Overexpression of DNMT1, knockdown of lncRNA MEG3, autophagy inhibitor or ERK/p38 signaling pathway inhibitors reversed the positive effect of IL-27 in a lung fibrosis model in vitro. CONCLUSION In conclusion, our study shows that IL-27 upregulates MEG3 expression through inhibition of DNMT1-mediated lncRNA MEG3 promoter methylation, which in turn inhibits ERK/p38 signaling pathway-induced autophagy and attenuates BLM-induced PF, providing a contribution to the elucidation of the potential mechanisms by which IL-27 attenuates PF.
Collapse
Affiliation(s)
- Li Ting
- Department of Respiratory and Critical Care Medicine, Ningbo Huamei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Yingying Feng
- Department of Respiratory and Critical Care Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Ying Zhou
- Department of Respiratory and Critical Care Medicine, Ningbo Huamei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Zhongkai Tong
- Department of Respiratory and Critical Care Medicine, Ningbo Huamei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Zhaoxing Dong
- Department of Respiratory and Critical Care Medicine, Ningbo Huamei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China.
| |
Collapse
|
12
|
Zhang Q, Jia R, Chen M, Wang J, Huang F, Shi M, Sheng H, Xu L. Antagonizing EZH2 combined with vitamin D3 exerts a synergistic role in anti-fibrosis through bidirectional effects on hepatocytes and hepatic stellate cells. J Gastroenterol Hepatol 2023; 38:441-450. [PMID: 36652457 DOI: 10.1111/jgh.16126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/19/2023]
Abstract
BACKGROUND AND AIM Whether vitamin D3 (VD3) supplementation is associated with improved liver fibrosis is controversial. METHODS Liver fibrosis models were treated with VD3, active VD (1,25-OH2 Vitamin D3), or collaboration with GSK126 (Ezh2 inhibitor), respectively. Hepatic stellate cells (HSCs) were co-cultured with hepatocytes and then stimulated with TGF-β. Autophagy of hepatocytes was determined after the intervention of 1,25-OH2 Vitamin D3 and GSK126. Also, the active status of HSCs and the mechanism with 1,25-OH2 Vitamin D3 and GSK126 intervention were detected. RESULTS 1,25-OH2 Vitamin D3, but not VD3, is involved in anti-fibrosis and partially improves liver function, which might be associated with related enzymes and receptors (especially CYP2R1), leading to decreased of its biotransformation. GSK126 plays a synergistic role in anti-fibrosis. The co-culture system showed increased hepatocyte autophagy after HSCs activation. Supplementation with 1,25-OH2 Vitamin D3 or combined GSK126 reduced these effects. Further studies showed that 1,25-OH2 Vitamin D3 promoted H3K27 methylation of DKK1 promoter through VDR/Ezh2 due to the weakening for HSCs inhibitory signal. CONCLUSIONS VD3 bioactive form 1,25-OH2 Vitamin D3 is responsible for the anti-fibrosis, which might have bidirectional effects on HSCs by regulating histone modification. The inhibitor of Ezh2 plays a synergistic role in this process.
