1
|
McCann MR, George De la Rosa MV, Rosania GR, Stringer KA. L-Carnitine and Acylcarnitines: Mitochondrial Biomarkers for Precision Medicine. Metabolites 2021; 11:51. [PMID: 33466750 PMCID: PMC7829830 DOI: 10.3390/metabo11010051] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
Biomarker discovery and implementation are at the forefront of the precision medicine movement. Modern advances in the field of metabolomics afford the opportunity to readily identify new metabolite biomarkers across a wide array of disciplines. Many of the metabolites are derived from or directly reflective of mitochondrial metabolism. L-carnitine and acylcarnitines are established mitochondrial biomarkers used to screen neonates for a series of genetic disorders affecting fatty acid oxidation, known as the inborn errors of metabolism. However, L-carnitine and acylcarnitines are not routinely measured beyond this screening, despite the growing evidence that shows their clinical utility outside of these disorders. Measurements of the carnitine pool have been used to identify the disease and prognosticate mortality among disorders such as diabetes, sepsis, cancer, and heart failure, as well as identify subjects experiencing adverse drug reactions from various medications like valproic acid, clofazimine, zidovudine, cisplatin, propofol, and cyclosporine. The aim of this review is to collect and interpret the literature evidence supporting the clinical biomarker application of L-carnitine and acylcarnitines. Further study of these metabolites could ultimately provide mechanistic insights that guide therapeutic decisions and elucidate new pharmacologic targets.
Collapse
Affiliation(s)
- Marc R. McCann
- The NMR Metabolomics Laboratory, Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Mery Vet George De la Rosa
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA; (M.V.G.); (G.R.R.)
| | - Gus R. Rosania
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA; (M.V.G.); (G.R.R.)
| | - Kathleen A. Stringer
- The NMR Metabolomics Laboratory, Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA;
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
2
|
L-Carnitine in Drosophila: A Review. Antioxidants (Basel) 2020; 9:antiox9121310. [PMID: 33371457 PMCID: PMC7767417 DOI: 10.3390/antiox9121310] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
L-Carnitine is an amino acid derivative that plays a key role in the metabolism of fatty acids, including the shuttling of long-chain fatty acyl CoA to fuel mitochondrial β-oxidation. In addition, L-carnitine reduces oxidative damage and plays an essential role in the maintenance of cellular energy homeostasis. L-carnitine also plays an essential role in the control of cerebral functions, and the aberrant regulation of genes involved in carnitine biosynthesis and mitochondrial carnitine transport in Drosophila models has been linked to neurodegeneration. Drosophila models of neurodegenerative diseases provide a powerful platform to both unravel the molecular pathways that contribute to neurodegeneration and identify potential therapeutic targets. Drosophila can biosynthesize L-carnitine, and its carnitine transport system is similar to the human transport system; moreover, evidence from a defective Drosophila mutant for one of the carnitine shuttle genes supports the hypothesis of the occurrence of β-oxidation in glial cells. Hence, Drosophila models could advance the understanding of the links between L-carnitine and the development of neurodegenerative disorders. This review summarizes the current knowledge on L-carnitine in Drosophila and discusses the role of the L-carnitine pathway in fly models of neurodegeneration.
Collapse
|
3
|
Juraszek B, Nałęcz KA. SLC22A5 (OCTN2) Carnitine Transporter-Indispensable for Cell Metabolism, a Jekyll and Hyde of Human Cancer. Molecules 2019; 25:molecules25010014. [PMID: 31861504 PMCID: PMC6982704 DOI: 10.3390/molecules25010014] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 12/26/2022] Open
Abstract
Oxidation of fatty acids uses l-carnitine to transport acyl moieties to mitochondria in a so-called carnitine shuttle. The process of β-oxidation also takes place in cancer cells. The majority of carnitine comes from the diet and is transported to the cell by ubiquitously expressed organic cation transporter novel family member 2 (OCTN2)/solute carrier family 22 member 5 (SLC22A5). The expression of SLC22A5 is regulated by transcription factors peroxisome proliferator-activated receptors (PPARs) and estrogen receptor. Transporter delivery to the cell surface, as well as transport activity are controlled by OCTN2 interaction with other proteins, such as PDZ-domain containing proteins, protein phosphatase PP2A, caveolin-1, protein kinase C. SLC22A5 expression is altered in many types of cancer, giving an advantage to some of them by supplying carnitine for β-oxidation, thus providing an alternative to glucose source of energy for growth and proliferation. On the other hand, SLC22A5 can also transport several chemotherapeutics used in clinics, leading to cancer cell death.
