1
|
Juan Ramon A, Parmar C, Carrasco-Zevallos OM, Csiszer C, Yip SSF, Raciti P, Stone NL, Triantos S, Quiroz MM, Crowley P, Batavia AS, Greshock J, Mansi T, Standish KA. Development and deployment of a histopathology-based deep learning algorithm for patient prescreening in a clinical trial. Nat Commun 2024; 15:4690. [PMID: 38824132 PMCID: PMC11144215 DOI: 10.1038/s41467-024-49153-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/24/2024] [Indexed: 06/03/2024] Open
Abstract
Accurate identification of genetic alterations in tumors, such as Fibroblast Growth Factor Receptor, is crucial for treating with targeted therapies; however, molecular testing can delay patient care due to the time and tissue required. Successful development, validation, and deployment of an AI-based, biomarker-detection algorithm could reduce screening cost and accelerate patient recruitment. Here, we develop a deep-learning algorithm using >3000 H&E-stained whole slide images from patients with advanced urothelial cancers, optimized for high sensitivity to avoid ruling out trial-eligible patients. The algorithm is validated on a dataset of 350 patients, achieving an area under the curve of 0.75, specificity of 31.8% at 88.7% sensitivity, and projected 28.7% reduction in molecular testing. We successfully deploy the system in a non-interventional study comprising 89 global study clinical sites and demonstrate its potential to prioritize/deprioritize molecular testing resources and provide substantial cost savings in the drug development and clinical settings.
Collapse
Affiliation(s)
- Albert Juan Ramon
- Janssen R&D, LLC, a Johnson & Johnson Company. Data Science and Digital Health, San Diego, CA, USA.
| | - Chaitanya Parmar
- Janssen R&D, LLC, a Johnson & Johnson Company. Data Science and Digital Health, San Diego, CA, USA
| | | | - Carlos Csiszer
- Janssen R&D, LLC, a Johnson & Johnson Company. Data Science and Digital Health, Titusville, NJ, USA
| | - Stephen S F Yip
- Janssen R&D, LLC, a Johnson & Johnson Company. Data Science and Digital Health, Cambridge, MA, USA
| | - Patricia Raciti
- Janssen R&D, LLC, a Johnson & Johnson Company. Oncology, Spring House, PA, USA
| | - Nicole L Stone
- Janssen R&D, LLC, a Johnson & Johnson Company. Oncology, Spring House, PA, USA
| | - Spyros Triantos
- Janssen R&D, LLC, a Johnson & Johnson Company. Oncology, Spring House, PA, USA
| | - Michelle M Quiroz
- Janssen R&D, LLC, a Johnson & Johnson Company. Oncology, Spring House, PA, USA
| | - Patrick Crowley
- Janssen R&D, LLC, a Johnson & Johnson Company. Global Development, High Wycombe, UK
| | - Ashita S Batavia
- Janssen R&D, LLC, a Johnson & Johnson Company. Data Science and Digital Health, Titusville, NJ, USA
| | - Joel Greshock
- Janssen R&D, LLC, a Johnson & Johnson Company. Data Science and Digital Health, Spring House, PA, USA
| | - Tommaso Mansi
- Janssen R&D, LLC, a Johnson & Johnson Company. Data Science and Digital Health, Titusville, NJ, USA
| | - Kristopher A Standish
- Janssen R&D, LLC, a Johnson & Johnson Company. Data Science and Digital Health, San Diego, CA, USA
| |
Collapse
|
2
|
Lee S, Kim G, Lee J, Lee AC, Kwon S. Mapping cancer biology in space: applications and perspectives on spatial omics for oncology. Mol Cancer 2024; 23:26. [PMID: 38291400 PMCID: PMC10826015 DOI: 10.1186/s12943-024-01941-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/12/2024] [Indexed: 02/01/2024] Open
Abstract
Technologies to decipher cellular biology, such as bulk sequencing technologies and single-cell sequencing technologies, have greatly assisted novel findings in tumor biology. Recent findings in tumor biology suggest that tumors construct architectures that influence the underlying cancerous mechanisms. Increasing research has reported novel techniques to map the tissue in a spatial context or targeted sampling-based characterization and has introduced such technologies to solve oncology regarding tumor heterogeneity, tumor microenvironment, and spatially located biomarkers. In this study, we address spatial technologies that can delineate the omics profile in a spatial context, novel findings discovered via spatial technologies in oncology, and suggest perspectives regarding therapeutic approaches and further technological developments.
