1
|
do Nascimento THO, Pereira-Figueiredo D, Veroneze L, Nascimento AA, De Logu F, Nassini R, Campello-Costa P, Faria-Melibeu ADC, Souza Monteiro de Araújo D, Calaza KC. Functions of TRPs in retinal tissue in physiological and pathological conditions. Front Mol Neurosci 2024; 17:1459083. [PMID: 39386050 PMCID: PMC11461470 DOI: 10.3389/fnmol.2024.1459083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024] Open
Abstract
The Transient Receptor Potential (TRP) constitutes a family of channels subdivided into seven subfamilies: Ankyrin (TRPA), Canonical (TRPC), Melastatin (TRPM), Mucolipin (TRPML), no-mechano-potential C (TRPN), Polycystic (TRPP), and Vanilloid (TRPV). Although they are structurally similar to one another, the peculiarities of each subfamily are key to the response to stimuli and the signaling pathway that each one triggers. TRPs are non-selective cation channels, most of which are permeable to Ca2+, which is a well-established second messenger that modulates several intracellular signaling pathways and is involved in physiological and pathological conditions in various cell types. TRPs depolarize excitable cells by increasing the influx of Ca2+, Na+, and other cations. Most TRP families are activated by temperature variations, membrane stretching, or chemical agents and, therefore, are defined as polymodal channels. All TPRs are expressed, at some level, in the central nervous system (CNS) and ocular-related structures, such as the retina and optic nerve (ON), except the TRPP in the ON. TRPC, TRPM, TRPV, and TRPML are found in the retinal pigmented cells, whereas only TRPA1 and TRPM are detected in the uvea. Accordingly, several studies have focused on the search to unravel the role of TRPs in physiological and pathological conditions related to the eyes. Thus, this review aims to shed light on endogenous and exogenous modulators, triggered cell signaling pathways, and localization and roles of each subfamily of TRP channels in physiological and pathological conditions in the retina, optic nerve, and retinal pigmented epithelium of vertebrates.
Collapse
Affiliation(s)
- Thaianne Hanah Oliveira do Nascimento
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Biomedical Sciences, Biology Institute, Fluminense Federal University Niterói, Rio de Janeiro, Brazil
| | - Danniel Pereira-Figueiredo
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Louise Veroneze
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Amanda Alves Nascimento
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Paula Campello-Costa
- Laboratory of Neuroplasticity, Program of Neurosciences, Department of Neurobiology, Biology Institute, Niteroi, Brazil
| | - Adriana da Cunha Faria-Melibeu
- Laboratory of Neurobiology of Development, Program of Neurosciences, Department of Neurobiology, Biology Institute, Niteroi, Brazil
| | | | - Karin Costa Calaza
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Biomedical Sciences, Biology Institute, Fluminense Federal University Niterói, Rio de Janeiro, Brazil
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
McMillan HP, Lundy FT, Dunne OM, McLoughlin KJ, About I, Curtis TM, El Karim I. Immunological isolation and characterization of neuronal progenitors from human dental pulp: A laboratory-based investigation. Int Endod J 2024; 57:1136-1146. [PMID: 38713428 DOI: 10.1111/iej.14077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/21/2024] [Accepted: 04/14/2024] [Indexed: 05/08/2024]
Abstract
AIMS Dental pulp stem cells (DPSCs) contain a population of stem cells with a broad range of differentiation potentials, as well as more lineage-committed progenitors. Such heterogeneity is a significant obstacle to experimental and clinical applications. The aim of this study is to isolate and characterize a homogenous neuronal progenitor cell population from human DPSCs. METHODOLOGY Polysialylated-neural cell adhesion molecule (PSA-NCAM+) neural progenitors were isolated from the dental pulp of three independent donors using magnetic-activated cell sorting (MACS) technology. Immunofluorescent staining with a panel of neural and non-neural markers was used to characterize the magnetically isolated PSA-NCAM+ fraction. PSA-NCAM+ cells were then cultured in Neurobasal A supplemented with neurotrophic factors: dibutyryl cyclic-AMP, neurotrophin-3, B27 and N2 supplements to induce neuronal differentiation. Both PSA-NCAM+ and differentiated PSA-NCAM+ cells were used in Ca2+ imaging studies to assess the functionality of P2X3 receptors as well as membrane depolarization. RESULTS PSA-NCAM+ neural progenitors were isolated from a heterogeneous population of hDPSCs using magnetic-activated cell sorting and anti-PSA-NCAM MicroBeads. Flow cytometry analysis demonstrated that immunomagnetic sorting significantly increased the purity of PSA-NCAM+ cells. Immunofluorescent staining revealed expression of pan-neuronal and mature neuronal markers, PGP9.5 and MAP2, respectively, as well as weak expression of the mature sensory markers, peripherin and islet1. ATP-induced response was mediated predominately by P2X3 receptors in both undifferentiated and differentiated cells, with a greater magnitude observed in the latter. In addition, membrane depolarizations were also detected in cells before and after differentiation when loaded with fast-voltage-responding fluorescent molecule, FluoVolt™ in response to potassium chloride. Interestingly, only differentiated PSA-NCAM+ cells were capable of spontaneous membrane oscillations. CONCLUSIONS In summary, DPSCs contain a population of neuronal progenitors with enhanced neural differentiation and functional neural-like properties that can be effectively isolated with magnetic-activated cell sorting (MACS).