Collapse
|
4
|
Bouchouirab FZ, Fortin M, Noll C, Dubé J, Carpentier AC. Plasma Palmitoyl-Carnitine (AC16:0) Is a Marker of Increased Postprandial Nonesterified Incomplete Fatty Acid Oxidation Rate in Adults With Type 2 Diabetes. Can J Diabetes 2017; 42:382-388.e1. [PMID: 29129455 DOI: 10.1016/j.jcjd.2017.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 01/15/2023]
Abstract
OBJECTIVES Enhanced mitochondrial fatty acid utilization is known to increase radical oxidative stress and induce insulin resistance. An increased level of plasma acylcarnitine (AC) has been proposed to indicate mitochondrial energy substrate overload, a possible mechanism leading to insulin resistance. The aim of our study was to determine fasting and postprandial plasma acetyl-carnitine (AC2:0), palmitoyl-carnitine (AC16:0), oleoyl-carnitine (AC18:1) and linoleoyl-carnitine (AC18:2) levels and their relationships with plasma nonesterified fatty acid appearance and oxidation rates and insulin sensitivity in participants with type 2 diabetes and normoglycemic offspring of 2 parents with type 2 diabetes (FH+) compared to healthy participants without family histories of type 2 diabetes (FH-). METHODS All participants underwent 3 metabolic protocols: 1) a euglycemic hyperinsulinemic clamp at fasting; 2) a 6-hour steady-state oral standard liquid meal and 3) an identical 6-hour steady-state meal intake study with a euglycemic hyperinsulinemic clamp. AC levels were measured by liquid chromatography with tandem mass spectrometry, and fatty acid oxidation (FAO) rates were measured by stable isotopic tracer techniques with indirect respiratory calorimetry. RESULTS During the insulin clamp at fasting, AC16:0 was significantly higher in the group with type 2 diabetes vs. FH- (p<0.05). In the postprandial state, AC2:0, AC16:0 and AC18:1 decreased significantly, but this reduction was blunted in type 2 diabetes, even during normalization of postprandial glucose levels during the insulin clamp. Fasting AC16:0 correlated with FAO (ρ=+0.604; p=0.0002); triacylglycerol (ρ=+0.427; p<0.02) and waist circumference (ρ=+0.416; p=0.02). CONCLUSIONS Spillover of AC occurs in type 2 diabetes but is not fully established in FH+. AC16:0 can be a useful biomarker of excessive FAO.
Collapse
Affiliation(s)
- Fatima-Zahra Bouchouirab
- Division of Biochemistry, Department of Medical Biology, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Canada
| | - Mélanie Fortin
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Canada
| | - Christophe Noll
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Canada
| | - Jean Dubé
- Division of Biochemistry, Department of Medical Biology, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Canada
| | - André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Canada.
| |
Collapse
|
5
|
Oxidative Stress in Cancer-Prone Genetic Diseases in Pediatric Age: The Role of Mitochondrial Dysfunction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4782426. [PMID: 27239251 PMCID: PMC4863121 DOI: 10.1155/2016/4782426] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 04/10/2016] [Indexed: 12/12/2022]
Abstract
Oxidative stress is a distinctive sign in several genetic disorders characterized by cancer predisposition, such as Ataxia-Telangiectasia, Fanconi Anemia, Down syndrome, progeroid syndromes, Beckwith-Wiedemann syndrome, and Costello syndrome. Recent literature unveiled new molecular mechanisms linking oxidative stress to the pathogenesis of these conditions, with particular regard to mitochondrial dysfunction. Since mitochondria are one of the major sites of ROS production as well as one of the major targets of their action, this dysfunction is thought to be the cause of the prooxidant status. Deeper insight of the pathogenesis of the syndromes raises the possibility to identify new possible therapeutic targets. In particular, the use of mitochondrial-targeted agents seems to be an appropriate clinical strategy in order to improve the quality of life and the life span of the patients.
Collapse
|
6
|
Console L, Giangregorio N, Indiveri C, Tonazzi A. Carnitine/acylcarnitine translocase and carnitine palmitoyltransferase 2 form a complex in the inner mitochondrial membrane. Mol Cell Biochem 2014; 394:307-14. [DOI: 10.1007/s11010-014-2098-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/15/2014] [Indexed: 12/19/2022]
|
7
|
Rigault C, Le Borgne F, Tazir B, Benani A, Demarquoy J. A high-fat diet increases L-carnitine synthesis through a differential maturation of the Bbox1 mRNAs. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1831:370-7. [PMID: 23127966 DOI: 10.1016/j.bbalip.2012.10.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/15/2012] [Accepted: 10/26/2012] [Indexed: 12/30/2022]
Abstract
l-carnitine is a key molecule in both mitochondrial and peroxisomal lipid metabolisms. l-carnitine is biosynthesized from gamma-butyrobetaine by a reaction catalyzed by the gamma-butyrobetaine hydroxylase (Bbox1). The aim of this work was to identify molecular mechanisms involved in the regulation of l-carnitine biosynthesis and availability. Using 3' RACE, we identified four alternatively polyadenylated Bbox1 mRNAs in rat liver. We utilized a combination of in vitro experiments using hybrid constructs containing the Bbox1 3' UTR and in vivo experiments on rat liver mRNAs to reveal specificities in the different Bbox1 mRNA isoforms, especially in terms of polyadenylation efficiency, mRNA stability and translation efficiency. This complex maturation process of the Bbox1 mRNAs in the liver was studied on rats fed a high-fat diet. High-fat diet selectively increased the level of three Bbox1 mRNA isoforms in rat liver and the alternative use of polyadenylation sites contributed to the global increase in Bbox1 enzymatic activity and l-carnitine levels. Our results show that the maturation of Bbox1 mRNAs is nutritionally regulated in the liver through a selective polyadenylation process to adjust l-carnitine biosynthesis to the energy supply.
