1
|
Rochtus A, Asscherickx W, Timmers M, Vermeer S, Antonio L. Hypogonadotropic Hypogonadism as First Presentation of the Severe Neuroendocrine Disorder Caused by RNF216. JCEM CASE REPORTS 2024; 2:luae195. [PMID: 39444518 PMCID: PMC11497609 DOI: 10.1210/jcemcr/luae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Indexed: 10/25/2024]
Abstract
Biallelic pathogenic variants in RNF216 cause a syndrome characterized by hypogonadotropic hypogonadism, cerebellar ataxia, chorea, and cognitive impairment, a combination first described as Gordon Holmes syndrome (MIM 212840). We report 2 siblings who were referred due to absent or delayed puberty. The older sibling, a 17-year-old male, presented with absence of secondary sexual characteristics and a high-pitched voice. He had normal cognitive development and no anosmia. Clinical examination revealed Tanner stage P1/G1 and bilateral gynecomastia. Blood tests showed low gonadotropin and morning testosterone levels. His 15-year-old sister was referred due to primary amenorrhea. She had spontaneous thelarche and presented with Tanner stage P3/B3. Pituitary magnetic resonance imaging was performed on the brother due to suspicion of Kallmann syndrome, revealing a normal anterior pituitary, a hypoplastic posterior pituitary, and an extensive supratentorial leuko-encephalopathy. Whole-exome sequencing revealed a homozygous pathogenic variant in RNF216 in both affected siblings. Both parents were heterozygous carriers. RNF216 pathogenic variants cause a disorder characterized by combined neurodegeneration and reproductive dysfunction. Although neurological symptoms are typically recognized first, they often seem to follow the onset of hypogonadism. This highlights the need for awareness, as hypogonadotropic hypogonadism may be the initial manifestation of this severe neuroendocrine disorder, especially in males.
Collapse
Affiliation(s)
- Anne Rochtus
- Department of Pediatrics, University Hospitals Leuven, 3000 Leuven, Belgium
| | | | - Marijke Timmers
- Department of Endocrinology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Sascha Vermeer
- Department of Genetics, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Leen Antonio
- Department of Endocrinology, University Hospitals Leuven, 3000 Leuven, Belgium
| |
Collapse
|
2
|
Bailey N, Ruiz C, Tosi A, Stevison L. Genomic analysis of the rhesus macaque ( Macaca mulatta) and the cynomolgus macaque ( Macaca fascicularis) uncover polygenic signatures of reinforcement speciation. Ecol Evol 2023; 13:e10571. [PMID: 37849934 PMCID: PMC10577069 DOI: 10.1002/ece3.10571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 10/19/2023] Open
Abstract
Speciation can involve phases of divergent adaptation in allopatry and ecological/reproductive character displacement in sympatry or parapatry. Reproductive character displacement can result as a means of preventing hybridization, a process known as reinforcement speciation. In this study, we use whole-genome sequencing (WGS) of two closely related primate species that have experienced introgression in their history, the rhesus (Macaca mulatta) and cynomolgus (M. fascicularis) macaques, to identify genes exhibiting reproductive character displacement and other patterns consistent with reinforcement speciation. Using windowed scans of various population genetic statistics to identify signatures of reinforcement, we find 184 candidate genes associated with a variety of functions, including an overrepresentation of multiple neurological functions and several genes involved in sexual development and gametogenesis. These results are consistent with a variety of genes acting in a reinforcement process between these species. We also find signatures of introgression of the Y-chromosome that confirm previous studies suggesting male-driven introgression of M. mulatta into M. fascicularis populations. This study uses WGS to find evidence of the process of reinforcement in primates that have medical and conservation relevance.
