1
|
Liu J, Zhu W, Xia L, Zhu Q, Mao Y, Shen Y, Li M, Zhang Z, Du J. Identification of CAPG as a potential prognostic biomarker associated with immune cell infiltration and ferroptosis in uterine corpus endometrial carcinoma. Front Endocrinol (Lausanne) 2024; 15:1452219. [PMID: 39600941 PMCID: PMC11588481 DOI: 10.3389/fendo.2024.1452219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction Capping actin protein, gelsolin-like (CAPG) is a potential therapeutic target in various cancers. However, the potential immunotherapeutic effects and prognostic value of CAPG in uterine corpus endometrial carcinoma (UCEC) remain unclear. Methods The characterization, methylation effects, prognostic value, targeted miRNAs of CAPG, and the correlation of CAPG with immune cell infiltration and ferroptosis in UCEC were investigated using multiple public databases and online tools. Furtherly, we explored the potential physiological function of CAPG using EdU and Transwell migration assays, identified the cell localization and expression of CAPG and GPX4 by immunofluorescence, and detected the intracellular Fe2+ levels using a FerroOrange fluorescent probe in Ishikawa cells. Additionally, the OncoPredict package was used to analyze the potential chemotherapeutic drugs for UCEC. Results CAPG showed generally high expression in tumor group. The overall survival rate of the high-risk group was significantly lower than that of the low-risk group. Enrichment analysis indicated that CAPG is involved in immune-related pathways and is closely associated with the tumor microenvironment. CAPG expression levels were affected by abnormal DNA methylation and/or targeted miRNAs, infiltration levels and marker genes of various immune cells, thereby impacting immune response, ferroptosis, and patient prognosis. Ferroptosis analysis indicated that ALOX5 and VLDLR were the top CAPG-related ferroptosis markers; glutathione metabolism levels in tumor group were generally high, and decitabine was a ferroptosis inducer. CAPG-siRNA suppressed the cell proliferation and invasion, and markedly elevated the expression levels of immune-related genes IL8, TNF, TLR4 and the intracellular Fe2+ levels. CAPG co-located with GPX4 in nucleus and co-regulated ferroptosis and metabolism in Ishikawa cells. Moreover, four chemotherapy drugs showed better sensitivity to UCEC patients in the low-risk cohort. Conclusions CAPG may serve as a potential biomarker of UCEC owing to its role in modulating the immune response and ferroptosis, providing novel perspectives for combined immunotherapy of UCEC.
Collapse
Affiliation(s)
- Junwei Liu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Weiqiang Zhu
- Shanghai-Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, National Health Commission Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, China
| | - Lingjin Xia
- Shanghai-Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, National Health Commission Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, China
| | - Qianxi Zhu
- Shanghai-Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, National Health Commission Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, China
| | - Yanyan Mao
- Shanghai-Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, National Health Commission Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, China
| | - Yupei Shen
- Shanghai-Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, National Health Commission Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, China
| | - Min Li
- Shanghai-Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, National Health Commission Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, China
| | - Zhaofeng Zhang
- Shanghai-Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, National Health Commission Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, China
| | - Jing Du
- Shanghai-Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, National Health Commission Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
2
|
De Bem THC, Bridi A, Tinning H, Sampaio RV, Malo-Estepa I, Wang D, Vasconcelos EJR, Nociti RP, de Ávila ACFCM, Rodrigues Sangalli J, Motta IG, Arantes Ataíde G, da Silva JCB, Fumie Watanabe Y, Gonella-Diaza A, da Silveira JC, Pugliesi G, Vieira Meirelles F, Forde N. Biosensor capability of the endometrium is mediated in part, by altered miRNA cargo from conceptus-derived extracellular vesicles. FASEB J 2024; 38:e23639. [PMID: 38742798 DOI: 10.1096/fj.202302423rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024]
