1
|
Ramesh Kumar R, Kannan B, Pandi C, Pandi A, Jayaseelan VP, Arumugam P. Dysregulation of a novel m6A regulator YWHAG is correlated with metastasis and poor prognosis in oral squamous cell carcinoma - A cross-sectional study. Arch Oral Biol 2025; 169:106090. [PMID: 39299032 DOI: 10.1016/j.archoralbio.2024.106090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/19/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
OBJECTIVE This study aimed to investigate the role of a novel m6A and cell cycle regulator YWHAG in oral squamous cell carcinoma (OSCC) by analyzing its expression and functional implications. DESIGN Tumor samples (n = 51) and adjacent non-tumor samples (n = 38) were collected from patients with OSCC, and cell lines were processed. YWHAG mRNA expression was assessed using quantitative reverse transcription PCR (RT-qPCR) analysis. Various tools, such as UALCAN, Protein-Atlas analysis, TIMER 2.0, and other in silico tools, were used to explore clinicopathological correlations, protein expression, immune cell infiltration, and functional associations of YWHAG. RESULTS YWHAG mRNA and protein expression were significantly upregulated in OSCC tumor tissues and OSCC cell lines compared to non-tumor tissues and normal cells (p < 0.001). High YWHAG expression significantly correlated with advanced tumor stage, higher grade, lymph node metastasis, and poor prognosis (p < 0.05). Functional analysis revealed that YWHAG is associated with pathways involved in aggressive cancer progression. YWHAG expression positively correlated with its target gene CTTN expression, which was also upregulated in OSCC and associated with poor prognosis (p < 0.05). CONCLUSIONS Study findings indicate that YWHAG may contribute to the progression of OSCC and could be a potential therapeutic target or prognostic biomarker. Further investigation is necessary to understand the underlying mechanisms and assess the clinical implications of YWHAG dysregulation in OSCC.
Collapse
Affiliation(s)
- Rithanyaa Ramesh Kumar
- Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Balachander Kannan
- Molecular Biology Lab, Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Chandra Pandi
- Molecular Biology Lab, Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Anitha Pandi
- Clinical Genetics Lab, Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Vijayashree Priyadharsini Jayaseelan
- Clinical Genetics Lab, Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Paramasivam Arumugam
- Molecular Biology Lab, Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India.
| |
Collapse
|
2
|
Xu Q, Yang C, Wang L, Zhou J. Unveiling the role of RNA methylation in glioma: Mechanisms, prognostic biomarkers, and therapeutic targets. Cell Signal 2024; 124:111380. [PMID: 39236835 DOI: 10.1016/j.cellsig.2024.111380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Gliomas, the most prevalent malignant brain tumors in the central nervous system, are marked by rapid growth, high recurrence rates, and poor prognosis. Glioblastoma (GBM) stands out as the most aggressive subtype, characterized by significant heterogeneity. The etiology of gliomas remains elusive. RNA modifications, particularly reversible methylation, play a crucial role in regulating transcription and translation throughout the RNA lifecycle. Increasing evidence highlights the prevalence of RNA methylation in primary central nervous system malignancies, underscoring its pivotal role in glioma pathogenesis. This review focuses on recent findings regarding changes in RNA methylation expression and their effects on glioma development and progression, including N6-methyladenosine (m6A), 5-methylcytosine (m5C), N1-methyladenosine (m1A), and N7-methylguanosine (m7G). Given the extensive roles of RNA methylation in gliomas, the potential of RNA methylation-related regulators as prognostic markers and therapeutic targets was also explored, aiming to enhance clinical management and improve patient outcomes.
Collapse
Affiliation(s)
- Qichen Xu
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Zhejiang, China
| | - Chunsong Yang
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Zhejiang, China
| | - Liyun Wang
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Zhejiang, China
| | - Jing Zhou
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Zhejiang, China.
| |
Collapse
|
3
|
Tang X, Guo M, Zhang Y, Lv J, Gu C, Yang Y. Examining the evidence for mutual modulation between m6A modification and circular RNAs: current knowledge and future prospects. J Exp Clin Cancer Res 2024; 43:216. [PMID: 39095902 PMCID: PMC11297759 DOI: 10.1186/s13046-024-03136-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
The resistance of cancer cells to treatment significantly impedes the success of therapy, leading to the recurrence of various types of cancers. Understanding the specific mechanisms of therapy resistance may offer novel approaches for alleviating drug resistance in cancer. Recent research has shown a reciprocal relationship between circular RNAs (circRNAs) and N6-methyladenosine (m6A) modification, and their interaction can affect the resistance and sensitivity of cancer therapy. This review aims to summarize the latest developments in the m6A modification of circRNAs and their importance in regulating therapy resistance in cancer. Furthermore, we explore their mutual interaction and exact mechanisms and provide insights into potential future approaches for reversing cancer resistance.
