1
|
Batbaatar MA, Kinoshita T, Ikeda S, Nishi K, Iwasaki H, Ganbaatar N, Ohno M, Nishi E. Nardilysin in vascular smooth muscle cells controls blood pressure via the regulation of calcium dynamics. Biochem Biophys Res Commun 2024; 712-713:149961. [PMID: 38648679 DOI: 10.1016/j.bbrc.2024.149961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Blood pressure is a crucial physiological parameter and its abnormalities can cause a variety of health problems. We have previously reported that mice with systemic deletion of nardilysin (NRDC), an M16 family metalloprotease, exhibit hypotension. In this study, we aimed to clarify the role of NRDC in vascular smooth muscle cell (VSMC) by generating VSMC-specific Nrdc knockout (VSMC-KO) mice. Our findings reveal that VSMC-KO mice also exhibit hypotension. Aortas isolated from VSMC-KO mice exhibited a weakened contractile response to phenylephrine, accompanied by reduced phosphorylation of myosin light chain 2 and decreased rhoA expression. VSMC isolated from VSMC-KO aortas showed a reduced increase in intracellular Ca2+ concentration induced by α-stimulants. These findings suggest that NRDC in VSMC regulates vascular contraction and blood pressure by modulating Ca2+ dynamics.
Collapse
MESH Headings
- Animals
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Calcium/metabolism
- Mice, Knockout
- Blood Pressure
- Mice
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Metalloendopeptidases/metabolism
- Metalloendopeptidases/genetics
- Male
- Mice, Inbred C57BL
- Hypotension/metabolism
- Cells, Cultured
- Aorta/metabolism
- Aorta/cytology
- Vasoconstriction/drug effects
- Calcium Signaling
Collapse
Affiliation(s)
- Mend Amar Batbaatar
- Department of Pharmacology, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan; Department of Pharmacology, School of Bio-Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar, 14210, Mongolia
| | - Takeshi Kinoshita
- Division of Cardiovascular Surgery and Thoracic Surgery, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Shinya Ikeda
- Department of Pharmacology, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Kiyoto Nishi
- Department of Pharmacology, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Hirotaka Iwasaki
- Department of Pharmacology, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | | | - Mikiko Ohno
- Department of Pharmacology, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan.
| | - Eiichiro Nishi
- Department of Pharmacology, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan.
| |
Collapse
|
2
|
Ohno M, Shiomi H, Baba O, Yano M, Aizawa T, Nakano-Matsumura Y, Yamagami S, Kato M, Ohya M, Chen PM, Nagao K, Ando K, Yokomatsu T, Kadota K, Kouchi I, Inada T, Valentine C, Kitagawa T, Kurokawa M, Ohtsuru S, Morimoto T, Kimura T, Nishi E. Auxiliary roles of nardilysin in the early diagnosis of acute coronary syndrome: a prospective cohort study, the Nardi-ACS study. Intern Emerg Med 2024; 19:649-659. [PMID: 38233578 PMCID: PMC11039555 DOI: 10.1007/s11739-023-03508-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024]
Abstract
Acute coronary syndrome (ACS) includes myocardial infarction (MI) and unstable angina (UA). MI is defined by elevated necrosis markers, preferably high-sensitivity cardiac troponins (hs-cTn). However, it takes hours for cTn to become elevated after coronary occlusion; therefore, difficulties are associated with diagnosing early post-onset MI or UA. The aim of this prospective cohort study was to examine the diagnostic ability of serum nardilysin (NRDC) for the early detection of ACS. This study consisted of two sequential cohorts, the Phase I cohort, 435 patients presenting to the emergency room (ER) with chest pain, and the Phase II cohort, 486 patients with chest pain who underwent coronary angiography. The final diagnosis was ACS in 155 out of 435 patients (35.6%) in the phase I and 418 out of 486 (86.0%) in the phase II cohort. Among 680 patients who presented within 24 h of onset, 466 patients (68.5%) were diagnosed with ACS. Serum NRDC levels were significantly higher in patients with ACS than in those without ACS. The sensitivity of NRDC in patients who presented within 6 h after the onset was higher than that of hsTnI, and the AUC of NRDC within 1 h of the onset was higher than that of hsTnI (0.718 versus 0.633). Among hsTnI-negative patients (300 of 680 patients: 44.1%), 136 of whom (45.3%) were diagnosed with ACS, the sensitivity and the NPV of NRDC were 73.5 and 65.7%, respectively. When measured in combination with hsTnI, NRDC plays auxiliary roles in the early diagnosis of ACS.
Collapse
Affiliation(s)
- Mikiko Ohno
- Department of Pharmacology, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan.