Abstract
We tested the hypothesis that the biosensor capability of the endometrium is mediated in part, by the effect of different cargo contained in the extracellular vesicles secreted by the conceptus during the peri-implantation period of pregnancy. We transferred Bos taurus taurus embryos of different origin, in vivo (high developmental potential (IV)), in vitro (intermediate developmental potential (IVF)), or cloned (low developmental potential (NT)), into Bos taurus indicus recipients. Extracellular vesicles (EVs) recovered from Day 16 conceptus-conditioned medium were characterized and their microRNA (miRNA) cargo sequenced alongside RNA sequencing of their respective endometria. There were substantial differences in the endometrial response to in vivo versus in vitro and in vivo versus cloned conceptuses (1153 and 334DEGs respectively) with limited differences between in vitro Vs cloned conceptuses (36 DEGs). The miRNA cargo contained in conceptus-derived EVs was similar between all three groups (426 miRNA in common). Only 8 miRNAs were different between in vivo and cloned conceptuses, while only 6 miRNAs were different between in vivo and in vitro-derived conceptuses. Treatment of endometrial epithelial cells with mimic or inhibitors for miR-128 and miR-1298 changed the proteomic content of target cells (96 and 85, respectively) of which mRNAs are altered in the endometrium in vivo (PLXDC2, COPG1, HSPA12A, MCM5, TBL1XR1, and TTF). In conclusion, we have determined that the biosensor capability of the endometrium is mediated in part, by its response to different EVs miRNA cargo produced by the conceptus during the peri-implantation period of pregnancy.
Collapse
Affiliation(s)
- Tiago H C De Bem
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | - Alessandra Bridi
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | - Haidee Tinning
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Rafael Vilar Sampaio
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | - Irene Malo-Estepa
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Dapeng Wang
- LeedsOmics, University of Leeds, Leeds, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Ricardo Perecin Nociti
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | - Ana C F C M de Ávila
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | - Juliano Rodrigues Sangalli
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | - Igor Garcia Motta
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, Brazil
| | - Gilmar Arantes Ataíde
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, Brazil
| | - Júlio C B da Silva
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | | | - Angela Gonella-Diaza
- North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Juliano C da Silveira
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | - Guilherme Pugliesi
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, Brazil
| | - Flávio Vieira Meirelles
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | - Niamh Forde
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
- LeedsOmics, University of Leeds, Leeds, UK
| |
Collapse
|
3
|
Butt Z, Tinning H, O'Connell MJ, Fenn J, Alberio R, Forde N. Understanding conceptus-maternal interactions: what tools do we need to develop? Reprod Fertil Dev 2023; 36:81-92. [PMID: 38064186 DOI: 10.1071/rd23181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Communication between the maternal endometrium and developing embryo/conceptus is critical to support successful pregnancy to term. Studying the peri-implantation period of pregnancy is critical as this is when most pregnancy loss occurs in cattle. Our current understanding of these interactions is limited, due to the lack of appropriate in vitro models to assess these interactions. The endometrium is a complex and heterogeneous tissue that is regulated in a transcriptional and translational manner throughout the oestrous cycle. While there are in vitro models to study endometrial function, they are static and 2D in nature or explant models and are limited in how well they recapitulate the in vivo endometrium. Recent developments in organoid systems, microfluidic approaches, extracellular matrix biology, and in silico approaches provide a new opportunity to develop in vitro systems that better model the in vivo scenario. This will allow us to investigate in a more high-throughput manner the fundamental molecular interactions that are required for successful pregnancy in cattle.
