1
|
Farzi A, Teymoor Davani A, Seyed A, Salehi O, Mosallanezhad Z. The effect of eight weeks of aerobic training with vitamin C on some apoptotic markers in the hippocampus tissue of rats with Alzheimer's disease; an experimental study. Neurol Res 2025; 47:77-86. [PMID: 39754544 DOI: 10.1080/01616412.2024.2448624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025]
Abstract
OBJECTIVES The aim of this study was to investigate the effect of eight weeks of aerobic training (AT) and vitamin C supplementation (VC) on apoptotic markers in hippocampus tissue of AD rats treated with trimethyltin (TMT). MATERIALS AND METHODS In this experimental study, 32 Sprague- Dawley rats (mean age: 14-18 months and mean weight 270-320 g) were treated with (10 mg/kg) TMT and divided into 4 groups including: 1) ADcontrol, 2) VC, 3) AT and 4) AT+VC groups. In order to investigate the effects of AD induction on research variables, 8 healthy rats selected as healthy control group (HC). Groups 3 and 4 trained for eight weeks, three sessions per week and each session lasted 15-48 minutes with an intensity of 10-24 m/min. Groups 2 and 4 received 4 mg/kg VC orally. One-way ANOVA with Tukey's post- hoc tests were used for statistical analysis of data (p ≤ 0.05). RESULTS The gene expression levels of Caspase 3, FasL, Cyt-C and AP-1 in the AT, VC and AT+VC groups were significantly lower than TMT group (p ≤ 0.05); Caspase 3, FasL and Cyt-C levels were significantly lower in the AT+VC group compare to VC and ET groups (p ≤ 0.05). CytC levels in AT group were significantly lower than VC group (p = 0.002). Also, AP-1 levels in AT+VC group were significantly lower than AT group (p = 0.01). CONCLUSIONS It seems that AT and VC, both alone and interactively, can probably induce their anti-apoptotic effects in the hippocampus tissue of rats with AD via a common signaling pathway.
Collapse
Affiliation(s)
- Azadeh Farzi
- Department of Sport Physiology, Behbahan Branch, Islamic Azad University, Behbehan, Iran
| | - Amin Teymoor Davani
- Department of Sport Physiology, Behbahan Branch, Islamic Azad University, Behbehan, Iran
| | - Asiye Seyed
- Department of Sport Physiology, Behbahan Branch, Islamic Azad University, Behbehan, Iran
| | - Omidreza Salehi
- Department of Physical Education and Sport Sciences, University of Kurdistan, Sanandaj, Iran
| | - Zahra Mosallanezhad
- Department of Sport Sciences, Zand Institute of Higher Education, Shiraz, Iran
| |
Collapse
|
2
|
Liu Y, Peng H, Liu Q, Hao J, Tang C, Yan H. Differential Expression of GABA Receptor-Related Genes in Alzheimer's Disease and the Positive Regulatory Role of Aerobic Exercise-From Genetic Screening to D-gal-induced AD-like Pathology Model. Neuromolecular Med 2024; 27:1. [PMID: 39752101 DOI: 10.1007/s12017-024-08821-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/25/2024] [Indexed: 01/04/2025]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder. The neuropathology of AD appears in the hippocampus. The purpose of this work was to reveal key differentially expressed genes (DEGs) in the hippocampus of AD patients and healthy individuals. Furthermore, we established an in vivo AD-like model to validate and explore the effects of exercise on these risky genes. The datasets GSE36980 and GSE48350 were downloaded from the GEO database and visualized using R packages to obtain DEGs. Subsequently, the potential biological functions of these DEGs were predicted, PPI network interactions were screened for core genes, and Pearson correlation analysis was performed. Additionally, we determined the diagnostic value of core DEGs using ROC curves. Single-cell analysis was used to verify the cell type specificity of hub genes. Finally, we used RT-qPCR, immunohistochemistry, and immunofluorescence to validate the expression of core DEGs in model mice and to explore the beneficial mechanisms of exercise. A total of 13 differentially expressed genes (DEGs) associated with the development of AD were identified, comprising 11 down-regulated genes and 2 up-regulated genes. PPI network visualization acquired four down-regulated core DEGs with good diagnostic value. The findings from the in vivo study indicated that the mRNA expression of GABRA1, GABRG2, and SVOP decreased, and the astrocyte marker GFAP notably increased in AD mice. Surprisingly, exercise increased hippocampal GABRA1 and GABRG2 expression and decreased GFAP-positive intensity of GABRG1 localization, reducing expression of inflammatory markers TNF-α and IL-1β. In addition, exercise improved the spatial exploration ability but had little effect on the preference index in AD mice. Our data highlighted the mechanism by which exercise improves memory performance in AD patients by reducing astrocyte neurotoxicity inducing decreased hippocampal GABA receptor expression.
Collapse
Affiliation(s)
- Yang Liu
- College of Physical Education, Nanchang Institute of Technology, Nanchang, 330044, China.