Collapse
Affiliation(s)
- Qinghui Zhang
- Department of Clinical Laboratory, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Clinical Laboratory, Kunshan First People's Hospital, Jiangsu University, Kunshan, China
| | - Rongrong Jia
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Minjie Chen
- Department of Clinical Laboratory, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianjun Wang
- Department of Clinical Laboratory, Kunshan First People's Hospital, Jiangsu University, Kunshan, China
| | - Feng Huang
- Department of Clinical Laboratory, Kunshan First People's Hospital, Jiangsu University, Kunshan, China
| | - Min Shi
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Huiming Sheng
- Department of Clinical Laboratory, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ling Xu
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
ATM deficiency aggravates the progression of liver fibrosis induced by carbon tetrachloride in mice. Toxicology 2023; 484:153397. [PMID: 36526012 DOI: 10.1016/j.tox.2022.153397] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Ataxia telangiectasia mutated (ATM) is a pivotal sensor during the DNA damage response that slows cell passage through the cell cycle checkpoints to facilitate DNA repair, and liver fibrosis is an irreversible pathological consequence of the sustained wound-healing process, However, the effects of ATM on the development of liver fibrosis are still not fully understood. Therefore, the aim of the study was to investigate the effects and potential mechanisms of ATM on the progression of liver fibrosis. Wild-type and ATM-deficient were administered with carbon tetrachloride (CCl4, 5 ml/kg, i.p.) for 8 weeks to induce liver fibrosis, and the liver tissues and serum were collected for analysis. KU-55933 (10 μM) was used to investigate the effects of ATM blockage on CCl4-induced hepatocyte injury in vitro. The results showed that ATM deficiency aggravated the increased serum transaminase levels and liver MDA, HYP, and 8-OHdG contents compared with the model group (p < 0.05). Sirius red staining showed that ATM deficiency exacerbated liver collagen deposition in vivo, which was associated with the activation of TGF-β1/Smad2 signaling. Furthermore, blocking ATM with KU-55933 exacerbated the production of ROS and DNA damage caused by CCl4 exposure in HepG2 cells, and KU-55933 treatment also reversed the downregulated expression of CDK1 and CDK2 after CCl4 exposure in vitro. Moreover, the loss of ATM perturbed the regulation of the hepatic cell ChK2-CDC25A/C-CDK1/2 cascade and apoptosis in vivo, which was accompanied by increased Ki67-positive and TUNEL-positive cells after chronic CCl4 treatment. In conclusion, our results indicated that ATM might be a critical regulator of liver fibrosis progression, and the underlying mechanisms of exacerbated liver fibrosis development in ATM-deficient mice might be associated with the dysregulation of hepatic cell proliferation and apoptosis.
Collapse
|
14
|
Wu J, Lan Y, Shi X, Huang W, Li S, Zhang J, Wang H, Wang F, Meng X. Sennoside A is a novel inhibitor targeting caspase-1. Food Funct 2022; 13:9782-9795. [PMID: 36097956 DOI: 10.1039/d2fo01730j] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The assembly of inflammasomes drives caspase-1 activation, which further promotes proinflammatory cytokine secretion and downstream pyroptosis. The discovery of novel caspase-1 inhibitors is pivotal to developing new therapeutic means for inflammasome-involved diseases. In our present study, sennoside A (Sen A), a popular ingredient in multiple weight-loss medicines and dietary supplements, is found to potently inhibit the enzymatic activity of caspase-1 in vitro. Sen A considerably decreased IL-1β production in macrophages stimulated by LPS plus ATP, nigericin or MSU as well as poly(dA:dT) transfection, and remedied ROS-involved pyroptosis via caspase-1 inhibition. Mechanistically, Sen A not only suppressed the assembly of both NLRP3 and AIM2 inflammasome but also affected the priming process of NLRP3 inflammasome by blocking NF-κB signaling. Sen A significantly ameliorated the pathophysiological effect in LPS-, MSU- and carrageenan-challenged rodent models by suppressing inflammasome activation. Furthermore, P2X7 was indispensable for Sen A inhibiting NLRP3 inflammasome since it failed to further decrease IL-1β and IL-18 production in LPS plus ATP-stimulated BMDMs that were transfected with P2X7 siRNA. Sen A also restrained the large pore-forming functionalities of the P2X7R as verified by the YO-PRO-1 uptake assay. Taken together, Sen A inactivates caspase-1 to inhibit NLRP3 and AIM2 inflammasome-involved inflammation in a P2X7-dependent manner, making it an attractive candidate as a caspase-1 small-molecular inhibitor.
Collapse
Affiliation(s)
- Jiasi Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China. .,Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuejia Lan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| | - Xiaoke Shi
- Key Laboratory of Natural Medicine and Clinical Translation, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Wenge Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| | - Sheng Li
- Key Laboratory of Natural Medicine and Clinical Translation, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Jizhou Zhang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Huan Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| | - Fei Wang
- Key Laboratory of Natural Medicine and Clinical Translation, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| |
Collapse
|
15
|
New advances of DNA/RNA methylation modification in liver fibrosis. Cell Signal 2021; 92:110224. [PMID: 34954394 DOI: 10.1016/j.cellsig.2021.110224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 11/23/2022]
Abstract
Liver fibrosis is a complex pathological process caused by multiple pathogenic factors,such as ethanol, viruses, toxins, drugs or cholestasis, and it can eventually develop into liver cirrhosis without effective treatment. Activation of hepatic stellate cells (HSCs) is a pivotal cellular event in the pathogenesis of liver fibrosis. However, the pathogenesis of liver fibrosis has not been fully elucidated. DNA/RNA methylation can regulate gene expression without alteration in its sequence, and numerous studies have shown the involvement of DNA methylation in the activation of HSCs and then promote the progression of liver fibrosis. In addition, RNA methylation has recently been reported to play a regulatory role in this process. In this review, we focus on the aberrant DNA/RNA methylation of selected genes and explore their functional mechanism in regulating HSCs activation and liver fibrogenesis. All of these findings will enhance our understanding of DNA/RNA methylation and their roles in liver fibrosis and provide the basis to identify effective therapeutic targets.