Collapse
Affiliation(s)
- Caroline Rigault
- Université de Bourgogne, BioperoxIL, EA 7270, Faculté Gabriel, 6 blvd Gabriel, 21000 Dijon, France
| | | | | | | | | |
Collapse
|
8
|
Reuter SE, Evans AM. Carnitine and acylcarnitines: pharmacokinetic, pharmacological and clinical aspects. Clin Pharmacokinet 2012; 51:553-72. [PMID: 22804748 DOI: 10.1007/bf03261931] [Citation(s) in RCA: 326] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
L-Carnitine (levocarnitine) is a naturally occurring compound found in all mammalian species. The most important biological function of L-carnitine is in the transport of fatty acids into the mitochondria for subsequent β-oxidation, a process which results in the esterification of L-carnitine to form acylcarnitine derivatives. As such, the endogenous carnitine pool is comprised of L-carnitine and various short-, medium- and long-chain acylcarnitines. The physiological importance of L-carnitine and its obligatory role in the mitochondrial metabolism of fatty acids has been clearly established; however, more recently, additional functions of the carnitine system have been described, including the removal of excess acyl groups from the body and the modulation of intracellular coenzyme A (CoA) homeostasis. In light of this, acylcarnitines cannot simply be considered by-products of the enzymatic carnitine transfer system, but provide indirect evidence of altered mitochondrial metabolism. Consequently, examination of the contribution of L-carnitine and acylcarnitines to the endogenous carnitine pool (i.e. carnitine pool composition) is critical in order to adequately characterize metabolic status. The concentrations of L-carnitine and its esters are maintained within relatively narrow limits for normal biological functioning in their pivotal roles in fatty acid oxidation and maintenance of free CoA availability. The homeostasis of carnitine is multifaceted with concentrations achieved and maintained by a combination of oral absorption, de novo biosynthesis, carrier-mediated distribution into tissues and extensive, but saturable, renal tubular reabsorption. Various disorders of carnitine insufficiency have been described but ultimately all result in impaired entry of fatty acids into the mitochondria and consequently disturbed lipid oxidation. Given the sensitivity of acylcarnitine concentrations and the relative carnitine pool composition in reflecting the intramitochondrial acyl-CoA to free CoA ratio (and, hence, any disturbances in mitochondrial metabolism), the relative contribution of L-carnitine and acylcarnitines within the total carnitine pool is therefore considered critical in the identification of mitochondria dysfunction. Although there is considerable research in the literature focused on disorders of carnitine insufficiency, relatively few have examined relative carnitine pool composition in these conditions; consequently, the complexity of these disorders may not be fully understood. Similarly, although important studies have been conducted establishing the pharmacokinetics of exogenous carnitine and short-chain carnitine esters in healthy volunteers, few studies have examined carnitine pharmacokinetics in patient groups. Furthermore, the impact of L-carnitine administration on the kinetics of acylcarnitines has not been established. Given the importance of L-carnitine as well as acylcarnitines in maintaining normal mitochondrial function, this review seeks to examine previous research associated with the homeostasis and pharmacokinetics of L-carnitine and its esters, and highlight potential areas of future research.
Collapse
Affiliation(s)
- Stephanie E Reuter
- School of Pharmacy Medical Sciences, University of South Australia, Adelaide, SA, Australia.
| | | |
Collapse
|
9
|
Wang C, Uray IP, Mazumdar A, Mayer JA, Brown PH. SLC22A5/OCTN2 expression in breast cancer is induced by estrogen via a novel intronic estrogen-response element (ERE). Breast Cancer Res Treat 2012; 134:101-15. [PMID: 22212555 DOI: 10.1007/s10549-011-1925-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 12/13/2011] [Indexed: 12/30/2022]
Abstract
Estrogen signaling is a critical pathway that plays a key role in the pathogenesis of breast cancer. In a previous transcriptional profiling study, we identified a novel panel of estrogen-induced genes in breast cancer. One of these genes is solute carrier family 22 member 5 (SLC22A5), which encodes a polyspecific organic cation transporter (also called OCTN2). In this study, we found that estrogen stimulates SLC22A5 expression robustly in an estrogen receptor (ER)-dependent manner and that SLC22A5 expression is associated with ER status in breast cancer cell lines and tissue specimens. Although the SLC22A5 proximal promoter is not responsive to estrogen, a downstream intronic enhancer confers estrogen inducibility. This intronic enhancer contains a newly identified estrogen-responsive element (ERE) (GGTCA-CTG-TGACT) and other transcription factor binding sites, such as a half ERE and a nuclear receptor related 1 (NR4A2/Nurr1) site. Estrogen induction of the luciferase reporter was dependent upon both the ERE and the NR4A2 site within the intronic enhancer. Small interfering RNA against either ER or Nurr1 inhibited estrogen induction of SLC22A5 expression, and chromatin immunoprecipitation assays confirmed the recruitment of both ER and Nurr1 to this enhancer. In functional assays, knockdown of SLC22A5 inhibited L: -carnitine intake, resulted in lipid droplet accumulation, and suppressed the proliferation of breast cancer cells. These results demonstrate that SLC22A5 is an estrogen-dependent gene regulated via a newly identified intronic ERE. Since SLC22A5 is a critical regulator of carnitine homeostasis, lipid metabolism, and cell proliferation, SLC22A5 may serve as a potential therapeutic target for breast cancer in the future.
