1
|
Chávez MN, Arora P, Meer M, Marques IJ, Ernst A, Morales Castro RA, Mercader N. Spns1-dependent endocardial lysosomal function drives valve morphogenesis through Notch1-signaling. iScience 2024; 27:111406. [PMID: 39720516 PMCID: PMC11667069 DOI: 10.1016/j.isci.2024.111406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/15/2024] [Accepted: 11/13/2024] [Indexed: 12/26/2024] Open
Abstract
Autophagy-lysosomal degradation is a conserved homeostatic process considered to be crucial for cardiac morphogenesis. However, both its cell specificity and functional role during heart development remain unclear. Here, we introduced zebrafish models to visualize autophagic vesicles in vivo and track their temporal and cellular localization in the larval heart. We observed a significant accumulation of autolysosomal and lysosomal vesicles in the atrioventricular and bulboventricular regions and their respective valves. We addressed the role of lysosomal degradation based on the Spinster homolog 1 (spns1) mutant (not really started, nrs). n rs larvae displayed morphological and functional cardiac defects, including abnormal endocardial organization, impaired valve formation and retrograde blood flow. Single-nuclear transcriptome analyses revealed endocardial-specific differences in lysosome-related genes and alterations of notch1-signalling. Endocardial-specific overexpression of spns1 and notch1 rescued features of valve formation and function. Altogether, our results reveal a cell-autonomous role of lysosomal processing during cardiac valve formation affecting notch1-signalling.
Collapse
Affiliation(s)
- Myra N. Chávez
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Prateek Arora
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
- Department for Biomedical Research, University of Bern, 3008 Bern, Switzerland
| | - Marco Meer
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
- Department for Biomedical Research, University of Bern, 3008 Bern, Switzerland
| | - Ines J. Marques
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
- Department for Biomedical Research, University of Bern, 3008 Bern, Switzerland
| | - Alexander Ernst
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Rodrigo A. Morales Castro
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Nadia Mercader
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
- Department for Biomedical Research, University of Bern, 3008 Bern, Switzerland
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain
| |
Collapse
|
2
|
Chen Y, Villani C, Ganapathy A, George A. Transcriptome profiling of DPP stimulated DPSCs identifies the role of autophagy in odontogenic differentiation. J Struct Biol 2024; 216:108134. [PMID: 39389242 DOI: 10.1016/j.jsb.2024.108134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Dentin phosphophoryn (DPP), synthesized and processed predominantly by the odontoblasts, serves both a structural and signaling role in dentin. In the ECM, DPP functions as an avid calcium and collagen binding protein and it also plays a crucial role as a scaffold for cell attachment and survival. The signaling function of DPP was demonstrated when undifferentiated mesenchymal cells stimulated with DPP, mediated calcium signaling through release of intracellular Ca2+. The objective of this study was to identify potentially novel signaling mechanisms that mediate odontoblast differentiation. Therefore, transcriptomes of DPSCs (dental pulp stem cells) with or without DPP stimulation were compared by bulk RNA-seq. Analysis of the unbiased RNA-seq data were subjected to functional enrichment analysis using Gene Ontology (GO) and KEGG pathways. Results identified several upregulated genes which were associated with autophagy, that were subsequently validated by RT-PCR. Western blotting analysis confirmed the up regulation of several autophagy markers such as ATG5, BECN1 and LC3A/B at specific time points. Autophagosome formation was also observed with DPP treatment. Additionally, autophagy supported a role for odontoblast differentiation of DPSCs. These findings suggest that DPP mediated autophagy might be a potential mechanism for the survival and terminal differentiation of DPSCs.
