1
|
Lurain KA, Ramaswami R, Krug LT, Whitby D, Ziegelbauer JM, Wang HW, Yarchoan R. HIV-associated cancers and lymphoproliferative disorders caused by Kaposi sarcoma herpesvirus and Epstein-Barr virus. Clin Microbiol Rev 2024; 37:e0002223. [PMID: 38899877 PMCID: PMC11391709 DOI: 10.1128/cmr.00022-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
SUMMARYWithin weeks of the first report of acquired immunodeficiency syndrome (AIDS) in 1981, it was observed that these patients often had Kaposi sarcoma (KS), a hitherto rarely seen skin tumor in the USA. It soon became apparent that AIDS was also associated with an increased incidence of high-grade lymphomas caused by Epstein-Barr virus (EBV). The association of AIDS with KS remained a mystery for more than a decade until Kaposi sarcoma-associated herpesvirus (KSHV) was discovered and found to be the cause of KS. KSHV was subsequently found to cause several other diseases associated with AIDS and human immunodeficiency virus (HIV) infection. People living with HIV/AIDS continue to have an increased incidence of certain cancers, and many of these cancers are caused by EBV and/or KSHV. In this review, we discuss the epidemiology, virology, pathogenesis, clinical manifestations, and treatment of cancers caused by EBV and KSHV in persons living with HIV.
Collapse
Affiliation(s)
- Kathryn A Lurain
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Ramya Ramaswami
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Laurie T Krug
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Denise Whitby
- Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Joseph M Ziegelbauer
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Hao-Wei Wang
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | - Robert Yarchoan
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Fischer GM, Gliem TJ, Greipp PT, Rosenberg AE, Folpe AL, Hornick JL. Anaplastic Kaposi Sarcoma: A Clinicopathologic and Molecular Genetic Analysis. Mod Pathol 2023; 36:100191. [PMID: 37080393 DOI: 10.1016/j.modpat.2023.100191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 04/22/2023]
Abstract
Kaposi sarcoma (KS) is a human herpesvirus 8 (HHV8)-associated vascular proliferation that most often involves the skin. Rarely, KS shows marked nuclear atypia or pleomorphism; such examples are known as "anaplastic" KS. This poorly characterized variant often pursues an aggressive course; little is known of its genetic landscape. This study evaluated the clinicopathologic and genomic features of anaplastic KS. We identified 9 anaplastic KS cases from 7 patients and 8 conventional KS cases, including a matched conventional KS and primary metastasis anaplastic KS pair from a single patient (anaplastic KS diagnosed 9 years after conventional KS). All patients with anaplastic KS were men, aged 51 to 82 years, who had locally aggressive tumors predominantly affecting the soft tissue and bone of the lower extremities (5/7 patients). Four patients were known to be HIV positive (all on antiretrovirals), 2 were HIV negative, and 1 was of unknown HIV status. The tumors showed angiosarcoma-like or pleomorphic spindle cell sarcoma morphology. Plasma cell-rich chronic inflammation and hemosiderin deposition were commonly present. Single-nucleotide polymorphism-based chromosomal microarray analysis showed the anaplastic KS cohort to demonstrate highly recurrent whole chromosome (chr) gains of chr 7, 11, 19, and 21, which primarily affected olfactory and G protein-coupled receptor signaling and losses of chr6_q and chrY. Compared with conventional KS, anaplastic KS cases showed significantly more total copy number alterations and more frequent gains of chr7 and chr11_q13.1 (MARK2, RELA, and ESRRA, including high copy number gain in 1 case). Pathway analysis demonstrated that these gains preferentially affected genes that facilitate cyclin-dependent cell signaling. Furthermore, anaplastic KS cases were phylogenetically distinct from conventional KS cases, including the patient-matched primary metastasis anaplastic KS pair and conventional KS. Our study is the first to demonstrate that a more complex genome and distinct copy number alterations distinguish anaplastic KS from conventional KS. Gains of chr7 and chr11_q13.1 appear central to biological transformation.