Collapse
Affiliation(s)
- Sumin Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Meteor Biotech,, Co. Ltd, Seoul, 08826, Republic of Korea
| | - Gyeongjun Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - JinYoung Lee
- Division of Engineering Science, University of Toronto, Toronto, Ontario, ON, M5S 3H6, Canada
| | - Amos C Lee
- Meteor Biotech,, Co. Ltd, Seoul, 08826, Republic of Korea.
- Bio-MAX Institute, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Sunghoon Kwon
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea.
- Bio-MAX Institute, Seoul National University, Seoul, 08826, Republic of Korea.
- Institutes of Entrepreneurial BioConvergence, Seoul National University, Seoul, 08826, Republic of Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
3
|
Tehrani KF, Park J, Chaney EJ, Tu H, Boppart SA. Nonlinear Imaging Histopathology: A Pipeline to Correlate Gold-Standard Hematoxylin and Eosin Staining With Modern Nonlinear Microscopy. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2023; 29:6800608. [PMID: 37193134 PMCID: PMC10174331 DOI: 10.1109/jstqe.2022.3233523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Hematoxylin and eosin (H&E) staining, the century-old technique, has been the gold standard tool for pathologists to detect anomalies in tissues and diseases such as cancer. H&E staining is a cumbersome, time-consuming process that delays and wastes precious minutes during an intraoperative diagnosis. However, even in the modern era, real-time label-free imaging techniques such as simultaneous label-free autofluorescence multiharmonic (SLAM) microscopy have delivered several more layers of information to characterize a tissue with high precision. Still, they have yet to translate to the clinic. The slow translation rate can be attributed to the lack of direct comparisons between the old and new techniques. Our approach to solving this problem is to: 1) reduce dimensions by pre-sectioning the tissue in 500 μm slices, and 2) produce fiducial laser markings which appear in both SLAM and histological imaging. High peak-power femtosecond laser pulses enable ablation in a controlled and contained manner. We perform laser marking on a grid of points encompassing the SLAM region of interest. We optimize laser power, numerical aperture, and timing to produce axially extended marking, hence multilayered fiducial markers, with minimal damage to the surrounding tissues. We performed this co-registration over an area of 3 × 3 mm2 of freshly excised mouse kidney and intestine, followed by standard H&E staining. Reduced dimensionality and the use of laser markings provided a comparison of the old and new techniques, giving a wealth of correlative information and elevating the potential of translating nonlinear microscopy to the clinic for rapid pathological assessment.
Collapse
Affiliation(s)
- Kayvan Forouhesh Tehrani
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801-3028 USA
| | - Jaena Park
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801-3028 USA, and also with the Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801-3028 USA
| | - Eric J Chaney
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801-3028 USA
| | - Haohua Tu
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801-3028 USA, and also with the Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801-3028 USA
| | - Stephen A Boppart
- Beckman Institute for Advanced Science and Technology, Department of Electrical and Computer Engineering, Department of Bioengineering, Carle Illinois College of Medicine, and Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801-3028 USA
| |
Collapse
|
4
|
Shamshiri MA, Krzyżak A, Kowal M, Korbicz J. Compatible-domain Transfer Learning for Breast Cancer Classification with Limited Annotated Data. Comput Biol Med 2023; 154:106575. [PMID: 36758326 DOI: 10.1016/j.compbiomed.2023.106575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/18/2022] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
Microscopic analysis of breast cancer images is the primary task in diagnosing cancer malignancy. Recent attempts to automate this task have employed deep learning models whose success has depended on large volumes of data, while acquiring annotated data in biomedical domains is time-consuming and may not always be feasible. A typical strategy to address this is to apply transfer learning using pre-trained models on a large natural image database (e.g., ImageNet) instead of training a model from scratch. This approach, however, has not been effective in several previous studies due to fundamental differences between natural and medical images. In this study, for the first time we proposed the idea of using a compatible data set of histopathological images to classify breast cancer cytological biopsy specimens. Despite intrinsic differences between histopathological and cytological images, we demonstrate that the features learned by deep networks during the pre-training procedure are compatible with those obtained throughout fine-tuning process. To thoroughly investigate this assertion, we explore three different strategies for training as well as two different approaches for fine-tuning deep learning models. By comparing the obtained results with those of previous state-of-the-art research conducted on the same data set, we demonstrate that the proposed method boasts of improved classification accuracy by 6% to 17% compared to the studies which were based on traditional machine learning techniques, and also enhanced accuracy by roughly 7% compared to those who utilized deep learning methods, eventually achieving 98.73% validation accuracy and 94.55% test accuracy. Exploring different training scenarios also revealed that using a compatible dataset has helped to elevate the classification accuracy by 3.0% compared to the typical approach of using ImageNet. Experimental results show that our approach, despite using a very small number of training images, has achieved performance comparable to that of experienced pathologists and has the potential to be applied in clinical settings.