Collapse
Affiliation(s)
- Hayley P McMillan
- School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Northern Ireland, UK
| | - Fionnuala T Lundy
- School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Northern Ireland, UK
| | - Orla M Dunne
- School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Northern Ireland, UK
| | - Kiran John McLoughlin
- School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Northern Ireland, UK
| | - Imad About
- Aix Marseille University, CNRS, Institute of Movement Sciences, Marseille, France
| | - T M Curtis
- School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Northern Ireland, UK
| | - Ikhlas El Karim
- School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Northern Ireland, UK
| |
Collapse
|
3
|
Hawker P, Zhang L, Liu L. Mas-related G protein-coupled receptors in gastrointestinal dysfunction and inflammatory bowel disease: A review. Br J Pharmacol 2024; 181:2197-2211. [PMID: 36787888 DOI: 10.1111/bph.16059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/25/2022] [Accepted: 02/04/2023] [Indexed: 02/16/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic debilitating condition, hallmarked by persistent inflammation of the gastrointestinal tract. Despite recent advances in clinical treatments, the aetiology of IBD is unknown, and a large proportion of patients are refractory to pharmacotherapy. Understanding IBD immunopathogenesis is crucial to discern the cause of IBD and optimise treatments. Mas-related G protein-coupled receptors (Mrgprs) are a family of approximately 50 G protein-coupled receptors that were first identified over 20 years ago. Originally known for their expression in skin nociceptors and their role in transmitting the sensation of itch in the periphery, new reports have described the presence of Mrgprs in the gastrointestinal tract. In this review, we consider the impact of these findings and assess the evidence that suggests that Mrgprs may be involved in the disrupted homeostatic processes that contribute to gastrointestinal disorders and IBD. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Patrick Hawker
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Lu Liu
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Soeda S, Ito D, Ogushi T, Sano Y, Negoro R, Fujita T, Saito R, Taniura H. Defects in early synaptic formation and neuronal function in Prader-Willi syndrome. Sci Rep 2023; 13:12053. [PMID: 37491450 PMCID: PMC10368700 DOI: 10.1038/s41598-023-39065-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023] Open
Abstract
Prader-Willi syndrome (PWS), which is a complex epigenetic disorder caused by the deficiency of paternally expressed genes in chromosome 15q11-q13, is associated with several psychiatric dimensions, including autism spectrum disorder. We have previously reported that iPS cells derived from PWS patients exhibited aberrant differentiation and transcriptomic dysregulation in differentiated neural stem cells (NSCs) and neurons. Here, we identified SLITRK1 as a downregulated gene in NSCs differentiated from PWS patient iPS cells by RNA sequencing analysis. Because SLITRK1 is involved in synaptogenesis, we focused on the synaptic formation and function of neurons differentiated from PWS patient iPS cells and NDN or MAGEL2 single gene defect mutant iPS cells. Although βIII tubulin expression levels in all the neurons were comparable to the level of differentiation in the control, pre- and postsynaptic markers were significantly lower in PWS and mutant neurons than in control neurons. PSD-95 puncta along βIII tubulin neurites were also decreased. Membrane potential responses were measured while exposed to high K+ stimulation. The neuronal excitabilities in PWS and mutant neurons showed significantly lower intensity than that of control neurons. These functional defects in PWS neurons may reflect phenotypes of neurodevelopmental disorders in PWS.
Collapse
Affiliation(s)
- Shuhei Soeda
- Laboratory of Neurochemistry, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji Higashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Daiki Ito
- Laboratory of Neurochemistry, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Tomoe Ogushi
- Laboratory of Neurochemistry, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Yui Sano
- Laboratory of Neurochemistry, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Ryosuke Negoro
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Takuya Fujita
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Ryo Saito
- Mitsubishi Tanabe Pharma Corporation, Kamoshida, Aoba, Yokohama, 227-0033, Japan
| | - Hideo Taniura
- Laboratory of Neurochemistry, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji Higashi, Kusatsu, Shiga, 525-8577, Japan
| |
Collapse
|
5
|
Sureshkumar P, Souza Dos Santos RA, Alenina N, Mergler S, Bader M. Angiotensin-(1-7) mediated calcium signalling by MAS. Peptides 2023; 165:171010. [PMID: 37059396 DOI: 10.1016/j.peptides.2023.171010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 04/16/2023]
Abstract
The G protein-coupled receptor, MAS, is the receptor of the endogenous ligand, Angiotensin (Ang)-(1-7). It is a promising drug target since the Ang-(1-7)/MAS axis is protective in the cardiovascular system. Therefore, a characterization of MAS signalling is important for developing novel therapeutics for cardiovascular diseases. In this paper, we show that Ang-(1-7) increases intracellular calcium in transiently MAS-transfected HEK293 cells. The calcium influx induced by the activation of MAS is dependent on plasma membrane Ca2+ channels, phospholipase C, and protein kinase C. Specifically, we could demonstrate that MAS employs non-selective, transient receptor potential channels (TRPs) for calcium entry.