Collapse
Affiliation(s)
- Grant M Fischer
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Troy J Gliem
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Patricia T Greipp
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Andrew E Rosenberg
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Andrew L Folpe
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
3
|
Malouf GG, Lu X, Mouawad R, Spano JP, Grange P, Yan F, Aractingi S, Su X, Dupin N. Genetic landscape of indolent and aggressive Kaposi sarcomas. J Eur Acad Dermatol Venereol 2022; 36:2343-2351. [PMID: 35881110 DOI: 10.1111/jdv.18463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/23/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Kaposi sarcoma (KS) is a rare skin tumour caused by herpesvirus 8 infection and characterized by either indolence or an aggressive course necessitating systemic therapies. The genetic basis of this difference remains unknown. OBJECTIVES To explore the tumour mutational burden in indolent and aggressive KS. METHODS We performed whole-exome sequencing on a cohort of 21 KS patients. We compared genetic landscape including tumor mutational burden between the two forms of indolent and agressive KS. RESULTS Aggressive KS tumours had a significantly higher TMB and a larger cumulative number of deleterious mutations than indolent KS tumours. In addition, all aggressive tumours had at least three deleterious mutations, whereas most indolent tumours harboured only one or no predicted deleterious mutations. Deleterious mutations listed in the Cancer Gene Census were detected exclusively in patients with aggressive disease. An analysis of somatic copy-number alterations (SCNA) revealed a tendency towards higher number of alterations in aggressive KS. CONCLUSIONS These data suggest that SCNA alterations and an increase in mutational burden promote aggressive KS and that it might be more appropriate to consider indolent KS as an opportunistic skin disease rather than a cancer.
Collapse
Affiliation(s)
- G G Malouf
- Department of Medical Oncology, Institut de Cancérologie de Strasbourg, Strasbourg University, Strasbourg, France.,Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, Illkirch, France
| | - X Lu
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, Illkirch, France.,State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - R Mouawad
- Department of Medical Oncology, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne University, Paris, France
| | - J-P Spano
- Department of Medical Oncology, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne University, Paris, France
| | - P Grange
- Department of Dermatology, Cochin Hospital, Assistance Publique des Hôpitaux de Paris, Paris Cité University, Paris, France.,Institut Cochin, Inserm 1016, Paris, France
| | - F Yan
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - S Aractingi
- Department of Dermatology, Cochin Hospital, Assistance Publique des Hôpitaux de Paris, Paris Cité University, Paris, France.,Institut Cochin, Inserm 1016, Paris, France
| | - X Su
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - N Dupin
- Department of Dermatology, Cochin Hospital, Assistance Publique des Hôpitaux de Paris, Paris Cité University, Paris, France.,Institut Cochin, Inserm 1016, Paris, France
| |
Collapse
|
4
|
Indave Ruiz BI, Armon S, Watanabe R, Uttley L, White VA, Lazar AJ, Cree IA. Clonality, Mutation and Kaposi Sarcoma: A Systematic Review. Cancers (Basel) 2022; 14:1201. [PMID: 35267506 PMCID: PMC8909603 DOI: 10.3390/cancers14051201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/04/2022] [Accepted: 02/18/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND It remains uncertain whether Kaposi sarcoma (KS) is a true neoplasm, in that it regresses after removal of the stimulus to growth (as HHV8) when immunosuppression is reduced. We aimed to summarize the available evidence on somatic mutations and clonality within KS to assess whether KS is a neoplasm or not. METHODS Medline and Web of Science were searched until September 2020 for articles on clonality or mutation in KS. Search strings were supervised by expert librarians, and two researchers independently performed study selection and data extraction. An adapted version of the QUADAS2 tool was used for methodological quality appraisal. RESULTS Of 3077 identified records, 20 publications reported on relevant outcomes and were eligible for qualitative synthesis. Five studies reported on clonality, 10 studies reported on various mutations, and 5 studies reported on chromosomal aberrations in KS. All studies were descriptive and were judged to have a high risk of bias. There was considerable heterogeneity of results with respect to clonality, mutation and cytogenetic abnormalities as well as in terms of types of lesions and patient characteristics. CONCLUSIONS While KS certainly produces tumours, the knowledge is currently insufficient to determine whether KS is a clonal neoplasm (sarcoma), or simply an aggressive reactive virus-driven lesion.