Collapse
Affiliation(s)
- Mohammad Amin Shamshiri
- Department of Computer Science and Software Engineering, Concordia University, Montreal, H3G 1M8, Canada.
| | - Adam Krzyżak
- Department of Computer Science and Software Engineering, Concordia University, Montreal, H3G 1M8, Canada
| | - Marek Kowal
- Institute of Control and Computation Engineering, University of Zielona Góra, Zielona Góra, Poland
| | - Józef Korbicz
- Institute of Control and Computation Engineering, University of Zielona Góra, Zielona Góra, Poland
| |
Collapse
|
5
|
Mehmood S, Aslam S, Dilshad E, Ismail H, Khan AN. Transforming Diagnosis and Therapeutics Using Cancer Genomics. Cancer Treat Res 2023; 185:15-47. [PMID: 37306902 DOI: 10.1007/978-3-031-27156-4_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In past quarter of the century, much has been understood about the genetic variation and abnormal genes that activate cancer in humans. All the cancers somehow possess alterations in the DNA sequence of cancer cell's genome. In present, we are heading toward the era where it is possible to obtain complete genome of the cancer cells for their better diagnosis, categorization and to explore treatment options.
Collapse
Affiliation(s)
- Sabba Mehmood
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan.
| | - Shaista Aslam
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Erum Dilshad
- Department of Bioinformatics and Biosciences, Faculty of Health and Life Sciences, Capital University of Science and Technology (CUST) Islamabad, Islamabad, Pakistan
| | - Hammad Ismail
- Departments of Biochemistry and Biotechnology, University of Gujrat (UOG) Gujrat, Gujrat, Pakistan
| | - Amna Naheed Khan
- Department of Bioinformatics and Biosciences, Faculty of Health and Life Sciences, Capital University of Science and Technology (CUST) Islamabad, Islamabad, Pakistan
| |
Collapse
|
6
|
Tomsia M, Droździok K, Banaszek P, Szczepański M, Pałasz A, Chełmecka E. The intervertebral discs' fibrocartilage as a DNA source for genetic identification in severely charred cadavers. Forensic Sci Med Pathol 2022; 18:442-449. [PMID: 36208368 PMCID: PMC9636093 DOI: 10.1007/s12024-022-00536-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2022] [Indexed: 12/14/2022]
Abstract
Identifying charred human remains poses a challenge to forensic laboratories. High temperature completely incinerates the superficial tissues and partially destroys bones, forcing the forensics to seek an alternative, for bones and teeth, forensic material that should quickly and cheaply deliver DNA of sufficient quantity and quality. We sought, other than rib cartilage, types of cartilages that could serve as a DNA source. DNA was isolated from the fibrous cartilage of a fibrous ring of intervertebral L1-L2 discs sampled from charred cadavers or charred body fragments: 5 victims of car fires, 1 victim of combustion during a residential house gas explosion, and 3 victims of nitroglycerin explosion. DNA was isolated by the column method. DNA quality and concentration were assessed by RT-PCR and multiplex PCR for 23 autosomal and 17 Y chromosome STR loci. STR polymorphism results obtained by capillary electrophoresis served for likelihood ratio (LR) calculations. DNA concentration in relation to the cadaver's age and post-mortem interval (PMI) were analyzed. All samples (n = 9) yielded good-quality DNA in quantities (0.57-17.51 ng/µL for T. Large autosomal sequence) suitable for STR-based amplification. The isolated DNA characterized a low degradation index (0.80-1.99), and we were able to obtain complete genetic profiles. In each of the nine cases, the genotyping results allowed identifying the victims based on comparative material from the immediate family. The results demonstrate the usefulness of human intervertebral disc fibrocartilage as an alternative DNA source for the genetic identification of charred bodies or charred torso fragments.
