1
|
Fitzgerald SP, Bean NG, Falhammar H, Tuke J. Clinical Parameters Are More Likely to Be Associated with Thyroid Hormone Levels than with Thyrotropin Levels: A Systematic Review and Meta-Analysis. Thyroid 2020; 30:1695-1709. [PMID: 32349628 PMCID: PMC7757573 DOI: 10.1089/thy.2019.0535] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Though the functional states of other endocrine systems are not defined on the basis of levels of controlling hormones, the assessment of thyroid function is based on levels of the controlling hormone thyrotropin (TSH). We, therefore, addressed the question as to whether levels of thyroid hormones [free thyroxine (fT4), total triiodothyronine (TT3)/free triiodothyronine (fT3)], or TSH levels, within and beyond the reference ranges, provide the better guide to the range of clinical parameters associated with thyroid status. Methods: A PubMed/MEDLINE search of studies up to October 2019, examining associations of levels of thyroid hormones and TSH, taken simultaneously in the same individuals, with clinical parameters was performed. We analyzed atrial fibrillation, other cardiac parameters, osteoporosis and fracture, cancer, dementia, frailty, mortality, features of the metabolic syndrome, and pregnancy outcomes. Studies were assessed for quality by using a modified Newcastle-Ottawa score. Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines were followed. A meta-analysis of the associations was performed to determine the relative likelihood of fT4, TT3/fT3, and TSH levels that are associated with the clinical parameters. Results: We identified 58 suitable articles and a total of 1880 associations. In general, clinical parameters were associated with thyroid hormone levels significantly more often than with TSH levels-the converse was not true for any of the clinical parameters. In the 1880 considered associations, fT4 levels were significantly associated with clinical parameters in 50% of analyses. The respective frequencies for TT3/fT3 and TSH levels were 53% and 23% (p < 0.0001 for both fT4 and TT3/fT3 vs. TSH). The fT4 and TT3/fT3 levels were comparably associated with clinical parameters (p = 0.71). More sophisticated statistical analyses, however, indicated that the associations with TT3/fT3 were not as robust as the associations with fT4. Conclusions: Thyroid hormones levels, and in particular fT4 levels, seem to have stronger associations with clinical parameters than do TSH levels. Associations of clinical parameters with TSH levels can be explained by the strong negative population correlation between thyroid hormones and TSH. Clinical and research components of thyroidology currently based on the measurement of the thyroid state by reference to TSH levels warrant reconsideration.
Collapse
Affiliation(s)
- Stephen P. Fitzgerald
- Department of General Medicine and Royal Adelaide Hospital, Adelaide, South Australia
- Department of Endocrinology, Royal Adelaide Hospital, Adelaide, South Australia
- School of Medicine, University of Adelaide, Adelaide, South Australia
| | - Nigel G. Bean
- School of Mathematical Sciences, University of Adelaide, Adelaide, South Australia
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, University of Adelaide, Adelaide, South Australia
| | - Henrik Falhammar
- Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Wellbeing and Chronic Preventable Diseases Division, Menzies School of Health Research and Royal Darwin Hospital, Tiwi, Australia
| | - Jono Tuke
- School of Mathematical Sciences, University of Adelaide, Adelaide, South Australia
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, University of Adelaide, Adelaide, South Australia
| |
Collapse
|
2
|
Corinti D, Crestoni ME, Chiavarino B, Fornarini S, Scuderi D, Salpin JY. Insights into Cisplatin Binding to Uracil and Thiouracils from IRMPD Spectroscopy and Tandem Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:946-960. [PMID: 32233383 PMCID: PMC7997577 DOI: 10.1021/jasms.0c00006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The monofunctional primary complexes cis-[PtCl(NH3)2(L)]+, formed by the reaction of cisplatin, a major chemotherapeutic agent, with four nucleobases L, i.e., uracil (U), 2-thiouracil (2SU), 4-thiouracil (4SU), and 2,4-dithiouracil (24dSU), have been studied by a combination of infrared multiple photon dissociation (IRMPD) action spectroscopy in both the fingerprint (900-1900 cm-1) and the N-H/O-H stretching (3000-3800 cm-1) ranges, energy-resolved collision-induced dissociation (CID) mass spectrometry, and density functional calculations at the B3LYP/LACVP/6-311G** level. On the basis of the comparison across the experimental features and the linear IR spectra of conceivable structures, the cisplatin residue is found to promote a monodentate interaction preferentially with the O4(S4) atoms of the canonical forms of U, 4SU, and 24dSU and to the S2 atom of 2SU, yielding the most stable structures. Additional absorptions reveal the presence of minor, alternative tautomers in the sampled ion populations of 2SU and 24dSU, underlying the ability of cisplatin to increase the prospect of (therapeutically beneficial) nucleic acid strand disorder. Implication of these evidence may provide insights into drug mechanism and design.