Collapse
Affiliation(s)
- Blanca Iciar Indave Ruiz
- International Agency for Research on Cancer (IARC), World Health Organization, 69372 Lyon, France; (S.A.); (R.W.); (V.A.W.); (I.A.C.)
| | - Subasri Armon
- International Agency for Research on Cancer (IARC), World Health Organization, 69372 Lyon, France; (S.A.); (R.W.); (V.A.W.); (I.A.C.)
| | - Reiko Watanabe
- International Agency for Research on Cancer (IARC), World Health Organization, 69372 Lyon, France; (S.A.); (R.W.); (V.A.W.); (I.A.C.)
| | - Lesley Uttley
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield S1 4DA, UK;
| | - Valerie A. White
- International Agency for Research on Cancer (IARC), World Health Organization, 69372 Lyon, France; (S.A.); (R.W.); (V.A.W.); (I.A.C.)
| | - Alexander J. Lazar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Ian A. Cree
- International Agency for Research on Cancer (IARC), World Health Organization, 69372 Lyon, France; (S.A.); (R.W.); (V.A.W.); (I.A.C.)
| |
Collapse
|
5
|
Fröhlich J, Grundhoff A. Epigenetic control in Kaposi sarcoma-associated herpesvirus infection and associated disease. Semin Immunopathol 2020; 42:143-157. [PMID: 32219477 PMCID: PMC7174275 DOI: 10.1007/s00281-020-00787-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/20/2020] [Indexed: 12/15/2022]
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) is the etiologic agent of several malignancies of endothelial and B-cell origin. The fact that latently infected tumor cells in these malignancies do not express classical viral oncogenes suggests that pathogenesis of KSHV-associated disease results from multistep processes that, in addition to constitutive viral gene expression, may require accumulation of cellular alterations. Heritable changes of the epigenome have emerged as an important co-factor that contributes to the pathogenesis of many non-viral cancers. Since KSHV encodes a number of factors that directly or indirectly manipulate host cell chromatin, it is an intriguing possibility that epigenetic reprogramming also contributes to the pathogenesis of KSHV-associated tumors. The fact that heritable histone modifications have also been shown to regulate viral gene expression programs in KSHV-infected tumor cells underlines the importance of epigenetic control during latency and tumorigenesis. We here review what is presently known about the role of epigenetic regulation of viral and host chromatin in KSHV infection and discuss how viral manipulation of these processes may contribute to the development of KSHV-associated disease.
Collapse
Affiliation(s)
- Jacqueline Fröhlich
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Adam Grundhoff
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany.
| |
Collapse
|
6
|
Abstract
Kaposi sarcoma (KS) gained public attention as an AIDS-defining malignancy; its appearance on the skin was a highly stigmatizing sign of HIV infection during the height of the AIDS epidemic. The widespread introduction of effective antiretrovirals to control HIV by restoring immunocompetence reduced the prevalence of AIDS-related KS, although KS does occur in individuals with well-controlled HIV infection. KS also presents in individuals without HIV infection in older men (classic KS), in sub-Saharan Africa (endemic KS) and in transplant recipients (iatrogenic KS). The aetiologic agent of KS is KS herpesvirus (KSHV; also known as human herpesvirus-8), and viral proteins can induce KS-associated cellular changes that enable the virus to evade the host immune system and allow the infected cell to survive and proliferate despite viral infection. Currently, most cases of KS occur in sub-Saharan Africa, where KSHV infection is prevalent owing to transmission by saliva in childhood compounded by the ongoing AIDS epidemic. Treatment for early AIDS-related KS in previously untreated patients should start with the control of HIV with antiretrovirals, which frequently results in KS regression. In advanced-stage KS, chemotherapy with pegylated liposomal doxorubicin or paclitaxel is the most common treatment, although it is seldom curative. In sub-Saharan Africa, KS continues to have a poor prognosis. Newer treatments for KS based on the mechanisms of its pathogenesis are being explored.
Collapse
Affiliation(s)
- Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Blossom Damania
- Department of Microbiology and Immunology, Lineberger Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | | | - Jeffrey Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Mark Bower
- National Centre for HIV Malignancy, Chelsea & Westminster Hospital, London, UK
| | - Denise Whitby
- Leidos Biomedical Research, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| |
Collapse
|
7
|
Innis-Whitehouse W, Wang X, Restrepo N, Salas C, Moreno K, Restrepo A, Keniry M. Kaposi sarcoma incidence in females is nearly four-fold higher in the Lower Rio Grande Valley compared to the Texas average. Cancer Treat Res Commun 2018; 16:45-52. [PMID: 31299002 DOI: 10.1016/j.ctarc.2018.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 06/09/2018] [Accepted: 06/11/2018] [Indexed: 12/17/2022]
Abstract
The Lower Rio Grande Valley (LRGV) is located on U.S.-Mexican border with a population that is 90% Hispanic [1]. Comprised of Hidalgo, Cameron, Starr and Willacy counties, this region has the highest poverty rate and one of the highest incidences of Type 2 diabetes in the United States [2-4]. Previous studies demonstrated a high prevalence of Human Herpes Virus 8 (HHV8) in the LRGV [5-7]. HHV8 infection has been causally linked to Kaposi Sarcoma (KS) [8]. Here, we retrospectively examine the incidence of KS in the LRGV in a set of HIV-negative Hispanic patients. Strikingly, the incidence of KS was higher in LRGV women compared to the Texas state average (nearly four-fold higher in McAllen-Edinburg-Pharr Metro Statistical Area). This unique profile aligns with the increased HHV8 prevalence in the LRGV, suggesting that HHV8 contributes to a high incidence of HIV-negative KS on the U.S.-Mexican border in Texas.