Collapse
Affiliation(s)
- Marcin Tomsia
- Department of Forensic Medicine and Forensic Toxicology, Medical University of Silesia, Medyków 18, 40-752, Katowice, Poland.
| | - Kornelia Droździok
- Department of Forensic Medicine and Forensic Toxicology, Medical University of Silesia, Medyków 18, 40-752, Katowice, Poland
| | - Przemysław Banaszek
- Department of Forensic Medicine and Forensic Toxicology, Medical University of Silesia, Medyków 18, 40-752, Katowice, Poland
| | - Michał Szczepański
- Department of Forensic Medicine and Forensic Toxicology, Medical University of Silesia, Medyków 18, 40-752, Katowice, Poland
| | - Artur Pałasz
- Department of Histology, Faculty of Medical Sciences, Medical School of Silesia in Katowice, Medyków 18, 40-752, Katowice, Poland
| | - Elżbieta Chełmecka
- Department of Statistics, Department of Instrumental Analysis, Faculty of Pharmaceutical Sciences, Medical University of Silesia, Ostrogórska 30, 41-200, Sosnowiec, Poland
| |
Collapse
|
7
|
Cancer: A pathologist's journey from morphology to molecular. Med J Armed Forces India 2022; 78:255-263. [DOI: 10.1016/j.mjafi.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
8
|
Morrison LE, Lefever MR, Lewis HN, Kapadia MJ, Bauer DR. Conventional histological and cytological staining with simultaneous immunohistochemistry enabled by invisible chromogens. J Transl Med 2022; 102:545-553. [PMID: 34963687 PMCID: PMC9042701 DOI: 10.1038/s41374-021-00714-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 12/03/2022] Open
Abstract
Conventional histological stains, such as hematoxylin plus eosin (H&E), and immunohistochemistry (IHC) are mainstays of histology that provide complementary diagnostic information. H&E and IHC currently require separate slides, because the stains would otherwise obscure one another. This consumes small specimen, limiting the total amount of testing. Additionally, performing H&E and IHC on different slides does not permit comparison of staining at the single cell level, since the same cells are not present on each slide, and alignment of tissue features can be problematic due to changes in tissue landscape with sectioning. We have solved these problems by performing conventional staining and IHC on the same slide using invisible IHC chromogens, such that the chromogens are not visible when viewing the conventional stain and the conventional stain is excluded from images of the IHC. Covalently deposited chromogens provided a convenient route to invisible chromogen design and are stable to reagents used in conventional staining. A dual-camera brightfield microscope system was developed that permits simultaneous viewing of both visible conventional stains and invisible IHC chromogens. Simultaneous staining was demonstrated on several formalin-fixed paraffin-embedded tissue specimens using single and duplex IHC, with chromogens that absorb ultraviolet and near infrared light, followed by H&E staining. The concept was extended to other conventional stains, including mucicarmine special stain and Papanicoulou stain, and further extended to cytology specimens. In addition to interactive video review, images were recorded using multispectral imaging and image processing to provide flexible production of color composite images and enable quantitative analysis.