Collapse
|
16
|
Zhu H, Zhao H, Xu S, Zhang Y, Ding Y, Li J, Huang C, Ma T. Sennoside A alleviates inflammatory responses by inhibiting the hypermethylation of SOCS1 in CCl 4-induced liver fibrosis. Pharmacol Res 2021; 174:105926. [PMID: 34619344 DOI: 10.1016/j.phrs.2021.105926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 02/07/2023]
Abstract
Liver fibrosis is the consequence of chronic liver injury and is a major challenge to global health. However, successful therapy for liver fibrosis is still lacking. Sennoside A (SA), a commonly used clinical stimulant laxative, is reported to improve hepatic disease, but the underlying mechanisms remain largely elusive. Here, we show for the first time that SA enhanced suppressor of cytokine signaling 1 (SOCS1) expression in a DNA methyltransferase 1 (DNMT1)-dependent manner and thereby attenuated liver fibrosis. Consistently, SA inhibited the expression of the liver fibrogenesis markers α-smooth muscle actin (α-SMA) and type I collagen alpha-1 (Col1α1) and suppressed inflammatory responses in vivo and in vitro. Coculture experiments with macrophages/hepatic stellate cells (HSCs) revealed that SA suppressed HSC proliferation by downregulating proinflammatory cytokines in macrophages. Mechanically, SA promoted the aberrant expression of SOCS1 in liver fibrosis. However, blocking SOCS1 expression weakened the inhibitory effect of SA on HSC proliferation, indicating that SOCS1 may play an important role in mediating the antifibrotic effect of SA. Furthermore, SA inhibited DNMT1-mediated SOCS1 and reduced HSC proliferation by inhibiting inflammatory responses in carbon tetrachloride (CCl4) -induced liver fibrosis.
Collapse
Affiliation(s)
- Hong Zhu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Huizi Zhao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Songbing Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yuan Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yuhao Ding
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Taotao Ma
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
17
|
Zhang J, Liu Q, He J, Li Y. Novel Therapeutic Targets in Liver Fibrosis. Front Mol Biosci 2021; 8:766855. [PMID: 34805276 PMCID: PMC8602792 DOI: 10.3389/fmolb.2021.766855] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/18/2021] [Indexed: 02/05/2023] Open
Abstract
Liver fibrosis is end-stage liver disease that can be rescued. If irritation continues due to viral infection, schistosomiasis and alcoholism, liver fibrosis can progress to liver cirrhosis and even cancer. The US Food and Drug Administration has not approved any drugs that act directly against liver fibrosis. The only treatments currently available are drugs that eliminate pathogenic factors, which show poor efficacy; and liver transplantation, which is expensive. This highlights the importance of clarifying the mechanism of liver fibrosis and searching for new treatments against it. This review summarizes how parenchymal, nonparenchymal cells, inflammatory cells and various processes (liver fibrosis, hepatic stellate cell activation, cell death and proliferation, deposition of extracellular matrix, cell metabolism, inflammation and epigenetics) contribute to liver fibrosis. We highlight discoveries of novel therapeutic targets, which may provide new insights into potential treatments for liver fibrosis.