Collapse
Affiliation(s)
- Wendy Innis-Whitehouse
- School of Medicine, The University of Texas Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, USA.
| | - Xiaohui Wang
- School of Mathematical and Statistical Sciences, The University of Texas Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, USA.
| | - Nicolas Restrepo
- Department of Biology, The University of Texas Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, USA.
| | - Carlos Salas
- Department of Biology, The University of Texas Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, USA.
| | - Katia Moreno
- Texas Oncology, 1901 S. 2nd St., McAllen, TX 78503, USA.
| | | | - Megan Keniry
- Department of Biology, The University of Texas Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, USA.
| |
Collapse
|
8
|
Schulz TF, Cesarman E. Kaposi Sarcoma-associated Herpesvirus: mechanisms of oncogenesis. Curr Opin Virol 2015; 14:116-28. [PMID: 26431609 DOI: 10.1016/j.coviro.2015.08.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 08/30/2015] [Indexed: 10/23/2022]
Abstract
Kaposi Sarcoma-associated Herpesvirus (KSHV, HHV8) causes three human malignancies, Kaposi Sarcoma (KS), an endothelial tumor, as well as Primary Effusion Lymphoma (PEL) and the plasma cell variant of Multicentric Castleman's Disease (MCD), two B-cell lymphoproliferative diseases. All three cancers occur primarily in the context of immune deficiency and/or HIV infection, but their pathogenesis differs. KS most likely results from the combined effects of an endotheliotropic virus with angiogenic properties and inflammatory stimuli and thus represents an interesting example of a cancer that arises in an inflammatory context. Viral and cellular angiogenic and inflammatory factors also play an important role in the pathogenesis of MCD. In contrast, PEL represents an autonomously growing malignancy that is, however, still dependent on the continuous presence of KSHV and the action of several KSHV proteins.
Collapse
Affiliation(s)
- Thomas F Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany; German Centre of Infection Research, Hannover-Braunschweig Site, Hannover, Germany.
| | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, USA.
| |
Collapse
|
9
|
Huwait H, Meneghetti A, Nielsen TO. Kaposi sarcoma of the adrenal gland resembling epithelioid angiosarcoma: a case report. Sarcoma 2011; 2011:898257. [PMID: 21845069 PMCID: PMC3153921 DOI: 10.1155/2011/898257] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 06/22/2011] [Indexed: 11/18/2022] Open
Abstract
Patients with human immunodeficiency virus infection are known to have increased risk of various neoplasms, including Kaposi sarcoma, which classically involves the skin and mucosal locations. The anaplastic variant of Kaposi sarcoma is rare and poorly documented in the literature. It is characterised clinically by a more aggressive behaviour and increased metastatic potential, and histologically by increased cellularity, mitotic rate, and rarely by epithelioid angiosarcoma-like morphology. We report herein a 64-year-old man with a long-standing history of human immunodeficiency virus infection who developed a right adrenal tumor with a high-grade anaplastic angiosarcoma-like morphology. Immunohistochemistry for human herpes virus-8 was strongly positive in the tumor cells. To the best of our knowledge, this is the first report of an anaplastic Kaposi sarcoma in the adrenal gland.