Collapse
Affiliation(s)
- Larry E. Morrison
- grid.418158.10000 0004 0534 4718Roche Diagnostics Solutions (Ventana Medical Systems, Inc.), Tucson, AZ 85755 USA
| | - Mark R. Lefever
- grid.418158.10000 0004 0534 4718Roche Diagnostics Solutions (Ventana Medical Systems, Inc.), Tucson, AZ 85755 USA
| | - Heather N. Lewis
- grid.418158.10000 0004 0534 4718Roche Diagnostics Solutions (Ventana Medical Systems, Inc.), Tucson, AZ 85755 USA
| | - Monesh J. Kapadia
- grid.418158.10000 0004 0534 4718Roche Diagnostics Solutions (Ventana Medical Systems, Inc.), Tucson, AZ 85755 USA
| | - Daniel R. Bauer
- grid.418158.10000 0004 0534 4718Roche Diagnostics Solutions (Ventana Medical Systems, Inc.), Tucson, AZ 85755 USA
| |
Collapse
|
9
|
Wen M, Jin Y, Zhang H, Sun X, Kuai Y, Tan W. Proteomic Analysis of Rat Cerebral Cortex in the Subacute to Long-Term Phases of Focal Cerebral Ischemia-Reperfusion Injury. J Proteome Res 2019; 18:3099-3118. [PMID: 31265301 DOI: 10.1021/acs.jproteome.9b00220] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Stroke is a leading cause of mortality and disability, and ischemic stroke accounts for more than 80% of the disease occurrence. Timely reperfusion is essential in the treatment of ischemic stroke, but it is known to cause ischemia-reperfusion (I/R) injury and the relevant studies have mostly focused on the acute phase. Here we reported on a global proteomic analysis to investigate the development of cerebral I/R injury in the subacute and long-term phases. A rat model was used, with 2 h-middle cerebral artery occlusion (MCAO) followed with 1, 7, and 14 days of reperfusion. The proteins of cerebral cortex were analyzed by SDS-PAGE, whole-gel slicing, and quantitative LC-MS/MS. Totally 5621 proteins were identified, among which 568, 755, and 492 proteins were detected to have significant dys-regulation in the model groups with 1, 7, and 14 days of reperfusion, respectively, when compared with the corresponding sham groups (n = 4, fold change ≥1.5 or ≤0.67 and p ≤ 0.05). Bioinformatic analysis on the functions and reperfusion time-dependent dys-regulation profiles of the proteins exhibited changes of structures and biological processes in cytoskeleton, synaptic plasticity, energy metabolism, inflammation, and lysosome from subacute to long-term phases of cerebral I/R injury. Disruption of cytoskeleton and synaptic structures, impairment of energy metabolism processes, and acute inflammation responses were the most significant features in the subacute phase. With the elongation of reperfusion time to the long-term phase, a tendency of recovery was detected on cytoskeleton, while inflammation pathways different from the subacute phase were activated. Also, lysosomal structures and functions might be restored. This is the first work reporting the proteome changes that occurred at different time points from the subacute to long-term phases of cerebral I/R injury and we expect it would provide useful information to improve the understanding of the mechanisms involved in the development of cerebral I/R injury and suggest candidates for treatment.