Collapse
Affiliation(s)
- Davide Corinti
- Dipartimento
di Chimica e Tecnologie del Farmaco, Università
di Roma “La Sapienza”, P. le A. Moro 5, Roma 00185, Italy
| | - Maria Elisa Crestoni
- Dipartimento
di Chimica e Tecnologie del Farmaco, Università
di Roma “La Sapienza”, P. le A. Moro 5, Roma 00185, Italy
| | - Barbara Chiavarino
- Dipartimento
di Chimica e Tecnologie del Farmaco, Università
di Roma “La Sapienza”, P. le A. Moro 5, Roma 00185, Italy
| | - Simonetta Fornarini
- Dipartimento
di Chimica e Tecnologie del Farmaco, Università
di Roma “La Sapienza”, P. le A. Moro 5, Roma 00185, Italy
| | - Debora Scuderi
- Universite′
Paris-Saclay, CNRS, Institut de Chimie Physique
UMR8000, Orsay 91405, France
| | - Jean-Yves Salpin
- Université
Paris-Saclay, CNRS, Univ Evry,
LAMBE, Evry-Courcouronnes 91025, France
- CY
Cergy Paris Université, LAMBE, Evry-Courcouronnes 91025, France
| |
Collapse
|
3
|
Hepburn AC, Steele RE, Veeratterapillay R, Wilson L, Kounatidou EE, Barnard A, Berry P, Cassidy JR, Moad M, El-Sherif A, Gaughan L, Mills IG, Robson CN, Heer R. The induction of core pluripotency master regulators in cancers defines poor clinical outcomes and treatment resistance. Oncogene 2019; 38:4412-4424. [PMID: 30742096 PMCID: PMC6546609 DOI: 10.1038/s41388-019-0712-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 12/31/2022]
Abstract
Stem cell characteristics have been associated with treatment resistance and poor prognosis across many cancer types. The ability to induce and regulate the pathways that sustain these characteristic hallmarks of lethal cancers in a novel in vitro model would greatly enhance our understanding of cancer progression and treatment resistance. In this work, we present such a model, based simply on applying standard pluripotency/embryonic stem cell media alone. Core pluripotency stem cell master regulators (OCT4, SOX2 and NANOG) along with epithelial–mesenchymal transition (EMT) markers (Snail, Slug, vimentin and N-cadherin) were induced in human prostate, breast, lung, bladder, colorectal, and renal cancer cells. RNA sequencing revealed pathways activated by pluripotency inducing culture that were shared across all cancers examined. These pathways highlight a potential core mechanism of treatment resistance. With a focus on prostate cancer, the culture-based induction of core pluripotent stem cell regulators was shown to promote survival in castrate conditions—mimicking first line treatment resistance with hormonal therapies. This acquired phenotype was shown to be mediated through the upregulation of iodothyronine deiodinase DIO2, a critical modulator of the thyroid hormone signalling pathway. Subsequent inhibition of DIO2 was shown to supress expression of prostate specific antigen, the cardinal clinical biomarker of prostate cancer progression and highlighted a novel target for clinical translation in this otherwise fatal disease. This study identifies a new and widely accessible simple preclinical model to recreate and explore underpinning pathways of lethal disease and treatment resistance.
Collapse
Affiliation(s)
- A C Hepburn
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| | - R E Steele
- Prostate Cancer UK/Movember Centre of Excellence for Prostate Cancer, Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, BT9 7AE, UK
| | - R Veeratterapillay
- Department of Urology, Freeman Hospital, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK
| | - L Wilson
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - E E Kounatidou
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - A Barnard
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - P Berry
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - J R Cassidy
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - M Moad
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - A El-Sherif
- Department of Pathology, Royal Victoria Infirmary, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 4LP, UK
| | - L Gaughan
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - I G Mills
- Prostate Cancer UK/Movember Centre of Excellence for Prostate Cancer, Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, BT9 7AE, UK.,Nuffield Department of Surgical Sciences, University of Oxford, Oxford, OX3 9DU, UK
| | - C N Robson
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| | - R Heer
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK. .,Department of Urology, Freeman Hospital, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK.
| |
Collapse
|
4
|
Krashin E, Piekiełko-Witkowska A, Ellis M, Ashur-Fabian O. Thyroid Hormones and Cancer: A Comprehensive Review of Preclinical and Clinical Studies. Front Endocrinol (Lausanne) 2019; 10:59. [PMID: 30814976 PMCID: PMC6381772 DOI: 10.3389/fendo.2019.00059] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/22/2019] [Indexed: 01/06/2023] Open
Abstract
Thyroid hormones take major part in normal growth, development and metabolism. Over a century of research has supported a relationship between thyroid hormones and the pathophysiology of various cancer types. In vitro studies as well as research in animal models demonstrated an effect of the thyroid hormones T3 and T4 on cancer proliferation, apoptosis, invasiveness and angiogenesis. Thyroid hormones mediate their effects on the cancer cell through several non-genomic pathways including activation of the plasma membrane receptor integrin αvβ3. Furthermore, cancer development and progression are affected by dysregulation of local bioavailability of thyroid hormones. Case-control and population-based studies provide conflicting results regarding the association between thyroid hormones and cancer. However, a large body of evidence suggests that subclinical and clinical hyperthyroidism increase the risk of several solid malignancies while hypothyroidism may reduce aggressiveness or delay the onset of cancer. Additional support is provided from studies in which dysregulation of the thyroid hormone axis secondary to cancer treatment or thyroid hormone supplementation was shown to affect cancer outcomes. Recent preclinical and clinical studies in various cancer types have further shown promising outcomes following chemical reduction of thyroid hormones or inhibition or their binding to the integrin receptor. This review provides a comprehensive overview of the preclinical and clinical research conducted so far.