Collapse
Affiliation(s)
- Yinghua Chen
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Cassandra Villani
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Amudha Ganapathy
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Anne George
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
3
|
Liao FX, Yang S, Liu ZH, Bo KD, Xu PF, Chang J. Estrogen receptor is involved in the osteoarthritis mediated by Atg16L1-NLRP3 activation. Jt Dis Relat Surg 2024; 35:513-520. [PMID: 39189559 PMCID: PMC11411874 DOI: 10.52312/jdrs.2024.1247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 05/14/2024] [Indexed: 08/28/2024] Open
Abstract
OBJECTIVES This study aims to explore the mechanisms of dual regulation of osteoarthritis (OA) progression by the involvement of estrogen receptor (ER) in autophagy and inflammation. MATERIALS AND METHODS Bioinformatics methods were used to explore the relationship among associated genes. Western blot assays were used to detect related protein expression of OA in C28I2 and induced OA cellular model. Real-time quantitative polymerase chain reaction (RT-qPCR) analysis were used to detect OA related gene expression in C28I2 and induced OA cellular model. Co-immunoprecipitation (CO-IP) analysis were used to verify the direct interaction between ER and NOD-like receptor thermal protein domain associated protein 3 (NLRP3). RESULTS The C28I2 cellular model of OA was induced by interleukin-1β (IL-1β). The small interfering ribonucleic acid (SiRNA)-mediated knockdown of autophagy-related 16 like 1 (ATG16L1) in C28I2 decreased the expression of MAP1LC3B (LC3B) and NLRP3. Besides, ER-beta (ERβ) agonist changed the gene expression of NLRP3 and ATG16L1. Moreover, CO-IP analysis indicated the direct interaction between ER and NLRP3. CONCLUSION Our study results revealed that ATG16L1, NLRP3, and IL-1β interacted closely and ERβ was involved in OA process by affecting autophagy and inflammatory activation.
Collapse
Affiliation(s)
| | | | | | | | | | - Jun Chang
- Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China
| |
Collapse
|
4
|
Cai H, Zheng Y, Chen Y, Lu Q, Hong W, Guo Q, Zheng S. Miao medicine Gu Yan Xiao tincture inhibits mTOR to stimulate chondrocyte autophagy in a rabbit model of osteoarthritis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118095. [PMID: 38548121 DOI: 10.1016/j.jep.2024.118095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/10/2024] [Accepted: 03/21/2024] [Indexed: 04/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Gu Yan Xiao tincture, a blend of traditional Chinese herbs, is traditionally used for osteoarthritis and related pain. This study investigated its mechanism of action in order to rationalize and validate its therapeutic use. AIM OF THE STUDY This study analyzed, in a rabbit model of knee osteoarthritis, whether and how Gu Yan Xiao tincture exerts therapeutic benefits by modulating chondrocyte autophagy. MATERIALS AND METHODS The active constituents within the GYX tincture were identified using liquid chromatography-mass spectrometry. The rabbit model was established by injecting animals with type II collagenase intra-articularly, and the effects of topically applied tincture were examined on osteoarthritis lesions of the knee using histopathology, micro-computed tomography and x-ray imaging. Effects of the tincture were also evaluated on levels of inflammatory cytokines, matrix metalloproteases, and autophagy in chondrocytes. As a positive control, animals were treated with sodium diclofenac. RESULTS The tincture mitigated the reduction in joint space, hyperplasia of the synovium and matrix metalloproteases in serum that occurred after injection of type II collagenase in rabbits. These therapeutic effects were associated with inhibition of mTOR and activation of autophagy in articular chondrocytes. Inhibiting mTOR with rapamycin potentiated the therapeutic effects of the tincture, while inhibiting autophagy with 3-methyladenine antagonized them. CONCLUSIONS Gu Yan Xiao tincture mitigates tissue injury in a rabbit model of osteoarthritis, at least in part by inhibiting mTOR and thereby promoting autophagy in chondrocytes. These results rationalize the use of the tincture not only against osteoarthritis but also potentially other diseases involving inhibition of autophagy in bones and joints.