Collapse
Affiliation(s)
- Meiling Wen
- School of Biology and Biological Engineering , South China University of Technology , Guangzhou 510006 , P. R. China
| | - Ya Jin
- Institute of Biomedical and Pharmaceutical Sciences , Guangdong University of Technology , Guangzhou 510006 , P. R. China
| | - Hao Zhang
- Institute of Biomedical and Pharmaceutical Sciences , Guangdong University of Technology , Guangzhou 510006 , P. R. China
| | - Xiaoou Sun
- Institute of Biomedical and Pharmaceutical Sciences , Guangdong University of Technology , Guangzhou 510006 , P. R. China
| | - Yihe Kuai
- Institute of Biomedical and Pharmaceutical Sciences , Guangdong University of Technology , Guangzhou 510006 , P. R. China
| | - Wen Tan
- Institute of Biomedical and Pharmaceutical Sciences , Guangdong University of Technology , Guangzhou 510006 , P. R. China
| |
Collapse
|
10
|
Patel M, Nakaji‐Hirabayashi T, Matsumura K. Effect of dual‐drug‐releasing micelle–hydrogel composite on wound healingin vivoin full‐thickness excision wound rat model. J Biomed Mater Res A 2019; 107:1094-1106. [DOI: 10.1002/jbm.a.36639] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/24/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Monika Patel
- School of Materials ScienceJapan Advanced Institute of Science and Technology Nomi, Ishikawa, 923‐1292 Japan
| | - Tadashi Nakaji‐Hirabayashi
- Graduate School of Science and EngineeringUniversity of Toyama Toyama, 930‐8555 Japan
- Graduate School of Innovative Life ScienceUniversity of Toyama Toyama, 930‐8555 Japan
| | - Kazuaki Matsumura
- School of Materials ScienceJapan Advanced Institute of Science and Technology Nomi, Ishikawa, 923‐1292 Japan
| |
Collapse
|
11
|
Ahmed AA, Abedalthagafi M. Cancer diagnostics: The journey from histomorphology to molecular profiling. Oncotarget 2018; 7:58696-58708. [PMID: 27509178 PMCID: PMC5295463 DOI: 10.18632/oncotarget.11061] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/19/2016] [Indexed: 12/15/2022] Open
Abstract
Although histomorphology has made significant advances into the understanding of cancer etiology, classification and pathogenesis, it is sometimes complicated by morphologic ambiguities, and other shortcomings that necessitate the development of ancillary tests to complement its diagnostic value. A new approach to cancer patient management consists of targeting specific molecules or gene mutations in the cancer genome by inhibitory therapy. Molecular diagnostic tests and genomic profiling methods are increasingly being developed to identify tumor targeted molecular profile that is the basis of targeted therapy. Novel targeted therapy has revolutionized the treatment of gastrointestinal stromal tumor, renal cell carcinoma and other cancers that were previously difficult to treat with standard chemotherapy. In this review, we discuss the role of histomorphology in cancer diagnosis and management and the rising role of molecular profiling in targeted therapy. Molecular profiling in certain diagnostic and therapeutic difficulties may provide a practical and useful complement to histomorphology and opens new avenues for targeted therapy and alternative methods of cancer patient management.
Collapse
Affiliation(s)
- Atif A Ahmed
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, Missouri, USA
| | - Malak Abedalthagafi
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,The Saudi Human Genome Laboratory, Department of Pathology, King Fahad Medical City, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Rowatt K, Burns RE, Frasca S, Long DM. A combination Prussian blue – hematoxylin and eosin staining technique for identification of iron and other histological features. J Histotechnol 2018. [DOI: 10.1080/01478885.2017.1417696] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Katelyn Rowatt
- Texas A&M University College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USA
| | - Rachel E. Burns
- Institute for Conservation Research, San Diego Zoo Global, San Diego, CA, USA
| | - Salvatore Frasca
- Department of Comparative Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Denise M. Long
- Department of Pathobiology and Veterinary Sciences, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
13
|
Francis A, Berry K, Chen Y, Figueroa B, Fu D. Label-free pathology by spectrally sliced femtosecond stimulated Raman scattering (SRS) microscopy. PLoS One 2017; 12:e0178750. [PMID: 28562695 PMCID: PMC5451135 DOI: 10.1371/journal.pone.0178750] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 05/18/2017] [Indexed: 01/26/2023] Open
Abstract
Optical “virtual biopsy” is an attractive way to improve disease diagnosis and surgical guidance. Many optical microscopy techniques have been developed to provide diagnostic information without the need for tissue sectioning or staining. Among these techniques, label-free chemical imaging is the most desirable. Recently, it has been shown that narrowband, picosecond stimulated Raman scattering (SRS) can achieve comparable morphological contrast to hematoxylin and eosin staining (H&E staining), the ‘gold standard’ of pathology. However, to translate the technique from the bench to the bedside, optimal laser sources and parameters have yet to be identified. Here we describe an improvement to the narrowband SRS microscopy techniques for label-free tissue imaging. Through spectral slicing of broadband, femtosecond pulses, we are able to maintain the same protein/lipid contrast as narrowband SRS while achieving a higher signal-to-noise ratio (SNR). Our method draws upon the benefits of femtosecond pulses (e.g. higher peak power) while preserving those of picosecond pulses (e.g. adequate spectral resolution). We demonstrate this achievement through protein/lipid signal and contrast quantification of mouse brain tissue as a function of bandwidth, and comparison with numerical simulations. Further method validation is provided through imaging of additional mouse tissues: liver, kidney, and skin.
