1
|
Sommers O, Tomsine RA, Khacho M. Mitochondrial Dynamics Drive Muscle Stem Cell Progression from Quiescence to Myogenic Differentiation. Cells 2024; 13:1773. [PMID: 39513880 PMCID: PMC11545319 DOI: 10.3390/cells13211773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
From quiescence to activation and myogenic differentiation, muscle stem cells (MuSCs) experience drastic alterations in their signaling activity and metabolism. Through balanced cycles of fission and fusion, mitochondria alter their morphology and metabolism, allowing them to affect their decisive role in modulating MuSC activity and fate decisions. This tightly regulated process contributes to MuSC regulation by mediating changes in redox signaling pathways, cell cycle progression, and cell fate decisions. In this review, we discuss the role of mitochondrial dynamics as an integral modulator of MuSC activity, fate, and maintenance. Understanding the influence of mitochondrial dynamics in MuSCs in health and disease will further the development of therapeutics that support MuSC integrity and thus may aid in restoring the regenerative capacity of skeletal muscle.
Collapse
Affiliation(s)
- Olivia Sommers
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Rholls A. Tomsine
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mireille Khacho
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Center for Neuromuscular Disease (CNMD), University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology (OISB), Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
2
|
Bottoni L, Minetti A, Realini G, Pio E, Giustarini D, Rossi R, Rocchio C, Franci L, Salvini L, Catona O, D'Aurizio R, Rasa M, Giurisato E, Neri F, Orlandini M, Chiariello M, Galvagni F. NRF2 activation by cysteine as a survival mechanism for triple-negative breast cancer cells. Oncogene 2024; 43:1701-1713. [PMID: 38600165 PMCID: PMC11136656 DOI: 10.1038/s41388-024-03025-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Triple-negative breast cancer (TNBC) is a very aggressive and heterogeneous group of tumors. In order to develop effective therapeutic strategies, it is therefore essential to identify the subtype-specific molecular mechanisms underlying disease progression and resistance to chemotherapy. TNBC cells are highly dependent on exogenous cystine, provided by overexpression of the cystine/glutamate antiporter SLC7A11/xCT, to fuel glutathione synthesis and promote an oxidative stress response consistent with their high metabolic demands. Here we show that TNBC cells of the mesenchymal stem-like subtype (MSL) utilize forced cystine uptake to induce activation of the transcription factor NRF2 and promote a glutathione-independent mechanism to defend against oxidative stress. Mechanistically, we demonstrate that NRF2 activation is mediated by direct cysteinylation of the inhibitor KEAP1. Furthermore, we show that cystine-mediated NRF2 activation induces the expression of important genes involved in oxidative stress response, but also in epithelial-to-mesenchymal transition and stem-like phenotype. Remarkably, in survival analysis, four upregulated genes (OSGIN1, RGS17, SRXN1, AKR1B10) are negative prognostic markers for TNBC. Finally, expression of exogenous OSGIN1, similarly to expression of exogenous NRF2, can prevent cystine depletion-dependent death of MSL TNBC cells. The results suggest that the cystine/NRF2/OSGIN1 axis is a potential target for effective treatment of MSL TNBCs.
Collapse
Affiliation(s)
- Laura Bottoni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
| | - Alberto Minetti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Giulia Realini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
| | - Elena Pio
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
| | - Daniela Giustarini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
- Center for Colloid and Surface Science (CSGI), University of Florence, Sesto Fiorentino, 50019, Florence, Italy
| | - Ranieri Rossi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
- Center for Colloid and Surface Science (CSGI), University of Florence, Sesto Fiorentino, 50019, Florence, Italy
| | - Chiara Rocchio
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
| | - Lorenzo Franci
- Istituto di Fisiologia Clinica (IFC), Consiglio Nazionale delle Ricerche (CNR) and Core Research Laboratory, Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), 53100, Siena, Italy
| | | | - Orazio Catona
- Institute of Informatics and Telematics (IIT), CNR, Pisa, Italy
| | | | - Mahdi Rasa
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
- Institute of Immunology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Emanuele Giurisato
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
| | - Francesco Neri
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
- Molecular Biotechnology Center, University of Turin, Torino, Italy
| | - Maurizio Orlandini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
| | - Mario Chiariello
- Istituto di Fisiologia Clinica (IFC), Consiglio Nazionale delle Ricerche (CNR) and Core Research Laboratory, Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), 53100, Siena, Italy
| | - Federico Galvagni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy.