Collapse
Affiliation(s)
- Chunyu Wang
- Department of Clinical Cancer Prevention, M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
10
|
Seifert EL, Estey C, Xuan JY, Harper ME. Electron transport chain-dependent and -independent mechanisms of mitochondrial H2O2 emission during long-chain fatty acid oxidation. J Biol Chem 2009; 285:5748-58. [PMID: 20032466 DOI: 10.1074/jbc.m109.026203] [Citation(s) in RCA: 197] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress in skeletal muscle is a hallmark of various pathophysiologic states that also feature increased reliance on long-chain fatty acid (LCFA) substrate, such as insulin resistance and exercise. However, little is known about the mechanistic basis of the LCFA-induced reactive oxygen species (ROS) burden in intact mitochondria, and elucidation of this mechanistic basis was the goal of this study. Specific aims were to determine the extent to which LCFA catabolism is associated with ROS production and to gain mechanistic insights into the associated ROS production. Because intermediates and by-products of LCFA catabolism may interfere with antioxidant mechanisms, we predicted that ROS formation during LCFA catabolism reflects a complex process involving multiple sites of ROS production as well as modified mitochondrial function. Thus, we utilized several complementary approaches to probe the underlying mechanism(s). Using skeletal muscle mitochondria, our findings indicate that even a low supply of LCFA is associated with ROS formation in excess of that generated by NADH-linked substrates. Moreover, ROS production was evident across the physiologic range of membrane potential and was relatively insensitive to membrane potential changes. Determinations of topology and membrane potential as well as use of inhibitors revealed complex III and the electron transfer flavoprotein (ETF) and ETF-oxidoreductase, as likely sites of ROS production. Finally, ROS production was sensitive to matrix levels of LCFA catabolic intermediates, indicating that mitochondrial export of LCFA catabolic intermediates can play a role in determining ROS levels.
Collapse
Affiliation(s)
- Erin L Seifert
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | | | | | | |
Collapse
|
11
|
Brey CW, Nelder MP, Hailemariam T, Gaugler R, Hashmi S. Krüppel-like family of transcription factors: an emerging new frontier in fat biology. Int J Biol Sci 2009; 5:622-36. [PMID: 19841733 PMCID: PMC2757581 DOI: 10.7150/ijbs.5.622] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 09/28/2009] [Indexed: 12/26/2022] Open
Abstract
In mammals, adipose tissue stores energy in the form of fat. The ability to regulate fat storage is essential for the growth, development and reproduction of most animals, thus any abnormalities caused by excess fat accumulation can result in pathological conditions which are linked to several interrelated diseases, such as cardiovascular diseases, diabetes, and obesity. In recent years significant effort has been applied to understand basic mechanism of fat accumulation in mammalian system. Work in mouse has shown that the family of Krüppel-like factors (KLFs), a conserved and important class of transcription factors, regulates adipocyte differentiation in mammals. However, how fat storage is coordinated in response to positive and negative feedback signals is still poorly understood. To address mechanisms underlying fat storage we have studied two Caenorhabditis elegans KLFs and demonstrate that both worm klfs are key regulators of fat metabolism in C. elegans. These results provide the first in vivo evidence supporting essential regulatory roles for KLFs in fat metabolism in C. elegans and shed light on the human counterpart in disease-gene association. This finding allows us to pursue a more comprehensive approach to understand fat biology and provides an opportunity to learn about the cascade of events that regulate KLF activation, repression and interaction with other factors in exerting its biological function at an organismal level. In this review, we provide an overview of the most current information on the key regulatory components in fat biology, synthesize the diverse literature, pose new questions, and propose a new model organism for understanding fat biology using KLFs as the central theme.
Collapse
Affiliation(s)
- Christopher W Brey
- Center for Vector Biology, Rutgers University, New Brunswick, New Jersey 08901, USA
| | | | | | | | | |
Collapse
|
12
|
Berni A, Meschini R, Filippi S, Palitti F, De Amicis A, Chessa L. l-Carnitine enhances resistance to oxidative stress by reducing DNA damage in Ataxia telangiectasia cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2008; 650:165-74. [DOI: 10.1016/j.mrgentox.2007.11.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 10/22/2007] [Accepted: 11/21/2007] [Indexed: 10/22/2022]
|
13
|
Antonenkov VD, Hiltunen JK. Peroxisomal membrane permeability and solute transfer. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1763:1697-706. [PMID: 17045662 DOI: 10.1016/j.bbamcr.2006.08.044] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 08/16/2006] [Accepted: 08/18/2006] [Indexed: 10/24/2022]
Abstract
The review is dedicated to recent progress in the study of peroxisomal membrane permeability to solutes which has been a matter of debate for more than 40 years. Apparently, the mammalian peroxisomal membrane is freely permeable to small solute molecules owing to the presence of pore-forming channels. However, the membrane forms a permeability barrier for 'bulky' solutes including cofactors (NAD/H, NADP/H, CoA, and acetyl/acyl-CoA esters) and ATP. Therefore, peroxisomes need specific protein transporters to transfer these compounds across the membrane. Recent electrophysiological studies have revealed channel-forming activities in the mammalian peroxisomal membrane. The possible involvement of the channels in the transfer of small metabolites and in the formation of peroxisomal shuttle systems is described.