Collapse
Affiliation(s)
- He Cai
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Yuhao Zheng
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Yinying Chen
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Qing Lu
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Wu Hong
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Qiucheng Guo
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Shuguang Zheng
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China; The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| |
Collapse
|
5
|
Han H, Shi H, Jiang L, Zhang D, Wang H, Li J, Chen L. Autophagy activated by GR/miR-421-3p/mTOR pathway as a compensatory mechanism participates in chondrodysplasia induced by prenatal caffeine exposure in male fetal rats. Toxicol Lett 2024; 397:141-150. [PMID: 38759937 DOI: 10.1016/j.toxlet.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/01/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Autophagy has been implicated in the developmental toxicity of multiple organs in offspring caused by adverse environmental conditions during pregnancy. We have previously found that prenatal caffeine exposure (PCE) can cause fetal overexposure to maternal glucocorticoids, leading to chondrodysplasia. However, whether autophagy is involved and what role it plays has not been reported. In this study, a PCE rat model was established by gavage of caffeine (120 mg/kg.d) on gestational day 9-20. The results showed that reduced cartilage matrix synthesis in male fetal rats in the PCE group was accompanied by increased autophagy compared to the control group. Furthermore, the expression of mTOR, miR-421-3p, and glucocorticoid receptor (GR) in male fetal rat cartilage of PCE group was increased. At the cellular level, we confirmed that corticosterone inhibited matrix synthesis in fetal chondrocytes while increasing autophagic flux. However, administration of autophagy enhancer (rapamycin) or inhibitor (bafilomycin A1 or 3-methyladenine) partially increased or further decreased aggrecan expression respectively. At the same time, we found that corticosterone could increase the expression of miR-421-3p through GR and target to inhibit the expression of mTOR, thereby enhancing autophagy. In conclusion, PCE can cause chondrodysplasia and autophagy enhancement in male fetal rats. Intrauterine high corticosterone activates GR/miR-421-3p signaling and down-regulates mTOR signaling in fetal chondrocytes, resulting in enhanced autophagy, which can partially compensate for corticosterone-induced fetal chondrodysplasia. This study confirmed the compensatory protective effect of autophagy on the developmental toxicity of fetal cartilage induced by PCE and its epigenetic mechanism, providing novel insights for exploring the early intervention and therapeutic target of fetal-originated osteoarthritis.
Collapse
Affiliation(s)
- Hui Han
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Huasong Shi
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Lingxiao Jiang
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Dingmei Zhang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Jing Li
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430071, China.
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
6
|
Zheng GP, Liu C, Zhang L, Zhong Q, Zhang Y, Huang ZM. LOXL3 Inhibits Autophagy of Chondrocytes by Activating Rheb in Osteoarthritis. Curr Med Sci 2023; 43:1195-1200. [PMID: 38153629 DOI: 10.1007/s11596-023-2820-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/29/2023] [Indexed: 12/29/2023]
Abstract
OBJECTIVE This study aimed to investigate the potential mechanisms by which lysyl oxidase like 3 (LOXL3) affects the autophagy in chondrocytes in osteoarthritis (OA), specifically through the activation of mammalian target of rapamycin complex 1 (mTORC1). METHODS To establish an OA model, rats underwent anterior cruciate ligament transection (ACLT). Chondrocytes were isolated from cartilage tissues and cultured. Western blotting was performed to assess the expression of LOXL3, Rheb, phosphorylation of p70S6K (p-p70S6K, a downstream marker of mTORC1), and autophagy markers. The autophagy of chondrocytes was observed using an immunofluorescence assay. RESULTS The expression levels of both LOXL3 and Rheb proteins were upregulated in chondrocytes isolated from the OA model cartilage, in comparison to those from the normal cartilage. The silencing of LOXL3 resulted in a decrease in the protein levels of Rheb and p-p70S6K, as well as an increase in the expression of autophagy-related proteins. Additionally, the effect of LOXL3 could be reversed through the silencing of Rheb. The results of the immunofluorescence assay confirmed the impact of LOXL3 and Rheb on chondrocyte autophagy. CONCLUSION LOXL3 inhibits chondrocyte autophagy by activating the Rheb and mTORC1 signaling pathways.