- Department of Neurology, People's Hospital of Henan University, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China.
| | - Haoran Peng
- Department of Neurology, People's Hospital of Henan University, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - Qi Liu
- College of Physical Education, Nanchang Institute of Technology, Nanchang, 330044, China
| | - Jianying Hao
- College of Physical Education, Nanchang Institute of Technology, Nanchang, 330044, China
| | - Chao Tang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, 410012, China
| | - Hanhui Yan
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, 410012, China
- School of Sports Science Division of Sport Physiology, Beijing Sport University, Beijing, 100084, China
| |
Collapse
|
3
|
Liu Y, Meng X, Tang C, Zheng L, Tao K, Guo W. Aerobic exercise modulates RIPK1-mediated MAP3K5/JNK and NF-κB pathways to suppress microglia activation and neuroinflammation in the hippocampus of D-gal-induced accelerated aging mice. Physiol Behav 2024; 286:114676. [PMID: 39181380 DOI: 10.1016/j.physbeh.2024.114676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 08/27/2024]
Abstract
Microglia activation-induced neuroinflammation is a risk factor for cognitive dysfunction in the hippocampus during the early stages of neurodegenerative diseases. Exercise is an intrinsic remedy that plays a crucial role in enhancing the survival of neurons and reducing neuroinflammation in the brain. Among these theories, alterations in intracellular signaling pathways associated with neuronal growth and inflammation have been emphasized. Based on these observations and recent evidence demonstrating the beneficial effects of exercise on suppressing brain inflammation in the elderly, we examined cellular signaling pathways in the hippocampal formation of D-galactose-induced accelerated aging mice that underwent 8 weeks of treadmill exercise. To accomplish this, we utilized immunohistochemistry and Western blotting to detect the expression of hippocampal proteins, and qPCR to detect the expression of mRNA. We found that aerobic exercise significantly promoted the survival of hippocampal neurons, inhibited microglia activation, and decreased the expression of inflammatory cytokines TNF-α, IL-1α, IL-1β, and chemokines CXCL-1, CXCR-2 in D-galactose model mice. Furthermore, exercise contributed to decreasing the microglia activation marker Iba1-positive cell count and average optical density and increasing the number of NeuN-immunopositive cells. Exercise also reduced RIPK1 and MAP3K5 expression in the hippocampus. Surprisingly, aerobic exercise significantly decreased the expression ratios of p-p65/p65, p-IκBα/IκBα, and p-JNK/JNK. Therefore, we hypothesized that exercise has an anti-inflammatory effect on the hippocampus of mice in the D-galactose-induced aging model. This effect may be attributed to the ability of aerobic exercise to down-regulate the RIPK1-mediated NF-κB and JNK pathways.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha 410012, China; Faculty of Physical Education and Health, Huaihua University, China
| | - Xiaokang Meng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha 410012, China
| | - Changfa Tang
- Hunan Normal University, Hunan Province Sports Public Service Research Base, Changsha 410012, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha 410012, China
| | - Kun Tao
- Faculty of Physical Education and Health, Huaihua University, China
| | - Wen Guo
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha 410012, China.
| |
Collapse
|
4
|
Cheng GX, Liu M, Chen ZW, Ye QP. Long non-coding RNA LINC00996 promotes gastric cancer progression by inhibiting CDKN2A. WORLD CHINESE JOURNAL OF DIGESTOLOGY 2024; 32:302-312. [DOI: 10.11569/wcjd.v32.i4.302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
|
5
|
Liu Y, Meng XK, Shao WZ, Liu YQ, Tang C, Deng SS, Tang CF, Zheng L, Guo W. miR-34a/TAN1/CREB Axis Engages in Alleviating Oligodendrocyte Trophic Factor-Induced Myelin Repair Function and Astrocyte-Dependent Neuroinflammation in the Early Stages of Alzheimer's Disease: The Anti-Neurodegenerative Effect of Treadmill Exercise. Neurochem Res 2024; 49:1105-1120. [PMID: 38289520 DOI: 10.1007/s11064-024-04108-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 02/29/2024]
Abstract
Reduced myelin stability observed in the early stages of Alzheimer's disease leads to spatial learning and memory impairment. Exercise has been shown to protect nerves, reduce the risk of Alzheimer's disease, and strengthen synaptic connectivity. However, the underlying mechanisms of how exercise can promote myelin repair and coordinate inflammation and proliferation are still uncertain. In this study, we conducted histological and biochemical assays of cortical lysates after behavioral testing to detect pathological changes, myelin sheath thickness, and mRNA and protein levels. It is notable that D-galactose model mice exhibited elevated miRNA-34a levels, overactive astrocytes, decreased myelin staining scores, increased apoptosis, and decreased synaptic plasticity in the brain. Significantly, after eight weeks of exercise, we observed improvements in LFB scores, NeuN( +) neuron counts, and myelin basic protein (MBP) expression. Additionally, exercise promoted the expression of oligodendrocyte markers Olig2 and PDFGR-α associated with brain proliferation, and improved spatial cognitive function. Furthermore, it decreased the inflammation caused by astrocyte secretions (TNF-α, Cox-2, CXCL2). Interestingly, we also observed downregulation of miR-34a and activation of the TAN1/PI3K/CREB signaling pathway. Our data shed light on a previously unsuspected mechanism by which exercise reduces miR-34a levels and protects neuronal function and survival by preventing excessive demyelination and inflammatory infiltration in the CNS.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, 529 LuShanNan Road, Changsha, 410012, China
| | - Xiao-Kang Meng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, 529 LuShanNan Road, Changsha, 410012, China
| | - Wen-Zhen Shao
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, 529 LuShanNan Road, Changsha, 410012, China
| | - Ya-Qun Liu
- Qingdao Special Servicemen Recuperation Center of PLA Navy, Qingdao, 266071, China
| | - Chao Tang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, 529 LuShanNan Road, Changsha, 410012, China
| | - Si-Si Deng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, 529 LuShanNan Road, Changsha, 410012, China
| | - Chang-Fa Tang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, 529 LuShanNan Road, Changsha, 410012, China
- Hunan Province Sports Public Service Research Base, Hunan Normal University, Changsha, 410012, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, 529 LuShanNan Road, Changsha, 410012, China
| | - Wen Guo
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, 529 LuShanNan Road, Changsha, 410012, China.
| |
Collapse
|