Collapse
Affiliation(s)
- Vasily D Antonenkov
- Department of Biochemistry and Biocenter Oulu, University of Oulu, P.O. Box 3000, FIN-90014 Oulu, Finland.
| | | |
Collapse
|
14
|
Rottensteiner H, Theodoulou FL. The ins and outs of peroxisomes: Co-ordination of membrane transport and peroxisomal metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1527-40. [PMID: 17010456 DOI: 10.1016/j.bbamcr.2006.08.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 08/15/2006] [Accepted: 08/18/2006] [Indexed: 11/28/2022]
Abstract
Peroxisomes perform a range of metabolic functions which require the movement of substrates, co-substrates, cofactors and metabolites across the peroxisomal membrane. In this review, we discuss the evidence for and against specific transport systems involved in peroxisomal metabolism and how these operate to co-ordinate biochemical reactions within the peroxisome with those in other compartments of the cell.
Collapse
Affiliation(s)
- Hanspeter Rottensteiner
- Medical Faculty of the Ruhr-University of Bochum, Department of Physiological Chemistry, Section of Systems Biochemistry, 44780 Bochum, Germany.
| | | |
Collapse
|
15
|
Speers-Roesch B, Ip YK, Ballantyne JS. Metabolic organization of freshwater, euryhaline, and marine elasmobranchs: implications for the evolution of energy metabolism in sharks and rays. J Exp Biol 2006; 209:2495-508. [PMID: 16788033 DOI: 10.1242/jeb.02294] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
To test the hypothesis that the preference for ketone bodies rather than lipids as oxidative fuel in elasmobranchs evolved in response to the appearance of urea-based osmoregulation, we measured total non-esterified fatty acids (NEFA) in plasma as well as maximal activities of enzymes of intermediary metabolism in tissues from marine and freshwater elasmobranchs,including: the river stingray Potamotrygon motoro (<1 mmol l–1 plasma urea); the marine stingray Taeniura lymma, and the marine shark Chiloscyllium punctatum (>300 mmol l–1 plasma urea); and the euryhaline freshwater stingray Himantura signifer, which possesses intermediate levels of urea. H. signifer also were acclimated to half-strength seawater(15‰) for 2 weeks to ascertain the metabolic effects of the higher urea level that results from salinity acclimation. Our results do not support the urea hypothesis. Enzyme activities and plasma NEFA in salinity-challenged H. signifer were largely unchanged from the freshwater controls, and the freshwater elasmobranchs did not show an enhanced capacity for extrahepatic lipid oxidation relative to the marine species. Importantly, and contrary to previous studies, extrahepatic lipid oxidation does occur in elasmobranchs, based on high carnitine palmitoyl transferase (CPT) activities in kidney and rectal gland. Heart CPT in the stingrays was detectable but low,indicating some capacity for lipid oxidation. CPT was undetectable in red muscle, and almost undetectable in heart, from C. punctatum as well as in white muscle from T. lymma. We propose a revised model of tissue-specific lipid oxidation in elasmobranchs, with high levels in liver,kidney and rectal gland, low or undetectable levels in heart, and none in red or white muscle. Plasma NEFA levels were low in all species, as previously noted in elasmobranchs. D-β-hydroxybutyrate dehydrogenase(d-β-HBDH) was high in most tissues confirming the importance of ketone bodies in elasmobranchs. However, very low d-β-HBDH in kidney from T. lymma indicates that interspecific variability in ketone body utilization occurs. A negative relationship was observed across species between liver glutamate dehydrogenase activity and tissue or plasma urea levels, suggesting that glutamate is preferentially deaminated in freshwater elasmobranchs because it does not need to be shunted to urea production as in marine elasmobranchs.