Collapse
Affiliation(s)
- Hassan Huwait
- Anatomical Pathology JP1401, Vancouver Hospital, 855 West 12th Avenue, Vancouver, BC, V5Z 1M9, Canada
| | - Adam Meneghetti
- Department of Surgery, 5th Floor Diamond Health Centre, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada
| | - Torsten O. Nielsen
- Anatomical Pathology JP1401, Vancouver Hospital, 855 West 12th Avenue, Vancouver, BC, V5Z 1M9, Canada
| |
Collapse
|
10
|
Kaposi's sarcoma-associated herpesvirus K-cyclin interacts with Cdk9 and stimulates Cdk9-mediated phosphorylation of p53 tumor suppressor. J Virol 2007; 82:278-90. [PMID: 17942552 DOI: 10.1128/jvi.01552-07] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
K-cyclin, encoded by Kaposi's sarcoma-associated herpesvirus, has previously been demonstrated to activate cyclin-dependent kinase 6 (Cdk6) to induce the phosphorylation of various cell cycle regulators. In this study, we identified Cdk9 as a new K-cyclin-associated Cdk and showed that K-cyclin interacted with Cdk9 through its basic domain. We hypothesized that K-cyclin served as a regulatory subunit for the activity of Cdk9. Recent reports show that Cdk9 phosphorylates tumor suppressor p53, and we found that the K-cyclin/Cdk9 interaction greatly enhanced the kinase activity of Cdk9 toward p53. The phosphorylation site(s) of K-cyclin/Cdk9 kinase complexes was mapped in the transactivation domain of p53. We showed that the ectopic expression of K-cyclin led to a sustained increase of p53 phosphorylation on Ser(33) in vivo, and the phosphorylation could be inhibited by a dominant negative Cdk9 mutant, dn-Cdk9. Using p53-positive U2OS and p53-null SaOS2 cells, we demonstrated that K-cyclin-induced growth arrest was associated with the presence of p53. In addition, K-cyclin-induced p53-dependent growth arrest was rescued by the dn-Cdk9- or Cdk9-specific short hairpin RNA in SaOS2 cells. Together, our findings for the first time demonstrated the interaction of K-cyclin and Cdk9 and revealed a new molecular link between K-cyclin and p53.
Collapse
|
11
|
Abstract
Both human gamma-herpesviruses, Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) induce neoplasia. Burkitt's and Hodgkin's lymphomas harbor EBV sequences, while KSHV has been associated with Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and multicentric castleman's disease (MCD). Each of these gamma-herpesvirus-associated malignancies displays typical characteristics of neoplasia, such as angiogenesis and cell survival. One enzyme commonly overexpressed in breast, prostate, and colon cancers is cyclooxygenase-2 (COX-2). Recently, COX-2 overexpression has been reported in herpesvirus infections in vitro. This review will outline potential mechanisms by which COX-2 may participate in herpesvirus-induced neoplasia.
Collapse
Affiliation(s)
- Bryan D Shelby
- Department of Microbiology and Immunology, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | | | | |
Collapse
|
12
|
Sugaya M, Watanabe T, Yang A, Starost MF, Kobayashi H, Atkins AM, Borris DL, Hanan EA, Schimel D, Bryant MA, Roberts N, Skobe M, Staskus KA, Kaldis P, Blauvelt A. Lymphatic dysfunction in transgenic mice expressing KSHV k-cyclin under the control of the VEGFR-3 promoter. Blood 2004; 105:2356-63. [PMID: 15536152 DOI: 10.1182/blood-2004-08-3364] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) infects endothelial cells within KS tumors, and these cells express the KSHV latent-cycle gene k-cyclin (kCYC) as well as vascular endothelial growth factor receptor 3 (VEGFR-3), a marker for lymphatic endothelium. To further understand KSHV-mediated pathogenesis, we generated transgenic mice expressing kCYC under the control of the VEGFR-3 promoter. kCYC mRNA and functional protein expression within tissue correlated with VEGFR-3 expression and were most abundantly detected within lung tissue. Clinically, most transgenic mice died within 6 months of age secondary to progressive accumulation of chylous pleural fluid. In skin, edema was detected by magnetic resonance imaging and mice demonstrated persistent erythema of the ears following trauma. Histologically, erythematous skin showed extravasation of erythrocytes and accumulation of erythrocytes within lymphatic lumens. In addition, lymphatic drainage of injected contrast dyes was markedly impaired in transgenic mice. Karyomegaly, a feature observed in kCYC-expressing cells in vitro, was detected in many tissues, and selectively occurred within lymphatic endothelial cells expressing kCYC mRNA by in situ hybridization. In summary, kCYC expression within VEGFR-3+ cells of mice causes marked impairment of lymphatic function. kCYC may contribute to the development of certain clinical and histologic features of KS, including localized edema and retention of extravasated erythrocytes within KS tumors.