Collapse
Affiliation(s)
- Zenab Butt
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Haidee Tinning
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Mary J O'Connell
- Computational and Molecular Evolutionary Biology Group, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Jonathan Fenn
- Computational and Molecular Evolutionary Biology Group, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Ramiro Alberio
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Niamh Forde
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
4
|
Tinning H, Edge JC, DeBem THC, Deligianni F, Giovanardi G, Pensabene V, Meirelles FV, Forde N. Review: Endometrial function in pregnancy establishment in cattle. Animal 2023; 17 Suppl 1:100751. [PMID: 37567655 DOI: 10.1016/j.animal.2023.100751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 08/13/2023] Open
Abstract
The endometrium is fundamentally required for successful pregnancy in ruminants and species where the posthatching conceptus undergoes a protracted elongation and peri-implantation phase of pregnancy. Moreover, there are substantial waves of pregnancy loss during this pre- and peri-implantation period of pregnancy the precise source of which has not been clearly defined i.e., the maternal uterine contribution to this loss. Understanding the molecular interactions required for successful pregnancy in cattle will allow us to intervene to support pregnancy success during this vulnerable window. The endometrium contributes to most key developmental milestones of pregnancy establishment, including (1) contributing to the regulation of the oestrus cycle, (2) nourishing the preimplantation conceptus, (3) responding to the conceptus to create a more receptive microenvironment, (4) providing essential biophysical support, and (5) signalling and producing factors which affect the mother systemically. This review will summarise what we currently know about conceptus-maternal interactions as well as identify the gaps in our knowledge that could be filled with newer in vitro model approaches. These include the use of microfluidics, organ-on-a-chip devices, and bioinformatic approaches. This will help maximise food production efficiency (both meat and dairy) and decrease the environmental burden, while enhancing our understanding of the fundamental processes required for successful implantation in cattle.
Collapse
Affiliation(s)
- H Tinning
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - J C Edge
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - T H C DeBem
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Sao Paulo, Brazil
| | - F Deligianni
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - G Giovanardi
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom; School of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - V Pensabene
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - F V Meirelles
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - N Forde
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
5
|
Taylor AS, Tinning H, Ovchinnikov V, Edge J, Smith W, Pullinger AL, Sutton RA, Constantinides B, Wang D, Forbes K, Forde N, O'Connell MJ. A burst of genomic innovation at the origin of placental mammals mediated embryo implantation. Commun Biol 2023; 6:459. [PMID: 37100852 PMCID: PMC10133327 DOI: 10.1038/s42003-023-04809-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 04/05/2023] [Indexed: 04/28/2023] Open
Abstract
The origin of embryo implantation in mammals ~148 million years ago was a dramatic shift in reproductive strategy, yet the molecular changes that established mammal implantation are largely unknown. Although progesterone receptor signalling predates the origin of mammals and is highly conserved in, and critical for, successful mammal pregnancy, it alone cannot explain the origin and subsequent diversity of implantation strategies throughout the placental mammal radiation. MiRNAs are known to be flexible and dynamic regulators with a well-established role in the pathophysiology of mammal placenta. We propose that a dynamic core microRNA (miRNA) network originated early in placental mammal evolution, responds to conserved mammal pregnancy cues (e.g. progesterone), and facilitates species-specific responses. Here we identify 13 miRNA gene families that arose at the origin of placental mammals and were subsequently retained in all descendent lineages. The expression of these miRNAs in response to early pregnancy molecules is regulated in a species-specific manner in endometrial epithelia of species with extreme implantation strategies (i.e. bovine and human). Furthermore, this set of miRNAs preferentially target proteins under positive selective pressure on the ancestral eutherian lineage. Discovery of this core embryo implantation toolkit and specifically adapted proteins helps explain the origin and evolution of implantation in mammals.
Collapse
Affiliation(s)
- Alysha S Taylor
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Haidee Tinning
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - Vladimir Ovchinnikov
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Jessica Edge
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - William Smith
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
- Leeds Fertility, Leeds Teaching Hospitals NHS Trust, York Road, Seacroft, Leeds, LS14 6UH, UK
| | - Anna L Pullinger
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - Ruth A Sutton
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - Bede Constantinides
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Modernising Medical Microbiology Consortium, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Dapeng Wang
- LeedsOmics, University of Leeds, Leeds, LS2 9JT, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Karen Forbes
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - Niamh Forde
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK.