Collapse
Affiliation(s)
- Xiaozhu Tang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengjie Guo
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanjiao Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Junxian Lv
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunyan Gu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Ye Yang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
4
|
Su Y, Hu Y, Qu B, Lei R, Guo G. METTL3 Promotes OSCC Progression by Down-Regulating WEE1 in a m6A-YTHDF2-Dependent Manner. Mol Biotechnol 2024:10.1007/s12033-024-01165-y. [PMID: 38744787 DOI: 10.1007/s12033-024-01165-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/04/2024] [Indexed: 05/16/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is a common and highly lethal epithelial cancer. This study aimed to confirm the role of METTL3 in promoting OSCC and investigate its specific underlying mechanisms. Expression of the METTL3, YTH domain-containing family 2 (YTHDF2), and WEE1 were examined in normal oral epithelial cells and OSCC cells. Cell functions were examined after overexpressing WEE1 in OSCC cells. MeRIP-qPCR analysis was used to detect WEE1 m6A levels in HOK, SCC25, and CAL27 cells. WEE1 and its m6A levels were evaluated in OSCC cells by knocking down METTL3/YTHDF2, assessing the interaction between METTL3/YTHDF2 and WEE1. The impact of METTL3 and YTHDF2 downregulation on WEE1 mRNA stability was also investigated. The tumor weight and volume in a nude mouse model of OSCC after overexpression of WEE1 and YTHDF2 were measured. Expression of Ki-67 and WEE1 in OSCC tissue was detected using immunohistochemistry. Compared to normal oral epithelial cells, METTL3 and YTHDF2 were upregulated in OSCC cells, while WEE1 was downregulated, and there was a negative correlation between WEE1 and METTL3/YTHDF2 expression. WEE1 overexpression inhibited proliferation, invasion, and migration while promoting apoptosis in OSCC cells. METTL3 and YTHDF2 bound to WEE1 mRNA. METTL3/YTHDF2 knockdown increased WEE1 levels and WEE1 mRNA stability. METTL3 inhibition reduced WEE1 m6A levels. Inhibition of METTL3 weakened the interaction between YTHDF2 and WEE1 mRNA. In vivo, overexpression of WEE1 suppressed OSCC development, which was reversed by overexpression of YTHDF2. METTL3 facilitates the progression of OSCC through m6A-YTHDF2-dependent downregulation of WEE1.
Collapse
Affiliation(s)
- Yongxu Su
- Department of Oral and Maxilofacial Sugery, Changsha Stomatological Hospital, Changsha, 410004, Hunan, China.
| | - Yanjia Hu
- Department of Oral and Maxilofacial Sugery, Xiangya Stomatological Hospital Central South University, Changsha, 410000, Hunan, China
| | - Binbin Qu
- Department of Oral and Maxilofacial Sugery, Changsha Stomatological Hospital, Changsha, 410004, Hunan, China
| | - Rongchang Lei
- Department of Oral and Maxilofacial Sugery, Changsha Stomatological Hospital, Changsha, 410004, Hunan, China
| | - Ge Guo
- Department of Oral and Maxilofacial Sugery, Changsha Stomatological Hospital, Changsha, 410004, Hunan, China
| |
Collapse
|
5
|
Wu X, Zeng M, Wei Y, Lu R, Huang Z, Huang L, Huang Y, Lu Y, Li W, Wei H, Pu J. METTL3 and METTL14-mediated N 6-methyladenosine modification of SREBF2-AS1 facilitates hepatocellular carcinoma progression and sorafenib resistance through DNA demethylation of SREBF2. Sci Rep 2024; 14:6155. [PMID: 38486042 PMCID: PMC10940719 DOI: 10.1038/s41598-024-55932-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
As the most prevalent epitranscriptomic modification, N6-methyladenosine (m6A) shows important roles in a variety of diseases through regulating the processing, stability and translation of target RNAs. However, the potential contributions of m6A to RNA functions are unclear. Here, we identified a functional and prognosis-related m6A-modified RNA SREBF2-AS1 in hepatocellular carcinoma (HCC). The expression of SREBF2-AS1 and SREBF2 in HCC tissues and cells was measured by RT-qPCR. m6A modification level of SREBF2-AS1 was measured by methylated RNA immunoprecipitation assay. The roles of SREBF2-AS1 in HCC progression and sorafenib resistance were investigated by proliferation, apoptosis, migration, and