Collapse
Affiliation(s)
- Andrew Francis
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Kyla Berry
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Yikai Chen
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Benjamin Figueroa
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Dan Fu
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
14
|
Belle M, Godefroy D, Couly G, Malone SA, Collier F, Giacobini P, Chédotal A. Tridimensional Visualization and Analysis of Early Human Development. Cell 2017; 169:161-173.e12. [DOI: 10.1016/j.cell.2017.03.008] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/23/2017] [Accepted: 03/03/2017] [Indexed: 12/19/2022]
|
15
|
Farris AB, Cohen C, Rogers TE, Smith GH. Whole Slide Imaging for Analytical Anatomic Pathology and Telepathology: Practical Applications Today, Promises, and Perils. Arch Pathol Lab Med 2017; 141:542-550. [PMID: 28157404 DOI: 10.5858/arpa.2016-0265-sa] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Whole slide imaging (WSI) offers a convenient, tractable platform for measuring features of routine and special-stain histology or in immunohistochemistry staining by using digital image analysis (IA). We now routinely use IA for quantitative and qualitative analysis of theranostic markers such as human epidermal growth factor 2 (HER2/neu), estrogen and progesterone receptors, and Ki-67. Quantitative IA requires extensive validation, however, and may not always be the best approach, with pancreatic neuroendocrine tumors being one example in which a semiautomated approach may be preferable for patient care. We find that IA has great utility for objective assessment of gastrointestinal tract dysplasia, microvessel density in hepatocellular carcinoma, hepatic fibrosis and steatosis, renal fibrosis, and general quality analysis/quality control, although the applications of these to daily practice are still in development. Collaborations with bioinformatics specialists have explored novel applications to gliomas, including in silico approaches for mining histologic data and correlating with molecular and radiologic findings. We and many others are using WSI for rapid, remote-access slide reviews (telepathology), though technical factors currently limit its utility for routine, high-volume diagnostics. In our experience, the greatest current practical impact of WSI lies in facilitating long-term storage and retrieval of images while obviating the need to keep slides on site. Once the existing barriers of capital cost, validation, operator training, software design, and storage/back-up concerns are overcome, these technologies appear destined to be a cornerstone of precision medicine and personalized patient care, and to become a routine part of pathology practice.
Collapse
Affiliation(s)
| | | | | | - Geoffrey H Smith
- From the Department of Pathology, Emory University, Atlanta, Georgia
| |
Collapse
|
16
|
Gibbs SL, Genega E, Salemi J, Kianzad V, Goodwill HL, Xie Y, Oketokoun R, Khurd P, Kamen A, Frangioni JV. Near-infrared fluorescent digital pathology for the automation of disease diagnosis and biomarker assessment. Mol Imaging 2016; 14. [PMID: 25812603 DOI: 10.2310/7290.2015.00005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hematoxylin-eosin (H&E) staining of tissue has been the mainstay of pathology for more than a century. However, the learning curve for H&E tissue interpretation is long, whereas intra- and interobserver variability remain high. Computer-assisted image analysis of H&E sections holds promise for increased throughput and decreased variability but has yet to demonstrate significant improvement in diagnostic accuracy. Addition of biomarkers to H&E staining can improve diagnostic accuracy; however, coregistration of immunohistochemical staining with H&E is problematic as immunostaining is completed on slides that are at best 4 μm apart. Simultaneous H&E and immunostaining would alleviate coregistration problems; however, current opaque pigments used for immunostaining obscure H&E. In this study, we demonstrate that diagnostic information provided by two or more independent wavelengths of near-infrared (NIR) fluorescence leave the H&E stain unchanged while enabling computer-assisted diagnosis and assessment of human disease. Using prostate cancer as a model system, we introduce NIR digital pathology and demonstrate its utility along the spectrum from prostate biopsy to whole mount analysis of H&E-stained tissue.