Collapse
Affiliation(s)
- Jinhang Zhang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, China
| | - Qinhui Liu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, China
| | - Jinhan He
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, China.,Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, China
| | - Yanping Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, China
| |
Collapse
|
18
|
Le J, Ji H, Zhou X, Wei X, Chen Y, Fu Y, Ma Y, Han Q, Sun Y, Gao Y, Wu H. Pharmacology, Toxicology, and Metabolism of Sennoside A, A Medicinal Plant-Derived Natural Compound. Front Pharmacol 2021; 12:714586. [PMID: 34764866 PMCID: PMC8576406 DOI: 10.3389/fphar.2021.714586] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Sennoside A (SA) is a natural dianthrone glycoside mainly from medicinal plants of Senna and Rhubarb, and used as a folk traditional irritant laxative and slimming health food. Accumulating evidences suggest that SA possesses numerous pharmacological properties, such as laxative, anti-obesity, hypoglycemic, hepatoprotective, anti-fibrotic, anti-inflammatory, anti-tumor, anti-bacterial, anti-fungal, anti-viral, and anti-neurodegenerative activities. These pharmacological effects lay the foundation for its potential application in treating a variety of diseases. However, numerous published studies suggest that a long-term use of SA in large doses may have some adverse effects, including the occurrence of melanosis coli and carcinogenesis of colon cancer, thereby limiting its clinical use. It remains to be established whether SA or its metabolites are responsible for the pharmacological and toxicity effects. In this review, the latest advances in the pharmacology, toxicology, and metabolism of SA were summarizedbased on its biological characteristics and mechanism.
Collapse
Affiliation(s)
- Jiamei Le
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Houlin Ji
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoxiao Zhou
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xindong Wei
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Nanjing University of Chinese Medicine Affiliated 81st Hospital, Nanjing, China
| | - Yifan Chen
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yi Fu
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yujie Ma
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Qiuqin Han
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yongning Sun
- Department of Cardiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yueqiu Gao
- Department of Liver Diseases, Central Laboratory, Institute of Clinical Immunology, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Laboratory of Cellular Immunity, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hailong Wu
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
19
|
Fu K, Wang C, Ma C, Zhou H, Li Y. The Potential Application of Chinese Medicine in Liver Diseases: A New Opportunity. Front Pharmacol 2021; 12:771459. [PMID: 34803712 PMCID: PMC8600187 DOI: 10.3389/fphar.2021.771459] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Liver diseases have been a common challenge for people all over the world, which threatens the quality of life and safety of hundreds of millions of patients. China is a major country with liver diseases. Metabolic associated fatty liver disease, hepatitis B virus and alcoholic liver disease are the three most common liver diseases in our country, and the number of patients with liver cancer is increasing. Therefore, finding effective drugs to treat liver disease has become an urgent task. Chinese medicine (CM) has the advantages of low cost, high safety, and various biological activities, which is an important factor for the prevention and treatment of liver diseases. This review systematically summarizes the potential of CM in the treatment of liver diseases, showing that CM can alleviate liver diseases by regulating lipid metabolism, bile acid metabolism, immune function, and gut microbiota, as well as exerting anti-liver injury, anti-oxidation, and anti-hepatitis virus effects. Among them, Keap1/Nrf2, TGF-β/SMADS, p38 MAPK, NF-κB/IκBα, NF-κB-NLRP3, PI3K/Akt, TLR4-MyD88-NF-κB and IL-6/STAT3 signaling pathways are mainly involved. In conclusion, CM is very likely to be a potential candidate for liver disease treatment based on modern phytochemistry, pharmacology, and genomeproteomics, which needs more clinical trials to further clarify its importance in the treatment of liver diseases.
Collapse
Affiliation(s)
| | | | | | | | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
20
|
Cao Y, Zhan Y, Qiu S, Chen Z, Gong K, Ni S, Duan Y. Integrative analysis of genome-wide DNA methylation and single-nucleotide polymorphism identified ACSM5 as a suppressor of lumbar ligamentum flavum hypertrophy. Arthritis Res Ther 2021; 23:251. [PMID: 34593020 PMCID: PMC8482693 DOI: 10.1186/s13075-021-02625-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 09/12/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Hypertrophy of ligamentum flavum (HLF) is a common lumbar degeneration disease (LDD) with typical symptoms of low back pain and limb numbness owing to an abnormal pressure on spinal nerves. Previous studies revealed HLF might be caused by fibrosis, inflammatory, and other bio-pathways. However, a global analysis of HLF is needed severely. METHODS A genome-wide DNA methylation and single-nucleotide polymorphism analysis were performed from five LDD patients with HLF and five LDD patients without HLF. Comprehensive integrated analysis was performed using bioinformatics analysis and the validated experiments including Sanger sequencing, methylation-specific PCR, qPCR and ROC analysis. Furthermore, the function of novel genes in ligamentum flavum cells (LFCs) was detected to explore the molecular mechanism in HLF through knock down experiment, overexpression experiment, CCK8 assay, apoptosis assay, and so on. RESULTS We identified 69 SNP genes and 735 661 differentially methylated sites that were enriched in extracellular matrix, inflammatory, and cell proliferation. A comprehensive analysis demonstrated key genes in regulating the development of HLF including ACSM5. Furthermore, the hypermethylation of ACSM5 that was mediated by DNMT1 led to downregulation of ACSM5 expression, promoted the proliferation and fibrosis, and inhibited the apoptosis of LFCs. CONCLUSION This study revealed that DNMT1/ACSM5 signaling could enhance HLF properties in vitro as a potential therapeutic strategy for HLF.