Collapse
Affiliation(s)
- Guang-Ping Zheng
- Ganzhou Municipal Key Laboratory of Bone and Joint Research, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, 341000, China
| | - Chen Liu
- Ganzhou Municipal Key Laboratory of Bone and Joint Research, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, 341000, China
| | - Liang Zhang
- Research Center of Translational Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| | - Qiang Zhong
- Ganzhou Municipal Key Laboratory of Bone and Joint Research, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, 341000, China
| | - Yun Zhang
- Ganzhou Municipal Key Laboratory of Bone and Joint Research, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, 341000, China
| | - Zhong-Ming Huang
- Ganzhou Municipal Key Laboratory of Bone and Joint Research, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, 341000, China.
| |
Collapse
|
7
|
Cheng C, Wu Y, Huang Y, Xue Q, Wang Y, Liao F, Wang X, Miao C. Epigenetic modification and exosome effects on autophagy in osteoarthritis. Biochem Pharmacol 2023; 218:115930. [PMID: 37979704 DOI: 10.1016/j.bcp.2023.115930] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
Osteoarthritis (OA) is a degenerative disease that leads to joint pain and stiffness and is one of the leading causes of disability and pain worldwide. Autophagy is a highly conserved self-degradation process, and its abnormal function is closely related to human diseases, including OA. Abnormal autophagy regulates cell aging, matrix metalloproteinase metabolism, and reactive oxygen metabolism, which are key in the occurrence and development of OA. There is evidence that drugs directly or indirectly targeting autophagy significantly hinder the progress of OA. In addition, the occurrence and development of autophagy in OA are regulated by many factors, including epigenetic modification, exosomes, crucial autophagy molecules, and signaling pathway regulation. Autophagy, as a new therapeutic target for OA, has widely influenced the pathological mechanism of OA. However, determining how autophagy affects OA pathology and its use in the treatment and diagnosis of targets still need further research.
Collapse
Affiliation(s)
- Chenglong Cheng
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yajie Wu
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yurong Huang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Qiuyun Xue
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yuting Wang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Faxue Liao
- Department of Orthopaedics, The First Affiliated Hospital, Anhui Medical University, Hefei, China; Anhui Public Health Clinical Center, Hefei, China.
| | - Xiaomei Wang
- Department of Humanistic Nursing, School of Nursing, Anhui University of Chinese Medicine, Hefei, China
| | - Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China; Institute of Rheumatism, Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
8
|
Nguyen JKB, Gómez-Picos P, Liu Y, Ovens K, Eames BF. Common features of cartilage maturation are not conserved in an amphibian model. Dev Dyn 2023; 252:1375-1390. [PMID: 37083105 DOI: 10.1002/dvdy.594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/04/2023] [Accepted: 04/09/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Mouse, chick, and zebrafish undergo a highly conserved program of cartilage maturation during endochondral ossification (bone formation via a cartilage template). Standard histological and molecular features of cartilage maturation are chondrocyte hypertrophy, downregulation of the chondrogenic markers Sox9 and Col2a1, and upregulation of Col10a1. We tested whether cartilage maturation is conserved in an amphibian, the western clawed frog Xenopus tropicalis, using in situ hybridization for standard markers and a novel laser-capture microdissection RNAseq data set. We also functionally tested whether thyroid hormone drives cartilage maturation in X tropicalis, as it does in other vertebrates. RESULTS The developing frog humerus mostly followed the standard progression of cartilage maturation. Chondrocytes gradually became hypertrophic as col2a1 and sox9 were eventually down-regulated, but col10a1 was not up-regulated. However, the expression levels of several genes associated with the early formation of cartilage, such as acan, sox5, and col9a2, remained highly expressed even as humeral chondrocytes matured. Greater deviances were observed in head cartilages, including the ceratohyal, which underwent hypertrophy within hours of becoming cartilaginous, maintained relatively high levels of col2a1 and sox9, and lacked col10a1 expression. Interestingly, treating frog larvae with thyroid hormone antagonists did not specifically reduce head cartilage hypertrophy, resulting rather in a global developmental delay. CONCLUSION These data reveal that basic cartilage maturation features in the head, and to a lesser extent in the limb, are not conserved in X tropicalis. Future work revealing how frogs deviate from the standard cartilage maturation program might shed light on both evolutionary and health studies.