Collapse
Affiliation(s)
- B Speers-Roesch
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, NIG 2W1, Canada
| | | | | |
Collapse
|
16
|
Antonenkov V, Sormunen R, Ohlmeier S, Amery L, Fransen M, Mannaerts G, Hiltunen J. Localization of a portion of the liver isoform of fatty-acid-binding protein (L-FABP) to peroxisomes. Biochem J 2006; 394:475-84. [PMID: 16262600 PMCID: PMC1408678 DOI: 10.1042/bj20051058] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The liver isoform of fatty-acid-binding protein (L-FABP) facilitates the cellular uptake, transport and metabolism of fatty acids and is also involved in the regulation of gene expressions and cell differentiation. Consistent with these functions, L-FABP is predominantly present in the cytoplasm and to a lesser extent in the nucleus; however, a significant portion of this protein has also been detected in fractions containing different organelles. More recent observations, notably on L-FABP-deficient mice, indicated a possible direct involvement of L-FABP in the peroxisomal oxidation of long-chain fatty acids. In order to clarify the links between L-FABP and peroxisomal lipid metabolism, we reinvestigated the subcellular distribution of the protein. Analytical subcellular fractionation by a method preserving the intactness of isolated peroxisomes, two-dimensional gel electrophoresis of peroxisomal matrix proteins combined with MS analysis, and immunoelectron microscopy of liver sections demonstrate the presence of L-FABP in the matrix of peroxisomes as a soluble protein. Peroxisomal L-FABP was highly inducible by clofibrate. The induction of L-FABP was accompanied by a marked increase in the binding capacity of peroxisomal matrix proteins for oleic acid and cis-parinaric acid. The peroxisomal beta-oxidation of palmitoyl-CoA and acyl-CoA thioesterase activity were stimulated by L-FABP, indicating that the protein modulates the function of peroxisomal lipid-metabolizing enzymes. The possible role of intraperoxisomal L-FABP in lipid metabolism is discussed.
Collapse
Affiliation(s)
- Vasily D. Antonenkov
- *Department of Biochemistry, Biocenter Oulu, University of Oulu, Linnanmaa, P.O. Box 3000, FIN-90014 Oulu, Finland
- Correspondence may be addressed to either of these authors (email or )
| | - Raija T. Sormunen
- †Department of Pathology, Biocenter Oulu, University of Oulu, Linnanmaa, P.O. Box 3000, FIN-90014 Oulu, Finland
| | - Steffen Ohlmeier
- *Department of Biochemistry, Biocenter Oulu, University of Oulu, Linnanmaa, P.O. Box 3000, FIN-90014 Oulu, Finland
| | - Leen Amery
- ‡Departement Moleculaire Celbiologie, Katholieke Universiteit Leuven, Campus Gasthuisberg, Afdeling Farmakologie, Herestraat 49 (box 601), B-3000 Leuven, Belgium
| | - Marc Fransen
- ‡Departement Moleculaire Celbiologie, Katholieke Universiteit Leuven, Campus Gasthuisberg, Afdeling Farmakologie, Herestraat 49 (box 601), B-3000 Leuven, Belgium
| | - Guy P. Mannaerts
- ‡Departement Moleculaire Celbiologie, Katholieke Universiteit Leuven, Campus Gasthuisberg, Afdeling Farmakologie, Herestraat 49 (box 601), B-3000 Leuven, Belgium
| | - J. Kalervo Hiltunen
- *Department of Biochemistry, Biocenter Oulu, University of Oulu, Linnanmaa, P.O. Box 3000, FIN-90014 Oulu, Finland
- Correspondence may be addressed to either of these authors (email or )
| |
Collapse
|
17
|
Santoro A, Lioi MB, Monfregola J, Salzano S, Barbieri R, Ursini MV. l-Carnitine protects mammalian cells from chromosome aberrations but not from inhibition of cell proliferation induced by hydrogen peroxide. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2005; 587:16-25. [PMID: 16168704 DOI: 10.1016/j.mrgentox.2005.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 06/23/2005] [Accepted: 07/16/2005] [Indexed: 11/19/2022]
Abstract
L-carnitine is a small essential molecule indispensable in fatty acid metabolism and required in several biological pathways regulating cellular homeostasis. Despite considerable progress in understanding of L-carnitine biosynthesis and metabolism, very few data are reported concerning the protective role of L-carnitine from oxidative stress-induced DNA damage that is known to be a factor in cell transformation and tumourigenesis. In order to detect the capability of L-carnitine to protect mammalian cells from oxidative stress-induced chromosomal effects, we analysed chromosome aberrations in mitotic CHO cells, which represent an appropriate cytogenetic model to study compounds that enhance cell protection against externally induced DNA damage. We chose H2O2 as an inducer of oxidative stress. Our results demonstrate for the first time a marked and reproducible reduction of H2O2-induced chromosome damage involving an L-carnitine-mediated capacity to buffer intracellular formation of reactive oxygen species (ROS). Furthermore, by studying the mitotic index and cell cycle progression, we also demonstrated that this protective effect is highly specific, since L-carnitine itself was not able to prevent the inhibition of cell growth caused by H2O2.
Collapse
Affiliation(s)
- Antonietta Santoro
- Department of Animal Production Sciences, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | | | | | | | | | | |
Collapse
|
18
|
Gülçin I. Antioxidant and antiradical activities of L-carnitine. Life Sci 2005; 78:803-11. [PMID: 16253281 DOI: 10.1016/j.lfs.2005.05.103] [Citation(s) in RCA: 638] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2005] [Accepted: 05/20/2005] [Indexed: 12/17/2022]
Abstract
L-carnitine plays an important regulatory role in the mitochondrial transport of long-chain free fatty acids. In this study, the antioxidant activity of L-carnitine was investigated as in vitro. The antioxidant properties of the L-carnitine were evaluated by using different antioxidant assays such as 1, 1-diphenyl-2-picryl-hydrazyl free radical (DPPH.) scavenging, total antioxidant activity, reducing power, superoxide anion radical scavenging, hydrogen peroxide scavenging and metal chelating activities. Total antioxidant activity was measured according to ferric thiocyanate method. alpha-tocopherol and trolox, a water-soluble analogue of tocopherol, were used as the reference antioxidant compounds. At the concentrations of 15, 30 and 45 microg/mL, l-carnitine showed 94.6%, 95.4% and 97.1% inhibition on lipid peroxidation of linoleic acid emulsion, respectively. On the other hand, 45 microg/mL of standard antioxidant such as alpha-tocopherol and trolox indicated an inhibition of 88.8% and 86.2% on peroxidation of linoleic acid emulsion, respectively. In addition, L-carnitine had an effective DPPH. scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, total reducing power and metal chelating on ferrous ions activities. Also, those various antioxidant activities were compared to alpha-tocopherol and trolox as references antioxidants.