Collapse
Affiliation(s)
- Nick Bailey
- Department of Biological SciencesAuburn UniversityAuburnAlabamaUSA
| | - Cody Ruiz
- Department of AnthropologyKent State UniversityKentOhioUSA
| | - Anthony Tosi
- Department of AnthropologyKent State UniversityKentOhioUSA
| | - Laurie Stevison
- Department of Biological SciencesAuburn UniversityAuburnAlabamaUSA
| |
Collapse
|
3
|
Yang H, Zhu Y, Li X, Jiang Z, Dai W. RNF216 affects the stability of STAU2 in the hypothalamus. Dev Growth Differ 2023; 65:408-417. [PMID: 37439148 DOI: 10.1111/dgd.12877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/16/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
Idiopathic hypogonadotropic hypogonadism (IHH) is a rare disease characterized by gonadal failure due to deficiency in gonadotropin-releasing hormone (GnRH) synthesis, secretion, or action. RNF216 variants have been recently identified in patients with IHH. Ring finger protein 216 (RNF216), as a ubiquitin E3 ligase, catalyzes the ubiquitination of target proteins with high specificity, which consequently modulates the stability, localization, and interaction of the target protein. In this study, we found that RNF216 interacted with Staufen2 (STAU2) and affected the stability of STAU2 through the ubiquitin-proteasome pathway. STAU2, as a double-stranded RNA-binding protein enriched in the nervous system, plays a role in RNA transport, RNA stability, translation, anchoring, and synaptic plasticity. Further, we revealed that STAU2 levels in the hypothalamus of RNF216-/- mice were increased compared with wild-type (WT) mice. The change in STAU2 protein homeostasis may affect a series of RNA cargoes. Therefore, we analyzed the changes in RNA levels in the hypothalamus of RNF216-/- mice and WT mice by RNA sequencing. We found that deletion of RNF216 led to decreased activities of the prolactin signaling pathway, neuroactive ligand-receptor interaction, GnRH signaling pathway, and ovarian steroidogenesis. The weakening of these signal pathways is likely to affect the secretion of GnRH, thereby affecting the development of gonads. Therefore, our study suggests that STAU2 may be a potential therapeutic target for IHH. Further experiments are needed to demonstrate the association between the weakening of these signaling pathways and the RNA-binding protein STAU2.
Collapse
Affiliation(s)
- Han Yang
- Department of Clinical Laboratory, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China
- School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Yong Zhu
- Blood Transfusion Department, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China
| | - Xin Li
- School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Zuiming Jiang
- Department of Clinical Laboratory, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China
| | - Wenting Dai
- Department of Clinical Laboratory, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China
| |
Collapse
|
4
|
Xie Z, Zhou R, Ding Z, Zhou D, Jin Q. Melanin interference toxicity or transgenerational toxicity of organic UV filter ethylhexyl salicylate on zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157365. [PMID: 35842152 DOI: 10.1016/j.scitotenv.2022.157365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/05/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
With the improvement of human health awareness, the production and usage of sunscreens have increased dramatically, and their active ingredients, organic ultraviolet (UV) filters (OUVFs), have the potential to induce melanin abnormalities in aquatic organisms due to their UV-absorbing properties as they enter the aquatic environment directly with the washing of skin during water activities. In this paper, the melanin interference toxicity or transgenerational toxicity effects of typical OUVFs ethylhexyl salicylate (EHS) on zebrafish (Danio rerio) were investigated based on transcriptomic sequencing technology. Results showed that EHS induced significant enrichment of the melanin-related pathway cAMP signaling pathway in parental skin tissue through UV absorption, with sensitive genes identified as melanocortin 1 receptor, protein kinase A catalytic subunit beta a, calcium/calmodulin-dependent protein kinase II delta 2, adenylate cyclase 1 and G protein subunit alpha I a. qRT-PCR verification results showed that EHS may inhibit the expression of the melanin master regulator microphthalmia-associated transcription factor a (mitfa) and its induced signaling cascade mitf-tyrosinase (tyr)-dopachrome tautomerase (dct)-tyrosinase related protein 1 (tyrp1) by inducing abnormal expression of the above sensitive genes, thereby reducing melanogenesis. After reproduction, the melanin interference effect of EHS on the parents can be carried over to offsprings through maternal inheritance of abnormally expressed mitfa and parental transfer of pollutants, as evidenced by significant enrichment of melanogenesis pathway, abnormal expression of sensitive genes mitfa, tyr, dct and tyrp1b and significant decreases in melanin content and spinal melanin area. These findings revealed the specific melanin interference toxicity of OUVFs with UV-absorbing properties, facilitating a comprehensive ecological risk assessment of OUVFs and providing scientific support for the management of new pollutants.