Collapse
Affiliation(s)
- Yanlin Cao
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yenan Zhan
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Sujun Qiu
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Zhong Chen
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Kaiqin Gong
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Songjia Ni
- Department of Orthopaedic Trauma, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Yang Duan
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
21
|
Peng XF, Huang SF, Chen LJ, Xu L, Ye WC. Targeting epigenetics and lncRNAs in liver disease: From mechanisms to therapeutics. Pharmacol Res 2021; 172:105846. [PMID: 34438063 DOI: 10.1016/j.phrs.2021.105846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/19/2022]
Abstract
Early onset and progression of liver diseases can be driven by aberrant transcriptional regulation. Different transcriptional regulation processes, such as RNA/DNA methylation, histone modification, and ncRNA-mediated targeting, can regulate biological processes in healthy cells, as well also under various pathological conditions, especially liver disease. Numerous studies over the past decades have demonstrated that liver disease has a strong epigenetic component. Therefore, the epigenetic basis of liver disease has challenged our knowledge of epigenetics, and epigenetics field has undergone an important transformation: from a biological phenomenon to an emerging focus of disease research. Furthermore, inhibitors of different epigenetic regulators, such as m6A-related factors, are being explored as potential candidates for preventing and treating liver diseases. In the present review, we summarize and discuss the current knowledge of five distinct but interconnected and interdependent epigenetic processes in the context of hepatic diseases: RNA methylation, DNA methylation, histone methylation, miRNAs, and lncRNAs. Finally, we discuss the potential therapeutic implications and future challenges and ongoing research in the field. Our review also provides a perspective for identifying therapeutic targets and new hepatic biomarkers of liver disease, bringing precision research and disease therapy to the modern era of epigenetics.
Collapse
Affiliation(s)
- Xiao-Fei Peng
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Shi-Feng Huang
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Ling-Juan Chen
- Department of Clinical Laboratory, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Lingqing Xu
- Department of Clinical Laboratory, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Wen-Chu Ye
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China.
| |
Collapse
|
22
|
Wang F, Malnassy G, Qiu W. The Epigenetic Regulation of Microenvironment in Hepatocellular Carcinoma. Front Oncol 2021; 11:653037. [PMID: 33791228 PMCID: PMC8005717 DOI: 10.3389/fonc.2021.653037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly lethal and complex malignancy strongly influenced by the surrounding tumor microenvironment. The HCC microenvironment comprises hepatic stellate cells (HSCs), tumor-associated macrophages (TAMs), stromal and endothelial cells, and the underlying extracellular matrix (ECM). Emerging evidence demonstrates that epigenetic regulation plays a crucial role in altering numerous components of the HCC tumor microenvironment. In this review, we summarize the current understanding of the mechanisms of epigenetic regulation of the microenvironment in HCC. We review recent studies demonstrating how specific epigenetic mechanisms (DNA methylation, histone regulation, and non-coding RNAs mediated regulation) in HSCs, TAMs, and ECM, and how they contribute to HCC development, so as to gain new insights into the treatment of HCC via regulating epigenetic regulation in the tumor microenvironment.
Collapse
Affiliation(s)
- Fang Wang
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, IL, United States.,Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, United States
| | - Greg Malnassy
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, IL, United States.,Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, United States
| | - Wei Qiu
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, IL, United States.,Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, United States
| |
Collapse
|