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan.
| | - Hiroki Shiomi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Osamu Baba
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
- Preemptive Medicine and Lifestyle Disease Research Center, Kyoto University Hospital, 54 Shogoinkawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Mariko Yano
- Kokura Memorial Hospital, 3-2-1 Asano, Kita-Ku, Kokura, Kitakyushu, Fukuoka, 802-8555, Japan
| | - Takanori Aizawa
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yukiko Nakano-Matsumura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Shintaro Yamagami
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Masashi Kato
- Mitsubishi Kyoto Hospital, 1, Katsuragoshomachi, Nishikyo-Ku, Kyoto, 615-8087, Japan
| | - Masanobu Ohya
- Kurashiki Central Hospital, 1-1-1 Miwa, Kurashiki, Okayama, 710-8602, Japan
| | - Po-Min Chen
- Saiseikai Noe Hospital, 1-3-25, Furuichi, Joto-Ku, Osaka, 536-0001, Japan
| | - Kazuya Nagao
- Osaka Red-Cross Hospital, 5-30 Fudegasakicho, Tennoji-Ku, Osaka, 543-8555, Japan
| | - Kenji Ando
- Kokura Memorial Hospital, 3-2-1 Asano, Kita-Ku, Kokura, Kitakyushu, Fukuoka, 802-8555, Japan
| | - Takafumi Yokomatsu
- Mitsubishi Kyoto Hospital, 1, Katsuragoshomachi, Nishikyo-Ku, Kyoto, 615-8087, Japan
| | - Kazushige Kadota
- Kurashiki Central Hospital, 1-1-1 Miwa, Kurashiki, Okayama, 710-8602, Japan
| | - Ichiro Kouchi
- Saiseikai Noe Hospital, 1-3-25, Furuichi, Joto-Ku, Osaka, 536-0001, Japan
| | - Tsukasa Inada
- Osaka Red-Cross Hospital, 5-30 Fudegasakicho, Tennoji-Ku, Osaka, 543-8555, Japan
| | - Cindy Valentine
- Sanyo Chemical Industries, 11-1 Hitotsubashi Nomoto, Higashiyama, Kyoto, 605-0995, Japan
| | - Takahiro Kitagawa
- Sanyo Chemical Industries, 11-1 Hitotsubashi Nomoto, Higashiyama, Kyoto, 605-0995, Japan
| | - Masato Kurokawa
- Sanyo Chemical Industries, 11-1 Hitotsubashi Nomoto, Higashiyama, Kyoto, 605-0995, Japan
| | - Shigeru Ohtsuru
- Department of Primary Care and Emergency Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoinkawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Takeshi Morimoto
- Hyogo College of Medicine, 1-1, Mukogawa-Cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
- Hirakata Kosai Hospital, 1-2-1, Fujibanto-Cho, Hirakata, Osaka, 573-0153, Japan
| | - Eiichiro Nishi
- Department of Pharmacology, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan.
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
3
|
Oshima S, Sinha R, Ohno M, Nishi K, Eto K, Takaori-Kondo A, Nishi E, Yamamoto R. Nardilysin determines hematopoietic stem cell fitness by regulating protein synthesis. Biochem Biophys Res Commun 2024; 693:149355. [PMID: 38096617 DOI: 10.1016/j.bbrc.2023.149355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 10/31/2023] [Accepted: 12/03/2023] [Indexed: 01/10/2024]
Abstract
Nardilysin (NRDC) is a multifunctional protein required for maintaining homeostasis in various cellular and tissue contexts. However, its role in hematopoietic stem cells (HSCs) remains unclear. Here, through the conditional deletion of NRDC in hematopoietic cells, we demonstrate that NRDC is required for HSCs expansion in vitro and the reconstitution of hematopoiesis in vivo after transplantation. We found NRDC-deficient HSCs lose their self-renewal ability and display a preferential bias to myeloid differentiation in response to replication stress. Transcriptome data analysis revealed the upregulation of heat shock response-related genes in NRDC-deficient HSCs. Additionally, we observed increased protein synthesis in cultured NRDC-deficient HSCs. Thus, loss of NRDC may cause the inability to control protein synthesis in response to replication induced protein stress, leading to the impaired HSC self-renewal ability. This highlights a novel model of action of NRDC specifically in HSCs.