Collapse
Affiliation(s)
- Jason K B Nguyen
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Patsy Gómez-Picos
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yiwen Liu
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Katie Ovens
- Department of Computer Science, University of Calgary, Calgary, Alberta, Canada
| | - B Frank Eames
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
9
|
Evidence of the Autophagic Process during the Fish Immune Response of Skeletal Muscle Cells against Piscirickettsia salmonis. Animals (Basel) 2023; 13:ani13050880. [PMID: 36899738 PMCID: PMC10000225 DOI: 10.3390/ani13050880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Autophagy is a fundamental cellular process implicated in the health of the cell, acting as a cytoplasmatic quality control machinery by self-eating unfunctional organelles and protein aggregates. In mammals, autophagy can participate in the clearance of intracellular pathogens from the cell, and the activity of the toll-like receptors mediates its activation. However, in fish, the modulation of autophagy by these receptors in the muscle is unknown. This study describes and characterizes autophagic modulation during the immune response of fish muscle cells after a challenge with intracellular pathogen Piscirickettsia salmonis. For this, primary cultures of muscle cells were challenged with P. salmonis, and the expressions of immune markers il-1β, tnfα, il-8, hepcidin, tlr3, tlr9, mhc-I and mhc-II were analyzed through RT-qPCR. The expressions of several genes involved in autophagy (becn1, atg9, atg5, atg12, lc3, gabarap and atg4) were also evaluated with RT-qPCR to understand the autophagic modulation during an immune response. In addition, LC3-II protein content was measured via Western blot. The challenge of trout muscle cells with P. salmonis triggered a concomitant immune response to the activation of the autophagic process, suggesting a close relationship between these two processes.
Collapse
|
10
|
Wu X, Chen J, Liu C, Wang X, Zhou H, Mai K, He G. Slc38a9 Deficiency Induces Apoptosis and Metabolic Dysregulation and Leads to Premature Death in Zebrafish. Int J Mol Sci 2022; 23:ijms23084200. [PMID: 35457018 PMCID: PMC9025135 DOI: 10.3390/ijms23084200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 02/05/2023] Open
Abstract
Eukaryotic cells control nutritional homeostasis and determine cell metabolic fate through a series of nutrient transporters and metabolic regulation pathways. Lysosomal localized amino acid transporter member 9 of the solute carrier family 38 (SLC38A9) regulates essential amino acids’ efflux from lysosomes in an arginine-regulated fashion. To better understand the physiological role of SLC38A9, we first described the spatiotemporal expression pattern of the slc38a9 gene in zebrafish. A quarter of slc38a9−/− mutant embryos developed pericardial edema and died prematurely, while the remaining mutants were viable and grew normally. By profiling the transcriptome of the abnormally developed embryos using RNA-seq, we identified increased apoptosis, dysregulated amino acid metabolism, and glycolysis/gluconeogenesis disorders that occurred in slc38a9−/− mutant fish. slc38a9 deficiency increased whole-body free amino acid and lactate levels but reduced glucose and pyruvate levels. The change of glycolysis-related metabolites in viable slc38a9−/− mutant fish was ameliorated. Moreover, loss of slc38a9 resulted in a significant reduction in hypoxia-inducible gene expression and hypoxia-inducible factor 1-alpha (Hif1α) protein levels. These results improved our understanding of the physiological functions of SLC38A9 and revealed its indispensable role in embryonic development, metabolic regulation, and stress adaption.
Collapse
Affiliation(s)
- Xiya Wu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; (X.W.); (J.C.); (X.W.); (H.Z.); (K.M.); (G.H.)
- Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao 266003, China
| | - Jianyang Chen
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; (X.W.); (J.C.); (X.W.); (H.Z.); (K.M.); (G.H.)
- Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao 266003, China
| | - Chengdong Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; (X.W.); (J.C.); (X.W.); (H.Z.); (K.M.); (G.H.)
- Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao 266003, China
- Correspondence:
| | - Xuan Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; (X.W.); (J.C.); (X.W.); (H.Z.); (K.M.); (G.H.)
- Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao 266003, China
| | - Huihui Zhou
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; (X.W.); (J.C.); (X.W.); (H.Z.); (K.M.); (G.H.)
- Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao 266003, China
| | - Kangsen Mai
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; (X.W.); (J.C.); (X.W.); (H.Z.); (K.M.); (G.H.)
- Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao 266003, China
| | - Gen He
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; (X.W.); (J.C.); (X.W.); (H.Z.); (K.M.); (G.H.)
- Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|