| | - Mary J O'Connell
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
6
|
Rocha CC, Silva FAC, Martins T, Marrero MG, Bromfield JJ, Driver J, Hansen T, Oliveira L, Binelli M. Culture of endometrial epithelial cells collected by a cytological brush in vivo. JDS COMMUNICATIONS 2022; 3:217-221. [PMID: 36338819 PMCID: PMC9623749 DOI: 10.3168/jdsc.2021-0189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/12/2022] [Indexed: 06/16/2023]
Abstract
In cattle, mechanistic studies of endometrial function rely on cell lines or primary culture of cells harvested postmortem. Understanding the endometrial physiology in dairy cows is essential, because approximately 50% of pregnancies are lost in the first 3 wk of gestation for unknown reasons. The objective was to validate an in vivo, minimally invasive, and estrous cycle stage-specific method to obtain endometrial luminal epithelial cells for culture. The uterine body of 26 cows was sampled using a cytology brush (cytobrush) 4 d after estrus. The viability of cells was measured by flow cytometry (80% live cells) and epithelial identity was determined by anti-vimentin and anti-cytokeratin immunofluorescence and quantitative PCR for KRT18 and VIM. A pool of cells from 15 animals was passaged 4 times in culture until confluent and then treated with 0, 0.1, 1, or 10 ng/mL of recombinant bovine interferon-tau (rbIFN-τ). The relative expression of transcripts related to IFN-τ signaling (IFNAR1), early (IRF2) and late (ISG15, OAS1) response to IFN-τ stimulus, and other IFN-τ-stimulated genes (CCL8, CXCL10, and FABP3) was measured by quantitative PCR. The relative expression of KRT18 transcripts was similar across passages; the relative expression of VIM increased at passage 2, and IFNAR1 transcripts decreased in cultured compared with that in fresh cells. The relative expression of ISG15, OAS1, CCL8, and FABP3 increased in response to rbIFN-τ. In conclusion, culture of endometrial luminal cells collected by cytobrush was feasible, generating a monolayer enriched in epithelial cells, and therefore constitutes a novel model by which to study endometrial luminal epithelial cell function, including responses to IFN-τ.
Collapse
Affiliation(s)
| | | | - Thiago Martins
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | | | - John J. Bromfield
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - John Driver
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - Thomas Hansen
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins 80521
| | - Lilian Oliveira
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens 30602
| | - Mario Binelli
- Department of Animal Sciences, University of Florida, Gainesville 32611
| |
Collapse
|
7
|
Rawlings TM, Makwana K, Tryfonos M, Lucas ES. Organoids to model the endometrium: implantation and beyond. REPRODUCTION AND FERTILITY 2022; 2:R85-R101. [PMID: 35118399 PMCID: PMC8801025 DOI: 10.1530/raf-21-0023] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/05/2021] [Indexed: 12/18/2022] Open
Abstract
Despite advances in assisted reproductive techniques in the 4 decades since the first human birth after in vitro fertilisation, 1–2% of couples experience recurrent implantation failure, and some will never achieve a successful pregnancy even in the absence of a confirmed dysfunction. Furthermore, 1–2% of couples who do conceive, either naturally or with assistance, will experience recurrent early loss of karyotypically normal pregnancies. In both cases, embryo-endometrial interaction is a clear candidate for exploration. The impossibility of studying implantation processes within the human body has necessitated the use of animal models and cell culture approaches. Recent advances in 3-dimensional modelling techniques, namely the advent of organoids, present an exciting opportunity to elucidate the unanswerable within human reproduction. In this review, we will explore the ontogeny of implantation modelling and propose a roadmap to application and discovery.