Collapse
Affiliation(s)
- Shinichiro Oshima
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, 606-8507, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford Medicine, Stanford, CA, 94305, USA
| | - Mikiko Ohno
- Department of Pharmacology, Shiga University of Medical Sciences, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Kiyoto Nishi
- Department of Pharmacology, Shiga University of Medical Sciences, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Koji Eto
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, 606-8507, Japan
| | - Eiichiro Nishi
- Department of Pharmacology, Shiga University of Medical Sciences, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Ryo Yamamoto
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
4
|
Yamaguchi A, Takahashi T, Kato T, Tanaka T, Nishi E, Fujimoto N. Immunohistochemical and clinicopathological study regarding nardilysin on extramammary Paget's disease. Arch Dermatol Res 2023; 315:1979-1987. [PMID: 36867223 DOI: 10.1007/s00403-023-02579-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 02/02/2023] [Accepted: 02/12/2023] [Indexed: 03/04/2023]
Abstract
It has been reported that nardilysin (NRDC), a metalloendopeptidase which regulates various growth factors and cytokines, is associated with malignancies in a conflicting manner, in which it promoted gastric, hepatocellular, and colorectal cancers and suppressed pancreatic ductal adenocarcinoma. However, it has not been investigated how NRDC is associated with cutaneous malignancies for now. Immunohistochemical staining has revealed that NRDC expression is observed in all extramammary Paget's disease (EMPD) cases. Notably, other cutaneous malignancies including basal cell carcinoma, squamous cell carcinoma, and eccrine porocarcinoma, did not show increased NRDC expression in immunohistochemistry. EMPD typically presents several types of lesions including nodules, and positive staining of NRDC on EMPD was observed regardless of the type of lesions. Examination using samples taken from nodular lesions showed that some cases showed heterogenous NRDC expression within each lesion. We also found that NRDC staining was weaker in the marginal parts of EMPD lesion than in the central parts in several cases, and tumor cells tend to be distributed beyond the macroscopic skin lesions in these cases. It was speculated that decreased NRDC expression in the marginal zones of the skin lesions may be associated with the ability of tumor cells to produce the cutaneous manifestation of EMPD. This study suggests that NRDC may be associated with EMPD like other malignancies reported previously.
Collapse
Affiliation(s)
- Akihiko Yamaguchi
- Department of Dermatology, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Toshifumi Takahashi
- Department of Dermatology, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga, 520-2192, Japan.
| | - Takeshi Kato
- Department of Dermatology, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Toshihiro Tanaka
- Department of Dermatology, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Eiichiro Nishi
- Department of Pharmacology, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Noriki Fujimoto
- Department of Dermatology, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga, 520-2192, Japan
| |
Collapse
|
5
|
Saijo S, Ohno M, Iwasaki H, Matsuda S, Nishi K, Hiraoka Y, Ide N, Kimura T, Nishi E. Nardilysin in adipocytes regulates UCP1 expression and body temperature homeostasis. Sci Rep 2022; 12:3449. [PMID: 35236897 PMCID: PMC8891301 DOI: 10.1038/s41598-022-07379-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/15/2022] [Indexed: 11/21/2022] Open
Abstract
Brown adipose tissue (BAT) dissipates chemical energy as heat through uncoupling protein 1 (UCP1). The induction of mitochondrial reactive oxygen species (ROS) in BAT was recently identified as a mechanism that supports UCP1-dependent thermogenesis. We previously demonstrated that nardilysin (NRDC) plays critical roles in body temperature homeostasis. Global NRDC-deficient (Nrdc–/–) mice show hypothermia due to a lower set point for body temperature, whereas BAT thermogenesis at room temperature (RT) is enhanced mainly to compensate for poor thermal insulation. To examine the primary role of NRDC in BAT thermogenesis, we generated adipocyte-specific NRDC-deficient (Adipo-KO) mice by mating Nrdc floxed (Nrdcflox/flox) mice with adiponectin-Cre mice. Adipo-KO mice showed hyperthermia at both RT and thermoneutrality. They were also more cold-tolerant than Nrdcflox/flox mice. However, UCP1 mRNA levels were significantly lower in Adipo-KO BAT at RT, thermoneutrality, and 4 °C, whereas no significant differences were observed in UCP1 protein levels at RT and 4 °C. We examined the protein stability of UCP1 using the cycloheximide chase assay and found that NRDC negatively regulated its stability via the ubiquitin–proteasome pathway. NRDC may be also involved in ROS-mediated in vivo thermogenesis because the inhibitory effects of N-acetyl cysteine, an ROS scavenger, on β3 agonist-induced thermogenesis were stronger in Adipo-KO mice. Collectively, the present results demonstrate that NRDC in BAT controls adaptive thermogenesis and body temperature homeostasis possibly via the regulation of UCP1 protein stability and ROS levels.
Collapse
Affiliation(s)
- Sayaka Saijo
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.,Japanese Red Cross Otsu Hospital, 1-1-35, Nagara-cho, Otsu, Shiga, 520-0000, Japan
| | - Mikiko Ohno
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.,Department of Pharmacology, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan
| | - Hirotaka Iwasaki
- Department of Pharmacology, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan.,Division of Endocrinology, UCLA, 650 Charles E. Young Dr. S. CHS 34-115, Los Angeles, CA, 90095, USA
| | - Shintaro Matsuda
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kiyoto Nishi
- Department of Pharmacology, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan
| | - Yoshinori Hiraoka
- Division of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Natsuki Ide
- Department of Pharmacology, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Eiichiro Nishi
- Department of Pharmacology, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan.
| |
Collapse
|