Collapse
Affiliation(s)
- Makoto Sugaya
- Dermatology Branch, National Cancer Institute, Office of Research Services, Division of Veterinary Resources, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Watanabe T, Sugaya M, Atkins AM, Aquilino EA, Yang A, Borris DL, Brady J, Blauvelt A. Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen prolongs the life span of primary human umbilical vein endothelial cells. J Virol 2003; 77:6188-96. [PMID: 12743275 PMCID: PMC155023 DOI: 10.1128/jvi.77.11.6188-6196.2003] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tumor spindle cells in all clinical types of Kaposi's sarcoma (KS) are infected with Kaposi's sarcoma-associated herpesvirus (KSHV). Although KSHV contains more than 80 genes, only a few are expressed in tumor spindle cells, including latency-associated nuclear antigen (LANA) and k-cyclin (kCYC). To assess the oncogenic potential of LANA and kCYC, primary human umbilical vein endothelial cells (HUVEC) and murine NIH 3T3 cells were stably transduced by using recombinant retroviruses expressing these genes or the known viral oncogene simian virus 40 large T antigen (LTAg). Interestingly, LANA-transduced HUVEC proliferated faster and demonstrated a greatly prolonged life span (mean +/- standard deviation, 38.3 +/- 11.0 passages) than untransduced cells and vector-transduced cells (<20 passages). By contrast, kCYC-transduced HUVEC did not proliferate faster or live longer than control cells. LANA- and kCYC-transduced HUVEC, but not LTAg-transduced HUVEC, retained the ability to form normal vessel-like structures in an in vitro model of angiogenesis. In cellular assays of transformation, LANA- and kCYC-transduced NIH 3T3 cells demonstrated minimal or no anchorage-independent growth in soft agar and no tumorigenicity when injected into nude mice, unlike LTAg-transduced NIH 3T3 cells. Lastly, gene expression profiling revealed down-regulation, or silencing, of a number of genes within LANA-transduced HUVEC. Taken together, these results suggest that KSHV LANA is capable of inducing prolonged life span, but not transformation, in primary human cells. These findings may explain why LANA-expressing spindle cells proliferate within KS tumors, yet most often do not demonstrate biologic characteristics of transformation or true malignant conversion.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Antigens, Viral
- Cell Division
- Cell Transformation, Viral
- Cyclin D
- Cyclins/genetics
- Cyclins/metabolism
- Endothelium, Vascular/cytology
- Female
- Herpesvirus 8, Human/metabolism
- Herpesvirus 8, Human/pathogenicity
- Humans
- Mice
- Mice, Nude
- Neovascularization, Physiologic
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Oligonucleotide Array Sequence Analysis
- Proteins/metabolism
- Sarcoma, Kaposi/physiopathology
- Sarcoma, Kaposi/virology
- Transduction, Genetic
- Umbilical Veins
Collapse
Affiliation(s)
- Takahiro Watanabe
- Dermatology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Katano H, Sato Y, Sata T. Expression of p53 and human herpesvirus-8 (HHV-8)-encoded latency-associated nuclear antigen with inhibition of apoptosis in HHV-8-associated malignancies. Cancer 2001; 92:3076-84. [PMID: 11753987 DOI: 10.1002/1097-0142(20011215)92:12<3076::aid-cncr10117>3.0.co;2-d] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Kaposi sarcoma (KS) and primary effusion lymphoma (PEL) cells express human herpesvirus-8 (HHV-8)-encoded latency-associated nuclear antigen (LANA) (open reading frame [ORF] 73 protein), suggesting that LANA plays an important role in the pathogenesis of HHV-8-associated malignancies. Recently, the binding of LANA to p53 was demonstrated in vitro. In the current study, the authors investigated the association between p53 and LANA expression with apoptosis in HHV-8-associated malignancies in vivo. METHODS Twenty-six cases of KS, 1 case of HHV-8-associated solid lymphoma, 2 PEL cell lines, and an HHV-8-associated lymphoma engrafted in severe combined immunodeficiency (SCID) mice were examined. Immunohistochemistry using the catalyzed signal amplification system was employed to detect LANA and p53 on paraffin embedded tissues and the immunofluorescence technique was used on cell lines. To detect apoptosis, the TdT-mediated dUTP nick end labeling (TUNEL) method was used. For mutation analysis of p53, exons 5-9 of the p53 gene were amplified by polymerase chain reaction and examined by direct sequencing. RESULTS Immunohistochemistry revealed that LANA and p53 were expressed in the tumor cells of all these specimens, and apoptotic cells were rarely detected in them using the TUNEL method. Immunofluorescence assay revealed that LANA colocalized with p53 in the nuclei of PEL cells. Sequencing analysis indicated that there was no mutation in the deduced amino acid sequences of p53 in KS tissues. CONCLUSIONS These data suggest colocalization of p53 and LANA and the inhibition of apoptosis in HHV-8-associated malignancies in vivo, supporting the results found in vitro that p53 inhibition by LANA suppresses cell death, as reported previously. These results also suggest that the p53 pathway is crucial in the pathogenesis of HHV-8-associated malignancies.