Collapse
Affiliation(s)
- Zhongtang Xie
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Ranran Zhou
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China.
| | - Zhuhong Ding
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China
| | - Dao Zhou
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China
| | - Qijie Jin
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China
| |
Collapse
|
5
|
Wang HQ, Wang T, Gao F, Ren WZ. Application of CRISPR/Cas Technology in Spermatogenesis Research and Male Infertility Treatment. Genes (Basel) 2022; 13:genes13061000. [PMID: 35741761 PMCID: PMC9223233 DOI: 10.3390/genes13061000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 12/04/2022] Open
Abstract
As the basis of animal reproductive activity, normal spermatogenesis directly determines the efficiency of livestock production. An in-depth understanding of spermatogenesis will greatly facilitate animal breeding efforts and male infertility treatment. With the continuous development and application of gene editing technologies, they have become valuable tools to study the mechanism of spermatogenesis. Gene editing technologies have provided us with a better understanding of the functions and potential mechanisms of action of factors that regulate spermatogenesis. This review summarizes the applications of gene editing technologies, especially CRISPR/Cas9, in deepening our understanding of the function of spermatogenesis-related genes and disease treatment. The problems of gene editing technologies in the field of spermatogenesis research are also discussed.
Collapse
|
6
|
Shen C, Xu J, Zhou Q, Lin M, Lv J, Zhang X, Wu Y, Chen X, Yu J, Huang X, Zheng B. E3 ubiquitin ligase ASB17 is required for spermiation in mice. Transl Androl Urol 2022; 10:4320-4332. [PMID: 35070814 PMCID: PMC8749070 DOI: 10.21037/tau-21-789] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Background A major goal of spermiation is to degrade the apical ectoplasmic specialization (ES) junction between Sertoli cells and elongating spermatids in preparation for the eventual disengagement of spermatids into the lumen. E3 ubiquitin ligases mediate the process of ubiquitination and the subsequent proteasomal degradation, but their specific role during spermiation remains largely unexplored. Methods Ankyrin repeat and SOCS box protein 17 (Asb17)-knockout mice were generated via a CRISPR/Cas9 approach. Epididymal sperm parameters were assessed by a computer-assisted sperm analysis (CASA) system, and morphological analysis of testicular tissues were performed based on histological and immunostaining staining, and transmission electron microscopy (TEM). The interactions between ASB17 and Espin (ESPN) were predicted by HawkDock server and validated through protein pull-down and immunoprecipitation assays. Results We report that ASB17, an E3 ligase, is required for the completion of spermiation and that mice lacking Asb17 are oligozoospermic owing to spermiation failure. ASB17-deficient mice are fertile; however, spermatids exhibit a disorganized ES junction, resulting in retention within the seminiferous epithelium. Mechanistically, ASB17 deficiency leads to excess accumulation of ESPN, an actin-binding essential structural component of the ES. We determined that ASB17 regulates the removal of the ES through ubiquitin mediated protein degradation of ESPN. Conclusions In summary, our study describes a role for ASB17 in the regulation of cell-cell junctions between germ cells and somatic cells in the testis. These findings establish a novel mechanism for the regulatory role of E3 ligases during spermatogenesis.
Collapse
Affiliation(s)
- Cong Shen
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| | - Jinfu Xu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Qiao Zhou
- Department of Reproduction, The affiliated Obstetrics and Gynecology Hospital with Nanjing Medical University; Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Meng Lin
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Jinxing Lv
- Suzhou Dushu Lake Hospital (Dushu Lake Hospital Affiliated to Soochow University), Suzhou, China
| | - Xi Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Yangyang Wu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Xia Chen
- Department of Obstetrics and Gynecology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, China
| | - Jun Yu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, China
| | - Xiaoyan Huang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Bo Zheng
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|