Collapse
Affiliation(s)
- Ilhami Gülçin
- Atatürk University, Faculty of Arts and Sciences, Department of Chemistry, TR-25240-Erzurum-Turkey.
| |
Collapse
|
19
|
Fokkema MR, van Rieke HM, Bauermann OJ, Smit EN, Muskiet FAJ. Short-Term Carnitine Supplementation Does Not Augment LCPω3 Status of Vegans and Lacto-Ovo-Vegetarians. J Am Coll Nutr 2005; 24:58-64. [PMID: 15670986 DOI: 10.1080/07315724.2005.10719444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Long-chain polyunsaturated omega-3 fatty acids (LCPomega3) synthesis, notably that of docosahexaenoic acid (DHA), from the precursor alpha-linolenic acid (ALA) proceeds with difficulty. We investigated whether carnitine supplementation augments the LCPomega3 status of apparently healthy vegans and lacto-ovo-vegetarians, who are expected to have low carnitine status. METHODS Group A (n = 11) took 990 mg/day l-carnitine from weeks 1-4, and 990 mg/day l-carnitine + 4 mL/day linseed oil from weeks 5-8. Group B (n = 9) took 4 mL/day linseed oil from weeks 1-4, and 4 mL/day linseed oil + 990 mg/day l-carnitine from weeks 5-8. Fatty acid compositions of red blood cells, platelets, plasma cholesterol esters and plasma triglycerides were measured in the fasting state at baseline, and after 4 and 8 weeks. RESULTS Carnitine supplementation increased plasma free and total carnitine concentrations with 30 and 25%, respectively, but did not affect eicosapentaenoic acid (EPA) and DHA contents of any of the investigated compartments. EPA and DHA changes were negatively related to initial carnitine status. CONCLUSIONS Our results suggest that carnitine is not an important limiting factor, if any, for LCPomega3 synthesis in vegans and lacto-ovo-vegetarians. This conclusion is also likely to apply to omnivores. The most efficient means to augment EPA and particularly DHA status remains consumption of LCPomega3 from e.g. fish or supplements.
Collapse
Affiliation(s)
- M Rebecca Fokkema
- Department of Pathology and Laboratory Medicine, University Hospital Groningen, CMC-V, room Y1.165, PO Box 30.001, NL-9700 RB Groningen, THE NETHERLANDS.
| | | | | | | | | |
Collapse
|
20
|
Jogl G, Hsiao YS, Tong L. Crystal structure of mouse carnitine octanoyltransferase and molecular determinants of substrate selectivity. J Biol Chem 2004; 280:738-44. [PMID: 15492013 DOI: 10.1074/jbc.m409894200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Carnitine acyltransferases have crucial functions in fatty acid metabolism. Members of this enzyme family show distinctive substrate preferences for short-, medium- or long-chain fatty acids. The molecular mechanism for this substrate selectivity is not clear as so far only the structure of carnitine acetyltransferase has been determined. To further our understanding of these important enzymes, we report here the crystal structures at up to 2.0-A resolution of mouse carnitine octanoyltransferase alone and in complex with the substrate octanoylcarnitine. The structures reveal significant differences in the acyl group binding pocket between carnitine octanoyltransferase and carnitine acetyltransferase. Amino acid substitutions and structural changes produce a larger hydrophobic pocket that binds the octanoyl group in an extended conformation. Mutation of a single residue (Gly-553) in this pocket can change the substrate preference between short- and medium-chain acyl groups. The side chains of Cys-323 and Met-335 at the bottom of this pocket assume dual conformations in the substrate complex, and mutagenesis studies suggest that the Met-335 residue is important for catalysis.
Collapse
Affiliation(s)
- Gerwald Jogl
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | |
Collapse
|
21
|
Abstract
Carnitine is a low-molecular-weight compound obtained from the diet that also is biosynthesized from the essential amino acids lysine and methionine. Carnitine has been identified in a variety of mammalian tissues and has an obligate role in the mitochondrial oxidation of long-chain fatty acids through the action of specialized acyltransferases. Other roles for carnitine include buffering of the acyl coenzyme A (CoA)-CoA ratio, branched-chain amino acid metabolism, removal of excess acyl groups, and peroxisomal fatty acid oxidation. The growing body of evidence about carnitine function has led to increased understanding and identification of disorders associated with altered carnitine metabolism. Disorders of fatty acid oxidation and metabolism typically are associated with primary and secondary forms of carnitine deficiency. These disorders, which include increased lipolysis, increased lipid peroxidation, accumulation of acylcarnitines, and altered membrane permeability, have significant consequences for patients with myocardial diseases and kidney failure. Therapeutic administration of carnitine shows promise in treating selected groups of patients who have altered carnitine homeostasis, resulting in improved cardiac function, increased exercise capacity, reduced muscle cramps, and reduced intradialytic complications.