| |
Collapse
|
3
|
Su Y, He S, Chen Q, Zhang H, Huang C, Zhao Q, Pu Y, He X, Jiang L, Ma Y, Zhao Q. Integrative ATAC-seq and RNA-seq analysis of myogenic differentiation of ovine skeletal muscle satellite cell. Genomics 2024; 116:110851. [PMID: 38692440 DOI: 10.1016/j.ygeno.2024.110851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/01/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Skeletal muscle satellite cells (SMSCs) play an important role in regulating muscle growth and regeneration. Chromatin accessibility allows physical interactions that synergistically regulate gene expression through enhancers, promoters, insulators, and chromatin binding factors. However, the chromatin accessibility altas and its regulatory role in ovine myoblast differentiation is still unclear. Therefore, ATAC-seq and RNA-seq analysis were performed on ovine SMSCs at the proliferation stage (SCG) and differentiation stage (SCD). 17,460 DARs (differential accessibility regions) and 3732 DEGs (differentially expressed genes) were identified. Based on joint analysis of ATAC-seq and RNA-seq, we revealed that PI3K-Akt, TGF-β and other signaling pathways regulated SMSCs differentiation. We identified two novel candidate genes, FZD5 and MAP2K6, which may affect the proliferation and differentiation of SMSCs. Our data identify potential cis regulatory elements of ovine SMSCs. This study can provide a reference for exploring the mechanisms of the differentiation and regeneration of SMSCs in the future.
Collapse
Affiliation(s)
- Yingxiao Su
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China
| | - Siqi He
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China; College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Qian Chen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China; College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Hechun Zhang
- Chaoyang Chaomu Breeding Farm Co., LTD, Chaoyang, Liaoning 122629, China
| | - Chang Huang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China; College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Qian Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China; College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yabin Pu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China
| | - Xiaohong He
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China
| | - Lin Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China
| | - Yuehui Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China
| | - Qianjun Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China.
| |
Collapse
|
4
|
García de Herreros A. Dual role of Snail1 as transcriptional repressor and activator. Biochim Biophys Acta Rev Cancer 2024; 1879:189037. [PMID: 38043804 DOI: 10.1016/j.bbcan.2023.189037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Snail1 transcriptional factor plays a key role in the control of epithelial to mesenchymal transition, a process that remodels tumor cells increasing their invasion and chemo-resistance as well as reprograms their metabolism and provides stemness properties. During this transition, Snail1 acts as a transcriptional repressor and, as growing evidences have demonstrated, also as a direct activator of mesenchymal genes. In this review, I describe the different proteins that interact with Snail1 and are responsible for these two different functions on gene expression; I focus on the transcriptional factors that associate to Snail1 in their target promoters, both activated and repressed. I also present working models for Snail1 action both as repressor and activator and raise some issues that still need to be investigated.
Collapse
Affiliation(s)
- Antonio García de Herreros
- Programa de Recerca en Càncer, Hospital del Mar Research Institute (IMIM), Unidad Asociada al CSIC, Barcelona, Spain; Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
5
|
Li S, Chen J, Wei P, Zou T, You J. Fibroblast Growth Factor 21: A Fascinating Perspective on the Regulation of Muscle Metabolism. Int J Mol Sci 2023; 24:16951. [PMID: 38069273 PMCID: PMC10707024 DOI: 10.3390/ijms242316951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21) plays a vital role in normal eukaryotic organism development and homeostatic metabolism under the influence of internal and external factors such as endogenous hormone changes and exogenous stimuli. Over the last few decades, comprehensive studies have revealed the key role of FGF21 in regulating many fundamental metabolic pathways, including the muscle stress response, insulin signaling transmission, and muscle development. By coordinating these metabolic pathways, FGF21 is thought to contribute to acclimating to a stressful environment and the subsequent recovery of cell and tissue homeostasis. With the emphasis on FGF21, we extensively reviewed the research findings on the production and regulation of FGF21 and its role in muscle metabolism. We also emphasize how the FGF21 metabolic networks mediate mitochondrial dysfunction, glycogen consumption, and myogenic development and investigate prospective directions for the functional exploitation of FGF21 and its downstream effectors, such as the mammalian target of rapamycin (mTOR).
Collapse
Affiliation(s)
| | | | | | - Tiande Zou
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China; (S.L.); (J.C.); (P.W.)
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China; (S.L.); (J.C.); (P.W.)
| |
Collapse
|