Collapse
Affiliation(s)
- Thomas M Rawlings
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Komal Makwana
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Maria Tryfonos
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Emma S Lucas
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.,Centre for Early Life, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
8
|
Halloran KM, Stenhouse C, Moses RM, Seo H, Johnson GA, Wu G, Bazer FW. Progesterone and interferon tau regulate expression of polyamine enzymes during the ovine peri-implantation period. Biol Reprod 2022; 106:865-878. [DOI: 10.1093/biolre/ioac022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/04/2022] [Accepted: 01/20/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Progesterone (P4) and interferon tau (IFNT) are important for establishment and maintenance of pregnancy in ruminants. Agmatine and polyamines (putrescine, spermidine, and spermine) have important roles in the survival, growth, and development of mammalian conceptuses. This study tested the hypothesis that P4 and/or IFNT stimulate expression of genes and proteins involved in the metabolism and transport of polyamines in the ovine endometrium. Rambouillet ewes (n = 24) were surgically fitted with intrauterine catheters on Day 7 of the estrous cycle. They received daily intramuscular injections of 50 mg P4 in corn oil vehicle and/or 75 mg progesterone receptor antagonist (RU486) in corn oil vehicle from Days 8–15, and twice daily intrauterine injections (25 μg/uterine horn/day) of either control serum proteins (CX) or IFNT from Days 11–15, resulting in four treatment groups: 1) P4 + CX; 2) P4 + IFNT; 3) RU486 + P4 + CX; or 4) RU486 + P4 + IFNT. On Day 16, ewes were hysterectomized. The total amounts of arginine, citrulline, ornithine, agmatine, and putrescine in uterine flushings were affected (P < 0.05) by P4 and/or IFNT. P4 increased endometrial expression of SLC22A2 (P < 0.01) and SLC22A3 (P < 0.05) mRNAs. IFNT affected endometrial expression of MAT2B (P < 0.001), SAT1 (P < 0.01), and SMOX (P < 0.05) mRNAs, independent of P4. IFNT increased the abundance of SRM protein in uterine luminal (LE), superficial glandular (sGE), and glandular epithelia (GE), as well as MAT2B protein in uterine LE and sGE. These results indicate that P4 and IFNT act synergistically to regulate expression of key genes required for cell-specific metabolism and transport of polyamines in the ovine endometrium during the peri-implantation period of pregnancy.
Collapse
Affiliation(s)
- Katherine M Halloran
- Department of Animal Science, Texas A&M University, College Station, Texas 77843
| | - Claire Stenhouse
- Department of Animal Science, Texas A&M University, College Station, Texas 77843
| | - Robyn M Moses
- Department of Animal Science, Texas A&M University, College Station, Texas 77843
| | - Heewon Seo
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843
| | - Gregory A Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, Texas 77843
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
9
|
De Bem THC, Tinning H, Vasconcelos EJR, Wang D, Forde N. Endometrium On-a-Chip Reveals Insulin- and Glucose-induced Alterations in the Transcriptome and Proteomic Secretome. Endocrinology 2021; 162:6167824. [PMID: 33693651 PMCID: PMC8143652 DOI: 10.1210/endocr/bqab054] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Indexed: 12/28/2022]
Abstract
The molecular interactions between the maternal environment and the developing embryo are key for early pregnancy success and are influenced by factors such as maternal metabolic status. Our understanding of the mechanism(s) through which these individual nutritional stressors alter endometrial function and the in utero environment for early pregnancy success is, however, limited. Here we report, for the first time, the use of an endometrium-on-a-chip microfluidics approach to produce a multicellular endometrium in vitro. Isolated endometrial cells (epithelial and stromal) from the uteri of nonpregnant cows in the early luteal phase (Days 4-7) were seeded in the upper chamber of the device (epithelial cells; 4-6 × 104 cells/mL) and stromal cells seeded in the lower chamber (1.5-2 × 104 cells/mL). Exposure of cells to different concentrations of glucose (0.5, 5.0, or 50 mM) or insulin (Vehicle, 1 or 10 ng/mL) was performed at a flow rate of 1 µL/minute for 72 hours. Quantitative differences in the cellular transcriptome and the secreted proteome of in vitro-derived uterine luminal fluid were determined by RNA-sequencing and tandem mass tagging mass spectrometry, respectively. High glucose concentrations altered 21 and 191 protein-coding genes in epithelial and stromal cells, respectively (P < .05), with a dose-dependent quantitative change in the protein secretome (1 and 23 proteins). Altering insulin concentrations resulted in limited transcriptional changes including transcripts for insulin-like binding proteins that were cell specific but altered the quantitative secretion of 196 proteins. These findings highlight 1 potential mechanism by which changes to maternal glucose and insulin alter uterine function.