Collapse
Affiliation(s)
- Priyavathi Sureshkumar
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany; Department of Ophthalmology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Robson Augusto Souza Dos Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Natalia Alenina
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Stefan Mergler
- Department of Ophthalmology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany; Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany; Institute for Biology, University of Lübeck, Germany.
| |
Collapse
|
6
|
Al Natour B, Lundy FT, About I, Jeanneau C, Dombrowski Y, El Karim IA. Regulation of caries-induced pulp inflammation by NLRP3 inflammasome: A laboratory-based investigation. Int Endod J 2023; 56:193-202. [PMID: 36287083 PMCID: PMC10099991 DOI: 10.1111/iej.13855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 10/04/2022] [Accepted: 10/16/2022] [Indexed: 01/17/2023]
Abstract
AIM To evaluate the expression and function of the nod-like receptor pyrin domain containing 3 (NLRP3) inflammasome in caries induced pulpitis. METHODOLOGY NLRP3 expression was determined with immunohistochemistry in the dental pulp and qPCR in dental pulp cells (DPCs). THP-1 macrophages expressing the apoptosis-related speck-like protein (ASC) and green fluorescent protein (GFP) fusion protein were used to assess NLRP3 inflammasome activation by live cell imaging, following treatment with lipopolysaccharide (LPS) and lipoteichoic acid (LTA). Caspase I inhibitor was used to confirm inflammasome activation. An ex-vivo pulpitis model in which the DPCs were co-cultured with THP-1 macrophages was used to study the effect of the NLRP3 inflammasome inhibitor (MCC950), and cytokines were measured using ELISA and multiplex array. Data were analysed using the t-test or anova followed by a Bonferroni post hoc test with the level of significance set at p ≤ .05. RESULTS NLRP3 inflammasome was differentially expressed in dental pulp of sound and carious teeth. Treatment of DPCs with LTA significantly upregulates NLRP3 and IL-1 β-expression (p < .05) and in induces more ASC specks formation compared to LPS. IL-β release in response to LTA treatment is significantly reduced with Caspase I inhibitor suggesting inflammasome dependent mechanism (p < .01). NLRP3-specific inhibitor, MCC950, significantly reduced IL-1β and IL-6 in an ex-vivo pulpitis model (p < .01) but had no effect on IL-8 or matrix metalloproteinase-9 (MMP-9). CONCLUSIONS Expression and upregulation of NLRP3 inflammasome with caries and LTA treatment suggest a role in caries-induced pulpitis. NLRP3 inhibitor attenuated the release of selective inflammatory cytokines and could be a potential treatment target that merit further investigation.
Collapse
Affiliation(s)
- Banan Al Natour
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK.,Department of Oral Medicine and Surgery, Jordan University of Science and Technology, Irbid, Jordan
| | - Fionnuala T Lundy
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Imad About
- Aix Marseille University, CNRS, Institute of Movement Sciences, Marseille, France
| | - Charlotte Jeanneau
- Aix Marseille University, CNRS, Institute of Movement Sciences, Marseille, France
| | - Yvonne Dombrowski
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Ikhlas A El Karim
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|
7
|
Microinjection of pruritogens in NGF-sensitized human skin. Sci Rep 2021; 11:21490. [PMID: 34728705 PMCID: PMC8563721 DOI: 10.1038/s41598-021-00935-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022] Open
Abstract
Single intradermal injections of nerve growth factor (NGF) evoke prolonged but temporally distinct sensitization patterns to somatosensory stimuli. Focal administration of the non-histaminergic pruritogen cowhage but not histamine resulted in elevated itch at day 21 after NGF administration. Here, we injected bovine adrenal medulla peptide 8–22 (BAM8–22), β-alanine (β-ALA) and endothelin-1 (ET-1) into NGF-treated skin of 11 healthy volunteers and investigated the corresponding itch/pain and flare reactions. β-ALA was the weakest pruritogen, while BAM8–22 and ET-1 were equally potent as histamine. NGF did not sensitize itch or flare reactions induced by any compound, but injection and evoked pain were increased at day 21 and 49. The involvement of histamine H1 receptors in itch was explored in eight subjects after oral cetirizine. ET-1-induced itch and flare were significantly reduced. BAM8–22 and β-ALA itch were not affected, but flare responses after BAM8–22 reduced by 50%. The results indicate that a single NGF injection does not sensitize for experimentally induced itch but increases pain upon pruritogen injection. In healthy humans, pruritic and algetic processing appear differentially regulated by NGF. However, in patients suffering chronic itch, prolonged elevation of NGF-levels under inflammatory conditions may contribute to elevated itch.
Collapse
|