cell viability assays. The regulatory mechanisms of SREBF2-AS1 on SREBF2 were investigated by Chromatin isolation by RNA purification, RNA immunoprecipitation, CUT&RUN, and bisulfite DNA sequencing assays. Our findings showed that the expression of SREBF2-AS1 was increased in HCC tissues and cells, and positively correlated with poor survival of HCC patients. m6A modification level of SREBF2-AS1 was also increased in HCC and positively correlated with poor prognosis of HCC patients. METTL3 and METTL14-induced m6A modification upregulated SREBF2-AS1 expression through increasing SREBF2-AS1 transcript stability. Functional assays showed that only m6A-modified, but not non-modified SREBF2-AS1 promoted HCC progression and sorafenib resistance. Mechanistic investigations revealed that m6A-modified SREBF2-AS1 bound and recruited m6A reader FXR1 and DNA 5-methylcytosine dioxygenase TET1 to SREBF2 promoter, leading to DNA demethylation at SREBF2 promoter and the upregulation of SREBF2 transcription. Functional rescue assays showed that SREBF2 was the critical mediator of the oncogenic roles of SREBF2-AS1 in HCC. Together, this study showed that m6A-modified SREBF2-AS1 exerted oncogenic roles in HCC through inducing DNA demethylation and transcriptional activation of SREBF2, and suggested m6A-modified SREBF2-AS1 as a prognostic biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Xianjian Wu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Zhongshan Two Road, Baise, 533000, China
| | - Min Zeng
- Graduate College of Youjiang Medical University for Nationalities, Baise, China
| | - Yunyu Wei
- Graduate College of Youjiang Medical University for Nationalities, Baise, China
| | - Rongzhou Lu
- Graduate College of Youjiang Medical University for Nationalities, Baise, China
| | - Zheng Huang
- Graduate College of Youjiang Medical University for Nationalities, Baise, China
| | - Lizheng Huang
- Graduate College of Youjiang Medical University for Nationalities, Baise, China
| | - Yanyan Huang
- Graduate College of Youjiang Medical University for Nationalities, Baise, China
| | - Yuan Lu
- Graduate College of Youjiang Medical University for Nationalities, Baise, China
| | - Wenchuan Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Zhongshan Two Road, Baise, 533000, China
| | - Huamei Wei
- Clinical Pathological Diagnosis and Research Center, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jian Pu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Zhongshan Two Road, Baise, 533000, China.
- Guangxi Clinical Medical Research Center of Hepatobiliary Diseases, Baise, China.
| |
Collapse
|
6
|
Kobayashi A, Kitagawa Y, Nasser A, Wakimoto H, Yamada K, Tanaka S. Emerging Roles and Mechanisms of RNA Modifications in Neurodegenerative Diseases and Glioma. Cells 2024; 13:457. [PMID: 38474421 DOI: 10.3390/cells13050457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/19/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Despite a long history of research, neurodegenerative diseases and malignant brain tumor gliomas are both considered incurable, facing challenges in the development of treatments. Recent evidence suggests that RNA modifications, previously considered as static components of intracellular RNAs, are in fact dynamically regulated across various RNA species in cells and play a critical role in major biological processes in the nervous system. Innovations in next-generation sequencing have enabled the accurate detection of modifications on bases and sugars within various RNA molecules. These RNA modifications influence the stability and transportation of RNA, and crucially affect its translation. This review delves into existing knowledge on RNA modifications to offer a comprehensive inventory of these modifications across different RNA species. The detailed regulatory functions and roles of RNA modifications within the nervous system are discussed with a focus on neurodegenerative diseases and gliomas. This article presents a comprehensive overview of the fundamental mechanisms and emerging roles of RNA modifications in these diseases, which can facilitate the creation of innovative diagnostics and therapeutics for these conditions.