Collapse
Affiliation(s)
- H Katano
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan.
| | | | | |
Collapse
|
15
|
Simonart T, Noel JC. Increased p53 staining in non-sun-exposed epidermis overlying Kaposi sarcoma. Am J Dermatopathol 2000; 22:373-4. [PMID: 10949466 DOI: 10.1097/00000372-200008000-00016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Histopathologic Features of Progression in Mediterranean and Immunodeficiency-Related Kaposi Sarcoma. Am J Dermatopathol 2000. [DOI: 10.1097/00000372-200002000-00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Friborg J, Kong W, Hottiger MO, Nabel GJ. p53 inhibition by the LANA protein of KSHV protects against cell death. Nature 1999; 402:889-94. [PMID: 10622254 DOI: 10.1038/47266] [Citation(s) in RCA: 532] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV), or human herpesvirus 8, has been implicated in the development of Kaposi's sarcoma (KS) and several B-cell lymphoproliferative diseases. Most cells in lesions derived from these malignancies are latently infected, and different viral gene products have been identified in association with lytic or latent infection by KSHV. The latency-associated nuclear antigen (LANA), encoded by open reading frame 73 of the KSHV genome, is a highly immunogenic protein that is expressed predominantly during viral latency, in most KS spindle cells and in cell lines established from body-cavity-based lymphomas. Antibodies to LANA can be detected in a high percentage of HIV-infected individuals who subsequently develop KS, although its role in disease pathogenesis is not completely understood. p53 is a potent transcriptional regulator of cell growth whose induction leads either to cell-cycle arrest or apoptosis. Loss of p53 function correlates with cell transformation and oncogenesis, and several viral oncoproteins interact with p53 and modulate its biological activity. Here we show that LANA interacts with the tumour suppressor protein p53 and represses its transcriptional activity. This viral gene product further inhibits the ability of p53 to induce cell death. We propose that LANA contributes to viral persistence and oncogenesis in KS through its ability to promote cell survival by altering p53 function.
Collapse
Affiliation(s)
- J Friborg
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
18
|
Hodak E, Hammel I, Feinmesser M, Zelinger A, Maron L, Sulkes J, David M. Differential expression of p53 and Ki-67 proteins in classic and iatrogenic Kaposi's sarcoma. Am J Dermatopathol 1999; 21:138-45. [PMID: 10218673 DOI: 10.1097/00000372-199904000-00005] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In many neoplasms, the finding p53 immunoreactivity correlates with striking cytologic atypia, a high tumor cell proliferation rate, and poor prognosis. The literature regarding p53 and Ki-67 (a nuclear proliferation-associated antigen) immunoreactivity in Kaposi's sarcoma is limited. We aimed to: (1) evaluate the role of p53 in the development of Kaposi's sarcoma; (2) determine whether there is a correlation between p53 and Ki-67 protein expression; and (3) determine possible differences between classical Kaposi's sarcoma, known usually to have a benign course, and iatrogenic Kaposi's sarcoma, the course of which is unpredictable, by studying the differential expression of p53 and Ki-67. Among 26 cases of classic KS and 19 of iatrogenic KS, 12 were classified histopathologically as early type and 33 as mixed or spindle-cell type. P53 and Ki-67 immunoreactivity correlated significantly with the histopathologic stage of KS (r=0.63, p=0.0001; r=0.42, p=0.0084, respectively). P53 was not detected in any of the cases in an early histopathologic stage but was present in 55% of the cases in a more advanced stage. The spindle cells increased in proportion with the histopathologic progression and were more often positive (p=0.019) and displayed more extensive staining than the endothelial cells (p=0.0001). There was a strong positive correlation between p53 and Ki-67 protein expression (r=0.43, p=0.0087). There was no correlation between the expression of either p53 or Ki-67 and the extent of the eruption. The expression of p53 and Ki-67 was significantly lower in iatrogenic cases than in the classic cases (p=0.009, p=0.0014, respectively), although no statistical difference was found between the histopathologic stages in the two clinical forms of KS. P53 immunoreactivity was detected in 79% of the cases of classic Kaposi's sarcoma in the mixed or spindle cell stage but in only 21.5% of the iatrogenic cases showing the same histopathologic stage (p=0.001), and the percentage of spindle cells as well as the endothelial cells expressing p53 was higher in the classic cases than in the iatrogenic cases (p=0.0032, p=0.0142, respectively). We conclude that p53 immunoexpression is a marker of tumor progression in classic Kaposi's sarcoma but not in most cases of iatrogenic Kaposi's sarcoma. The proliferative activity of the tumor cells in classic Kaposi's sarcoma is much higher than in iatrogenic Kaposi's sarcoma. Our work implies that the molecular steps involved in classic and iatrogenic Kaposi's sarcoma differ.