Collapse
Affiliation(s)
- Tiago H C De Bem
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil
| | - Haidee Tinning
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | | | | | - Niamh Forde
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
- LeedsOmics, University of Leeds, Leeds, UK
- Correspondence: Niamh Forde, PhD, University of Leeds, LIGHT Laboratories, Clarendon Way, LS2 9JT, Leeds, UK.
| |
Collapse
|
10
|
Prescher N, Hänsch S, Knobbe-Thomsen CB, Stühler K, Poschmann G. The migration behavior of human glioblastoma cells is influenced by the redox-sensitive human macrophage capping protein CAPG. Free Radic Biol Med 2021; 167:81-93. [PMID: 33711419 DOI: 10.1016/j.freeradbiomed.2021.02.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/26/2022]
Abstract
The macrophage capping protein CAPG belongs to the gelsolin superfamily which modulates actin dynamics by capping the growing end of actin filaments in a Ca2+- and PIP2-dependent manner resulting in polymerization inhibition of actin filaments. In the last years, additional functions for CAPG in transcription regulation were described and higher CAPG amounts have been linked to increased invasiveness and migration behavior in different human tumor entities like e.g. glioblastoma. Nevertheless, there is a lack of knowledge how additional functions of CAPG are regulated. As CAPG contains several cysteine residues which may be accessible to oxidation we were especially interested to investigate how alterations in the cysteine oxidation state may influence the function, localization, and regulation of CAPG. In the present study, we provide strong evidence that CAPG is a redox-sensitive protein and identified two cysteines: C282 and C290 as reversibly oxidized in glioblastoma cell lines. Whereas no evidence could be found that the canonical actin capping function of CAPG is redox-regulated, our results point to a novel role of the identified cysteines in the regulation of cell migration. Along with this, we found a localization shift out of the nucleus of CAPG and RAVER1, a potential interaction partner identified in our study which might explain the observed altered cell migration properties. The newly identified redox sensitive cysteines of CAPG could perspectively be considered as new targets for controlling tumor invasive properties.
Collapse
Affiliation(s)
- Nina Prescher
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Sebastian Hänsch
- Department of Biology, Center for Advanced Imaging (CAi), Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Christiane B Knobbe-Thomsen
- Department of Neuropathology, Heinrich-Heine University Düsseldorf and University Hospital, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Kai Stühler
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany; Molecular Proteomics Laboratory, Biomedical Research Centre (BMFZ), Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
11
|
Wang F, Zhao S, Deng D, Wang W, Xu X, Liu X, Zhao S, Yu M. Integrating LCM-Based Spatio-Temporal Transcriptomics Uncovers Conceptus and Endometrial Luminal Epithelium Communication that Coordinates the Conceptus Attachment in Pigs. Int J Mol Sci 2021; 22:ijms22031248. [PMID: 33513863 PMCID: PMC7866100 DOI: 10.3390/ijms22031248] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/15/2021] [Accepted: 01/24/2021] [Indexed: 02/06/2023] Open
Abstract
Attachment of conceptus to the endometrial luminal epithelium (LE) is a critical event for early placentation in Eutheria. Since the attachment occurs at a particular site within the uterus, a coordinated communication between three spatially distinct compartments (conceptus and endometrial LE from two anatomical regions of the uterus to which conceptus attaches and does not attach) is essential but remains to be fully characterized. Using the laser capture microdissection (LCM) technique, we firstly developed an approach that can allow us to pair the pig conceptus sample with its nearby endometrial epithelium sample without losing the native spatial information. Then, a comprehensive spatio-temporal transcriptomic profile without losing the original conceptus-endometrium coordinates was constructed. The analysis shows that an apparent difference in transcriptional responses to the conceptus exists between the endometrial LE from the two anatomically distinct regions in the uterus. In addition, we identified the communication pathways that link the conceptus and endometrial LE and found that these pathways have important roles in conceptus attachment. Furthermore, a number of genes whose expression is spatially restricted in the two different anatomical regions within the uterus were characterized for the first time and two of them (SULT2A1 and MEP1B) may cooperatively contribute to establish conceptus attachment in pigs. The results from our study have implications in understanding of conceptus/embryo attachment in pigs and other large polytocous species.
Collapse
|