Collapse
|
17
|
Chan JKC. The wonderful colors of the hematoxylin-eosin stain in diagnostic surgical pathology. Int J Surg Pathol 2014; 22:12-32. [PMID: 24406626 DOI: 10.1177/1066896913517939] [Citation(s) in RCA: 237] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The hematoxylin-eosin (H&E) stain has stood the test of time as the standard stain for histologic examination of human tissues. This simple dye combination is capable of highlighting the fine structures of cells and tissues. Most cellular organelles and extracellular matrix are eosinophilic, while the nucleus, rough endoplasmic reticulum, and ribosomes are basophilic. This review discusses the spectrum, intensity, and texture of colors observed in H&E-stained slides to illustrate their value in surgical pathology diagnosis. Changes in color of the nuclei occur in the presence of nuclear pseudoinclusions (such as papillary thyroid carcinoma) or inclusions (such as viral infection, surfactant, immunoglobulin, and biotin). The color of the cytoplasm of spindly cells can provide clues to their nature, such as basophilic (fibroblast), eosinophilic (smooth muscle and others), and amphophilic (myofibroblast). Eosinophilic globules have diagnostic value for sclerosing polycystic adenosis of salivary gland, low-grade B-cell lymphoma, solid pseudopapillary tumor of pancreas, and inclusion body fibromatosis. Eosinophilic granules are characteristic of granular cells (lysosome-rich), oncocytic cells (mitochondria-rich), and cells with secretory products (including neuroendocrine cells). Eosinophilic crystals can be diagnostic of lymphoma/plasmacytoma and crystal-storing histiocytosis. Basophilic granules or inclusions are diagnostic of acinic cell carcinoma and malakoplakia (Michaelis-Gutmann bodies). Yellow or brown inclusions are characteristic of hyalinizing trabecular adenoma of thyroid (yellow bodies), brown bowel syndrome, and malignant melanoma. Extracellular eosinophilic deposits can be produced by many conditions, but amyloid and monoclonal immunoglobulin deposition disease are important considerations. Extracellular basophilic deposits may be seen in small cell carcinoma and systemic lupus erythematosus, but they differ in that the former is blue (nuclear material) while the latter is purple (nuclear material plus immunoglobulin).
Collapse
|
18
|
Abstract
Studies of cell lines and of animal models of pancreatic cancer have raised a number of provocative questions about the nature and origins of human pancreatic cancer and have provided several leads into exciting new approaches for the treatment of this deadly cancer. In addition, clinicians with little or no contact with human pathology have challenged the way that pancreatic pathology is practiced, suggesting that "genetic signals" may be more accurate than today's multimodal approach to diagnoses. In this review, we consider 8 provocative issues in pancreas pathology, with an emphasis on "the evidence derived from man."
Collapse
|
19
|
Krafts KP, Hempelmann E, Oleksyn BJ. The color purple: from royalty to laboratory, with apologies to Malachowski. Biotech Histochem 2011; 86:7-35. [DOI: 10.3109/10520295.2010.515490] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
20
|
Yang Y, Sun J, Gervai P, Gruwel ML, Jilkina O, Gussakovsky E, Yang X, Kupriyanov V. Characterization of cryoinjury-induced infarction with manganese-and gadolinium-enhanced MRI and optical spectroscopy in pig hearts. Magn Reson Imaging 2010; 28:753-66. [DOI: 10.1016/j.mri.2010.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 10/29/2009] [Accepted: 02/08/2010] [Indexed: 01/16/2023]
|
21
|
Parish LC, Crissey JT, Parish JL. Bibliography of secondary sources on the history of dermatology. I. Journal articles in English supplemented through 1990. Int J Dermatol 1991; 30:435-40. [PMID: 1894410 DOI: 10.1111/j.1365-4362.1991.tb03901.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- L C Parish
- Department of Dermatology, Jefferson Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | | |
Collapse
|