Collapse
Affiliation(s)
- E Hodak
- Department of Dermatology, Rabin Medical Center, Petah Tikva, Israel
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Seventy three cases of Kaposi's sarcoma (KS) from the 3 histological subtypes (patch, plaque and nodular) were assessed for bcl-2 and p53 protein expression. The aim was to determine the level of expression of these proteins in KS and in the different subtypes. Commercially available antibodies to bcl-2 and p53 were applied after both microwave and pressure cooking antigen retrieval. Bcl-2 immunoexpression increased from the patch stage (36%) to the plaque stage (45%) to the nodular stage (70.83%). Better immunostaining for bcl-2 was obtained after pressure cooking. p53 on the other hand, was not expressed in the patch or plaque stages, but 54.16% of cases in the nodular stage were immunopositive. These results show a progression of immunoexpression of both bcl-2 and p53 from the early histological stages to the late tumor stage, implying that these proteins are upregulated late in the evolution of KS.
Collapse
Affiliation(s)
- P Pillay
- University of Natal Medical School, Department of Pathology, Durban, South Africa.
| | | | | |
Collapse
|
20
|
De Thier F, Simonart T, Hermans P, André J, Van Vooren JP, Noel JC. Early- and late-stage Kaposi's sarcoma lesions exhibit similar proliferation fraction. Am J Dermatopathol 1999; 21:25-7. [PMID: 10027521 DOI: 10.1097/00000372-199902000-00005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
There are few studies on the proliferative activity of cells in Kaposi's sarcoma. It remains unclear whether the different progressive histologic stages of Kaposi's sarcoma correlate with the proliferative activity of the tumor. To clarify this issue, we studied the Ki-67 proliferation index in 40 specimens of acquired immune deficiency syndrome-related Kaposi's sarcoma in correlation with the histologic stage of the lesions. The mean proliferation index in our combined material was rather low (8%, range 1-20%) and there was no significant difference among the different stages of the disease. Contrary to a common and probably misleading concept, our results suggest that the histologic progression of the Kaposi's sarcoma is not related to an increase of the proliferative compartment.
Collapse
Affiliation(s)
- F De Thier
- Department of Dermatology, Centre Hospitalier Universitaire St. Pierre, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
21
|
Kennedy MM, O'Leary JJ, Oates JL, Lucas SB, Howells DD, Picton S, McGee JO. Human herpes virus 8 (HHV-8) in Kaposi's sarcoma: lack of association with Bcl-2 and p53 protein expression. Mol Pathol 1998; 51:155-9. [PMID: 9850339 PMCID: PMC395628 DOI: 10.1136/mp.51.3.155] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AIMS Human herpes virus 8 (HHV-8) is the infectious agent implicated in the pathogenesis of Kaposi's sarcoma, although its mode of action is unclear. Recent work indicates that the HHV-8 genome encodes a viral Bcl-2 homologue (v-Bcl-2). The aim of this study was to explore Bcl-2 expression in Kaposi's sarcoma using a unique set of HHV-8 positive and negative cases, and to determine whether there is a relation with p53 expression. METHODS Up to 18 specimens from 17 patients were selected. HHV-8 status was determined using nested polymerase chain reaction (PCR) to the open reading frame (ORF) 26, with further confirmation by TaqMan PCR. In addition, Bcl-2 and p53 immunohistochemistry were performed using standard protocols. RESULTS The results suggest that Bcl-2 and p53 expression is independent of HHV-8 status. In addition, there does not appear to be a direct correlation with disease stage. CONCLUSIONS HHV8 histopathogenesis is likely to be a multifactorial complex process, which may be mediated in part by viral genes and apoptosis regulating homologues.
Collapse
Affiliation(s)
- M M Kennedy
- Nuffield Department of Pathology and Bacteriology, University of Oxford, UK
| | | | | | | | | | | | | |
Collapse
|
22
|
|