1
|
Andersen ML, Moyses-Oliveira M, Tufik S. Unlocking the role of Galectin-3: Implications for sleep disorders and health. Sleep Med 2024; 124:110-114. [PMID: 39288581 DOI: 10.1016/j.sleep.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Galectin-3 is a member of the lectin family, and is an intriguing protein that is found in diverse tissues across the body. It is known for its multifaceted involvement in various physiological functions, including tissue repair, immune function and neuroinflammation in the central nervous system. It also serves as a paracrine signal, promoting the growth of certain cells and contributing to fibrosis, while higher levels of Galectin-3 in the bloodstream correlate with an increased risk of mortality and cardiovascular disease-related outcomes in the general population. Recent scientific studies have identified a potential link between Galectin-3 and sleep disorders. However, the precise mechanisms through which galectin-3 influences sleep disorders remain an active area of investigation. Although initial studies suggest a potential association between Galectin-3 and sleep disruptions, including conditions, such as insomnia, insufficient sleep time, and obstructive sleep apnea, further research is required to establish a more definitive relationship. This review explores recent findings regarding the potential connection between Galectin-3 and sleep patterns, and offers insights into the complex interplay between this protein and sleep. These discoveries present promising prospects for the development of innovative therapeutic approaches aimed at sleep disorder management, using Galectin-3 as a potential target for interventions or as a biomarker for sleep health.
Collapse
Affiliation(s)
- Monica Levy Andersen
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP), Instituto do Sono, São Paulo, Brazil.
| | - Mariana Moyses-Oliveira
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP), Instituto do Sono, São Paulo, Brazil
| | - Sergio Tufik
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP), Instituto do Sono, São Paulo, Brazil
| |
Collapse
|
2
|
Maniaci A, Lavalle S, Parisi FM, Barbanti M, Cocuzza S, Iannella G, Magliulo G, Pace A, Lentini M, Masiello E, La Via L. Impact of Obstructive Sleep Apnea and Sympathetic Nervous System on Cardiac Health: A Comprehensive Review. J Cardiovasc Dev Dis 2024; 11:204. [PMID: 39057624 PMCID: PMC11277108 DOI: 10.3390/jcdd11070204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
A prevalent condition linked to an elevated risk of cardiovascular disease is sleep apnea. This review examines the connections between cardiac risk, the sympathetic nervous system, and sleep apnea. The increased risk of hypertension, arrhythmias, myocardial infarction, and heart failure was highlighted in the pathophysiology of sleep apnea and its effect on sympathetic activation. It is also important to consider potential processes such as oxidative stress, inflammation, endothelial dysfunction, and autonomic imbalance that may relate sleep apnea-induced sympathetic activation to cardiac risk. With implications for creating innovative diagnostic and treatment approaches to lessen the cardiovascular effects of sleep apnea, the goal of this investigation is to improve the understanding of the intricate link between sympathetic activity, cardiac risk, and sleep apnea. This study aimed to clarify the complex relationship between cardiovascular health and sleep apnea by synthesizing the available research and highlighting the crucial role played by the sympathetic nervous system in moderating this relationship. Our thorough investigation may have important therapeutic ramifications that will direct the creation of focused therapies to enhance cardiovascular outcomes in sleep apnea sufferers.
Collapse
Affiliation(s)
- Antonino Maniaci
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.)
| | - Salvatore Lavalle
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.)
| | - Federica Maria Parisi
- Department of Medical, Surgical Sciences and Advanced Technologies “GF Ingrassia” ENT Section, University of Catania, 95123 Catania, Italy; (F.M.P.); (S.C.)
| | - Marco Barbanti
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.)
| | - Salvatore Cocuzza
- Department of Medical, Surgical Sciences and Advanced Technologies “GF Ingrassia” ENT Section, University of Catania, 95123 Catania, Italy; (F.M.P.); (S.C.)
| | - Giannicola Iannella
- Otorhinolaryngology Department, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico, 00161 Rome, Italy; (G.I.); (G.M.); (A.P.)
| | - Giuseppe Magliulo
- Otorhinolaryngology Department, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico, 00161 Rome, Italy; (G.I.); (G.M.); (A.P.)
| | - Annalisa Pace
- Otorhinolaryngology Department, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico, 00161 Rome, Italy; (G.I.); (G.M.); (A.P.)