Collapse
Affiliation(s)
- Charles Hoppel
- Department of Medicine, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
22
|
Koeck T, Kremser K. L-Carnitine alters nitric oxide synthase activity in fibroblasts depending on the peroxisomal status. Int J Biochem Cell Biol 2003; 35:149-56. [PMID: 12479865 DOI: 10.1016/s1357-2725(02)00183-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Fibroblast cellular models are widely used for research on fatty acid metabolism. Due to the importance of L-carnitine in intermediary metabolism we studied the effects of L-carnitine on healthy human skin fibroblasts and fibroblasts without functional peroxisomes (Zellweger Syndrome) cultivated under carnitine deficiency, which is caused by standard media compositions. The application of physiological (0.1mM) or super-physiological (1mM) doses of L-carnitine causes a significant decrease of the specific activity of nitric oxide synthase (NOS, 2.25+/-0.10 to 1.36 pmol/(minmg)+/-0.09 pmol/(minmg) at 0.1mM), proliferation and a tendentious decrease of the antioxidant defence potential against hydrogen peroxide only in control cells. Simultaneous application of L-carnitine and 100 micro M N-acetylcysteine (NAC) prevents the alterations in control cells. Thus, L-carnitine alters the cellular regulation of the NOS probably by reactive oxygen species (ROS), which suggests that carnitine deficient media neither reflect physiological conditions for cellular models for fatty acid metabolism nor for the regulation of NOS.
Collapse
Affiliation(s)
- Thomas Koeck
- Department of Medical Chemistry, School of Medicine, University of Vienna, Waehringerstrasse 10, Vienna A-1090, Austria
| | | |
Collapse
|
23
|
Ramsay RR, Gandour RD, van der Leij FR. Molecular enzymology of carnitine transfer and transport. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1546:21-43. [PMID: 11257506 DOI: 10.1016/s0167-4838(01)00147-9] [Citation(s) in RCA: 255] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Carnitine (L-3-hydroxy-4-N-trimethylaminobutyric acid) forms esters with a wide range of acyl groups and functions to transport and excrete these groups. It is found in most cells at millimolar levels after uptake via the sodium-dependent carrier, OCTN2. The acylation state of the mobile carnitine pool is linked to that of the limited and compartmentalised coenzyme A pools by the action of the family of carnitine acyltransferases and the mitochondrial membrane transporter, CACT. The genes and sequences of the carriers and the acyltransferases are reviewed along with mutations that affect activity. After summarising the accepted enzymatic background, recent molecular studies on the carnitine acyltransferases are described to provide a picture of the role and function of these freely reversible enzymes. The kinetic and chemical mechanisms are also discussed in relation to the different inhibitors under study for their potential to control diseases of lipid metabolism.
Collapse
Affiliation(s)
- R R Ramsay
- Centre for Biomolecular Sciences, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK.
| | | | | |
Collapse
|
24
|
van der Leij FR, Huijkman NC, Boomsma C, Kuipers JR, Bartelds B. Genomics of the human carnitine acyltransferase genes. Mol Genet Metab 2000; 71:139-53. [PMID: 11001805 DOI: 10.1006/mgme.2000.3055] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Five genes in the human genome are known to encode different active forms of related carnitine acyltransferases: CPT1A for liver-type carnitine palmitoyltransferase I, CPT1B for muscle-type carnitine palmitoyltransferase I, CPT2 for carnitine palmitoyltransferase II, CROT for carnitine octanoyltransferase, and CRAT for carnitine acetyltransferase. Only from two of these genes (CPT1B and CPT2) have full genomic structures been described. Data from the human genome sequencing efforts now reveal drafts of the genomic structure of CPT1A and CRAT, the latter not being known from any other mammal. Furthermore, cDNA sequences of human CROT were obtained recently, and database analysis revealed a completed bacterial artificial chromosome sequence that contains the entire CROT gene and several exons of the flanking genes P53TG and PGY3. The genomic location of CROT is at chromosome 7q21.1. There is a putative CPT1-like pseudogene in the carnitine/choline acyltransferase family at chromosome 19. Here we give a brief overview of the functional relations between the different carnitine acyltransferases and some of the common features of their genes. We will highlight the phylogenetics of the human carnitine acyltransferase genes in relation to the fungal genes YAT1 and CAT2, which encode cytosolic and mitochondrial/peroxisomal carnitine acetyltransferases, respectively.
Collapse
Affiliation(s)
- F R van der Leij
- Department of Pediatrics, University of Groningen, Groningen, NL-9700 RB, The Netherlands.
| | | | | | | | | |
Collapse
|