Collapse
Affiliation(s)
- Ami Kobayashi
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yosuke Kitagawa
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ali Nasser
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Keisuke Yamada
- Department of Neurosurgery, The University of Tokyo, Tokyo 113-0075, Japan
| | - Shota Tanaka
- Department of Neurosurgery, The University of Tokyo, Tokyo 113-0075, Japan
- Department of Neurosurgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
7
|
Xie GS, Richard HT. m 6A mRNA Modifications in Glioblastoma: Emerging Prognostic Biomarkers and Therapeutic Targets. Cancers (Basel) 2024; 16:727. [PMID: 38398118 PMCID: PMC10886660 DOI: 10.3390/cancers16040727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Glioblastoma, the most common and aggressive primary brain tumor, is highly invasive and neurologically destructive. The mean survival for glioblastoma patients is approximately 15 months and there is no effective therapy to significantly increase survival times to date. The development of effective therapy including mechanism-based therapies is urgently needed. At a molecular biology level, N6-methyladenine (m6A) mRNA modification is the most abundant posttranscriptional RNA modification in mammals. Recent studies have shown that m6A mRNA modifications affect cell survival, cell proliferation, invasion, and immune evasion of glioblastoma. In addition, m6A mRNA modifications are critical for glioblastoma stem cells, which could initiate the tumor and lead to therapy resistance. These findings implicate the function of m6A mRNA modification in tumorigenesis and progression, implicating its value in prognosis and therapies of human glioblastoma. This review focuses on the potential clinical significance of m6A mRNA modifications in prognostic and therapeutics of glioblastoma. With the identification of small-molecule compounds that activate or inhibit components of m6A mRNA modifications, a promising novel approach for glioblastoma therapy is emerging.
Collapse
Affiliation(s)
- Gloria S. Xie
- Martel College, Rice University, Houston, TX 77005, USA;
| | - Hope T. Richard
- Department of Pathology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23219, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23219, USA
| |
Collapse
|
8
|
Wu H, Chen S, Hu Z, Ge R, Ma L, You C, Huang Y. Exploring the prognostic potential of m6A methylation regulators in low-grade glioma: implications for tumor microenvironment modulation. Eur J Med Res 2024; 29:19. [PMID: 38173044 PMCID: PMC10763210 DOI: 10.1186/s40001-023-01621-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/25/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The biological behavior of low-grade glioma (LGG) is significantly affected by N6-methyladenosine (m6A) methylation, an essential epigenetic alteration. Therefore, it is crucial to create a prognostic model for LGG by utilizing genes that regulate m6A methylation. METHODS Using TCGA and GTEx databases. We examined m6A modulator levels in LGG and normal tissues, and investigated PD-L1 and PD-1 expression, immune scores, immune cell infiltration, tumor immune microenvironment (TIME) and potential underlying mechanisms in different LGG clusters. We also performed immunohistochemistry and RT-qPCR to identify essential m6A adjustment factor. RESULTS The results showed that m6A regulatory element expression was significantly increased in LGG tissues and was significantly associated with TMIE. A substantial increase in PD-L1 and PD-1 levels in LGG tissues and high-risk cohorts was observed. PD-L1 expression was positively correlated with FTO, ZCCHC4, and HNRNPD, whereas PD-1 expression was negatively correlated with FTO, ZC3H7B, and HNRNPD. The prognostic signature created using regulators of m6A RNA methylation was shown to be strongly associated with the overall survival of LGG patients, and FTO and ZCCHC4 were confirmed as independent prognostic markers by clinical samples. Furthermore, the results revealed different TIME characteristics between the two groups of patients, indicating disrupted signaling pathways associated with LGG. CONCLUSION Our results present that the m6A regulators play vital role in regulating PD-L1/PD-1 expression and the infiltration of immune cells, thereby exerting a sizable impact on the TIME of LGG. Therefore, m6A regulators have precise predictive value in the prognosis of LGG.
Collapse
Affiliation(s)
- Honggang Wu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Cerebrovascular Disease, The People's Hospital of Leshan, Leshan, 614000, Sichuan, China
| | - Siqi Chen
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, No. 59, Liuting Street, Ningbo, 315010, Zhejiang, China
| | - Ziliang Hu
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, No. 59, Liuting Street, Ningbo, 315010, Zhejiang, China
| | - Rong Ge
- Ningbo Clinical Pathology Diagnosis Center, Ningbo, 315021, China
| | - Lu Ma
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chao You
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Yi Huang
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, No. 59, Liuting Street, Ningbo, 315010, Zhejiang, China.
| |
Collapse
|