| | - Mario Lentini
- ASP Ragusa-Hospital Giovanni Paolo II, 97100 Ragusa, Italy;
| | - Edoardo Masiello
- Radiology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Luigi La Via
- Department of Anesthesia and Intensive Care, Azienda Ospedaliero Universitaria Policlinico “G. Rodolico–San Marco”, 95123 Catania, Italy
| |
Collapse
|
3
|
Förster CY, Künzel SR, Shityakov S, Stavrakis S. Synergistic Effects of Weight Loss and Catheter Ablation: Can microRNAs Serve as Predictive Biomarkers for the Prevention of Atrial Fibrillation Recurrence? Int J Mol Sci 2024; 25:4689. [PMID: 38731908 PMCID: PMC11083177 DOI: 10.3390/ijms25094689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
In atrial fibrillation (AF), multifactorial pathologic atrial alterations are manifested by structural and electrophysiological changes known as atrial remodeling. AF frequently develops in the context of underlying cardiac abnormalities. A critical mechanistic role played by atrial stretch is played by abnormal substrates in a number of conditions that predispose to AF, including obesity, heart failure, hypertension, and sleep apnea. The significant role of overweight and obesity in the development of AF is known; however, the differential effect of overweight, obesity, cardiovascular comorbidities, lifestyle, and other modifiable risk factors on the occurrence and recurrence of AF remains to be determined. Reverse remodeling of the atrial substrate and subsequent reduction in the AF burden by conversion into a typical sinus rhythm has been associated with weight loss through lifestyle changes or surgery. This makes it an essential pillar in the management of AF in obese patients. According to recently published research, microRNAs (miRs) may function as post-transcriptional regulators of genes involved in atrial remodeling, potentially contributing to the pathophysiology of AF. The focus of this review is on their modulation by both weight loss and catheter ablation interventions to counteract atrial remodeling in AF. Our analysis outlines the experimental and clinical evidence supporting the synergistic effects of weight loss and catheter ablation (CA) in reversing atrial electrical and structural remodeling in AF onset and in recurrent post-ablation AF by attenuating pro-thrombotic, pro-inflammatory, pro-fibrotic, arrhythmogenic, and male-sex-associated hypertrophic remodeling pathways. Furthermore, we discuss the promising role of miRs with prognostic potential as predictive biomarkers in guiding approaches to AF recurrence prevention.
Collapse
Affiliation(s)
- Carola Y. Förster
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University of Würzburg, 97080 Würzburg, Germany
| | - Stephan R. Künzel
- Institute for Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany;
- Institute for Transfusion Medicine, German Red Cross Blood Donation Service North-East, 01307 Dresden, Germany
| | - Sergey Shityakov
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, 197101 Saint-Petersburg, Russia;
| | - Stavros Stavrakis
- Cardiovascular Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
4
|
Ye T, Song Z, Zhou Y, Liu Z, Yu Y, Yu F, Chu Y, Shi J, Wang L, Zhang C, Liu X, Yang B, Yang J, Wang X. TRPV2 inhibitor tranilast prevents atrial fibrillation in rat models of pulmonary hypertension. Cell Calcium 2024; 117:102840. [PMID: 38160478 DOI: 10.1016/j.ceca.2023.102840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Atrial fibrillation (AF) is common in pulmonary hypertension (PH), whereas the mechanisms and treatments remain to be explored. TRPV2 regulates the structure and function of the cardiovascular system; however, little attention has been given to its role in AF. This study was to determine whether TRPV2 was involved in PH-induced AF and the effects of TRPV2 inhibitor tranilast on AF in rat models of PH. Monocrotaline (MCT) and SU5416/hypoxia (SuHx)-induced PH models were performed to detect atrial electrophysiological parameters. Daily tranilast (a TRPV2 inhibitor) or saline was given starting 1 day before PH establishment. PH increased the susceptibility to AF, with TRPV2 up-regulated in the right atria. Compared to PH rats, tranilast reduced AF inducibility and the prolongations of ERP and APD; mitigated cardiopulmonary remodeling and the increases in P-wave duration and P-R interval; partially reversed the down-regulation of ion channels such as Cav1.2, Nav1.5, Kv4.3, Kv4.2, Kv1.5, Kir2.1, Kir3.1, Kir3.4 as well as connexin (Cx) 40 and Cx43; improved right atrial (RA) fibrosis, enlargement, and myocardial hypertrophy; decreased the accumulation of inflammatory cells; down-regulated inflammatory indicators such as TNF-α, IL-1β, CXCL1, and CXCL2; and inhibited the activation of the PI3K-AKT-NF-κB signaling pathway. Our results reveal that TRPV2 participates in PH-induced AF, and TRPV2 inhibitor tranilast prevents PH-induced RA remodeling. TRPV2 might be a promising target for PH-induced AF.
Collapse
Affiliation(s)
- Tianxin Ye
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Zhuonan Song
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yunping Zhou
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Zhangchi Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Yi Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Fangcong Yu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yanan Chu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jiaran Shi
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Longbo Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Cui Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Xin Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Bo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Jinxiu Yang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China.
| | - Xingxiang Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
5
|
Vitulano N. The Heart Beats as It Breathes, or Is It the Other Way Around? MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1431. [PMID: 37629721 PMCID: PMC10456571 DOI: 10.3390/medicina59081431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023]
Abstract
One third of human life is spent sleeping, thus the importance of sleep in the maintenance of correct homeostatic balance is well established [...].
Collapse
Affiliation(s)
- Nicola Vitulano
- Cardiology and Coronary Intensive Care Unit, Ospedale Generale F. Miulli, Strada Provinciale per Santeramo km 4,100, Acquaviva delle Fonti(BA), 70021 Bari, Italy
| |
Collapse
|