1
|
Lee D, Ham IH, Oh HJ, Lee DM, Yoon JH, Son SY, Kim TM, Kim JY, Han SU, Hur H. Tubulointerstitial nephritis antigen-like 1 from cancer-associated fibroblasts contribute to the progression of diffuse-type gastric cancers through the interaction with integrin β1. J Transl Med 2024; 22:154. [PMID: 38355577 PMCID: PMC10868052 DOI: 10.1186/s12967-024-04963-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/07/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Tumor cells of diffuse-type gastric cancer (DGC) are discohesive and infiltrate into the stroma as single cells or small subgroups, so the stroma significantly impacts DGC progression. Cancer-associated fibroblasts (CAFs) are major components of the tumor stroma. Here, we identified CAF-specific secreted molecules and investigated the mechanism underlying CAF-induced DGC progression. METHODS We conducted transcriptome analysis for paired normal fibroblast (NF)-CAF isolated from DGC patient tissues and proteomics for conditioned media (CM) of fibroblasts. The effects of fibroblasts on cancer cells were examined by transwell migration and soft agar assays, western blotting, and in vivo. We confirmed the effect of blocking tubulointerstitial nephritis antigen-like 1 (TINAGL1) in CAFs using siRNA or shRNA. We evaluated the expression of TINAGL1 protein in frozen tissues of DGC and paired normal stomach and mRNA in formalin-fixed, paraffin-embedded (FFPE) tissue using RNA in-situ hybridization (RNA-ISH). RESULTS CAFs more highly expressed TINAGL1 than NFs. The co-culture of CAFs increased migration and tumorigenesis of DGC. Moreover, CAFs enhanced the phosphorylation of focal adhesion kinase (FAK) and mesenchymal marker expression in DGC cells. In an animal study, DGC tumors co-injected with CAFs showed aggressive phenotypes, including lymph node metastasis. However, increased phosphorylation of FAK and migration were reduced by blocking TINAGL1 in CAFs. In the tissues of DGC patients, TINAGL1 was higher in cancer than paired normal tissues and detected with collagen type I alpha 1 chain (COL1A1) in the same spot. Furthermore, high TINAGL1 expression was significantly correlated with poor prognosis in several public databases and our patient cohort diagnosed with DGC. CONCLUSIONS These results indicate that TINAGL1 secreted by CAFs induces phosphorylation of FAK in DGC cells and promotes tumor progression. Thus, targeting TINAGL1 in CAFs can be a novel therapeutic strategy for DGC.
Collapse
Affiliation(s)
- Dagyeong Lee
- Department of Surgery, Ajou University School of Medicine, Suwon, Republic of Korea
- Cancer Biology Graduate Program, Ajou University School of Medicine Suwon, Suwon, Republic of Korea
- AI-Super Convergence KIURI Translational Research Center, Ajou University School of Medicine, Suwon, Republic of Korea
| | - In-Hye Ham
- Department of Surgery, Ajou University School of Medicine, Suwon, Republic of Korea
- Inflamm-Aging Translational Research Center, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hye Jeong Oh
- Department of Surgery, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Dong Min Lee
- Inflamm-Aging Translational Research Center, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jung Hwan Yoon
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, College of Medicine, The Catholic University of Korea Seoul, Seoul, Republic of Korea
| | - Sang-Yong Son
- Department of Surgery, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Tae-Min Kim
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Science, Graduate School, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jae-Young Kim
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, Republic of Korea
| | - Sang-Uk Han
- Department of Surgery, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hoon Hur
- Department of Surgery, Ajou University School of Medicine, Suwon, Republic of Korea.
- Cancer Biology Graduate Program, Ajou University School of Medicine Suwon, Suwon, Republic of Korea.
- Inflamm-Aging Translational Research Center, Ajou University School of Medicine, Suwon, Republic of Korea.
| |
Collapse
|
2
|
Cao GZ, Tian LL, Hou JY, Zhang Y, Xu H, Yang HJ, Zhang JJ. Integrating RNA-sequencing and network analysis to explore the mechanism of topical Pien Tze Huang treatment on diabetic wounds. Front Pharmacol 2024; 14:1288406. [PMID: 38293673 PMCID: PMC10826880 DOI: 10.3389/fphar.2023.1288406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024] Open
Abstract
Introduction: Diabetic ulcers have become one of the major complications of diabetes mellitus (DM) and are a leading cause of death and disabling disease. However, current therapies are not effective enough to meet clinical needs. A traditional Chinese medicine (TCM) formula, Pien Tze Huang (PZH), is known as a medicine that is used to treat diabetic ulcers. Methods: In this study, PZH (0.05 g/cm2 and 0.15 g/cm2) and the positive drug-rhEGF were topically administered in a high-fat diet (HFD) and streptozotocin (STZ)-induced diabetic full-thickness incisional wounds, respectively. Wound healing was assessed by wound closure rate, two-photon microscope (SHG), staining with Hematoxylin and eosin (H&E), and Masson's trichrome (MTC). Then, RNA sequencing (RNA-seq) analysis, Enzyme-linked immunosorbent assay (ELISA), western blotting, and immunofluorescence (IF), network analysis, were performed. Results and discussion: The results showed that PZH significantly accelerated wound healing, as well as enhanced the expression of collagen. RNA-seq analysis showed that PZH has functions on various biological processes, one of the key biological processes is inflammatory response. Tlr9, Klrk1, Nod2, Tlr2, and Ifng were identified as vital targets and the NF-κB signaling pathway was identified as the vital pathway. Additionally, PZH profoundly reduced the levels of Cleaved caspase-3 and promoted the expression of CD31 and TGF-β1. Mechanically, PZH significantly decreased expression of NKG2-D, NOD2, and TLR2, and further inhibited the activation of downstream NF-κB signaling pathway and inhibited expression of inflammatory factors (IFN-γ and IL-1β). Importantly, we found that several active ingredients may play a significant role in diabetic wound healing, including Notoginsenoside R1, Deoxycorticosterone, Ursolic acid, and 4-Methoxyphenol. In summary, our study sheds light on the complicated mechanisms underlying the promising anti-diabetic wounds of PZH and provides the discovery of agents treating diabetic ulcers.
Collapse
Affiliation(s)
- Guang-Zhao Cao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang-Liang Tian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing-Yi Hou
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - He Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hong-Jun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing-Jing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|