Collapse
Affiliation(s)
- Eilon Krashin
- Translational Hemato-Oncology Laboratory, Meir Medical Center, Kfar-Saba, Israel
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Martin Ellis
- Translational Hemato-Oncology Laboratory, Meir Medical Center, Kfar-Saba, Israel
- Meir Medical Center, Hematology Institute and Blood Bank, Kfar-Saba, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Osnat Ashur-Fabian
- Translational Hemato-Oncology Laboratory, Meir Medical Center, Kfar-Saba, Israel
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- *Correspondence: Osnat Ashur-Fabian
| |
Collapse
|
5
|
Sterle HA, Barreiro Arcos ML, Valli E, Paulazo MA, Méndez Huergo SP, Blidner AG, Cayrol F, Díaz Flaqué MC, Klecha AJ, Medina VA, Colombo L, Rabinovich GA, Cremaschi GA. The thyroid status reprograms T cell lymphoma growth and modulates immune cell frequencies. J Mol Med (Berl) 2015; 94:417-29. [PMID: 26564151 DOI: 10.1007/s00109-015-1363-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 10/12/2015] [Accepted: 10/27/2015] [Indexed: 02/06/2023]
Abstract
UNLABELLED In spite of considerable evidence on the regulation of immunity by thyroid hormones, the impact of the thyroid status in tumor immunity is poorly understood. Here, we evaluated the antitumor immune responses evoked in mice with different thyroid status (euthyroid, hyperthyroid, and hypothyroid) that developed solid tumors or metastases after inoculation of syngeneic T lymphoma cells. Hyperthyroid mice showed increased tumor growth along with increased expression of cell cycle regulators compared to hypothyroid and control tumor-bearing mice. However, hypothyroid mice showed a higher frequency of metastases than the other groups. Hyperthyroid mice bearing tumors displayed a lower number of tumor-infiltrating T lymphocytes, lower percentage of functional IFN-γ-producing CD8(+) T cells, and higher percentage of CD19(+) B cells than euthyroid tumor-bearing mice. However, no differences were found in the distribution of lymphocyte subpopulations in tumor-draining lymph nodes (TDLNs) or spleens among different experimental groups. Interestingly, hypothyroid TDLN showed an increased percentage of regulatory T (Treg) cells, while hyperthyroid mice displayed increased number and activity of splenic NK cells, which frequency declined in spleens from hypothyroid mice. Moreover, a decreased number of splenic myeloid-derived suppressor cells (MDSCs) were found in tumor-bearing hyperthyroid mice as compared to hypothyroid or euthyroid mice. Additionally, hyperthyroid mice showed increased cytotoxic activity, which declined in hypothyroid mice. Thus, low levels of intratumoral cytotoxic activity would favor tumor local growth in hyperthyroid mice, while regional and systemic antitumor response may contribute to tumor dissemination in hypothyroid animals. Our results highlight the importance of monitoring the thyroid status in patients with T cell lymphomas. KEY MESSAGES T cell lymphoma phenotype is paradoxically influenced by thyroid status. Hyperthyroidism favors tumor growth and hypothyroidism rises tumor dissemination. Thyroid status affects the distribution of immune cell types in the tumor milieu. Thyroid status also modifies the nature of local and systemic immune responses.
Collapse
Affiliation(s)
- H A Sterle
- Instituto de Investigaciones Biomédicas (BIOMED), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| | - M L Barreiro Arcos
- Instituto de Investigaciones Biomédicas (BIOMED), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - E Valli
- Instituto de Investigaciones Biomédicas (BIOMED), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| | - M A Paulazo
- Instituto de Investigaciones Biomédicas (BIOMED), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| | - S P Méndez Huergo
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - A G Blidner
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - F Cayrol
- Instituto de Investigaciones Biomédicas (BIOMED), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| | - M C Díaz Flaqué
- Instituto de Investigaciones Biomédicas (BIOMED), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| | - A J Klecha
- Instituto de Investigaciones Biomédicas (BIOMED), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina.,Laboratorio de Radioisótopos, Facultad de Farmacia y Bioquímica (FFyB), UBA, Buenos Aires, Argentina
| | - V A Medina
- Instituto de Investigaciones Biomédicas (BIOMED), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina.,Laboratorio de Radioisótopos, Facultad de Farmacia y Bioquímica (FFyB), UBA, Buenos Aires, Argentina
| | - L Colombo
- Area de Investigación, Instituto de Oncología "Angel H. Roffo", UBA, CONICET, Buenos Aires, Argentina
| | - G A Rabinovich
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - G A Cremaschi
- Instituto de Investigaciones Biomédicas (BIOMED), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina. .,Laboratorio de Radioisótopos, Facultad de Farmacia y Bioquímica (FFyB), UBA, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Carmona-Cortés J, Rodríguez-Gómez I, Wangensteen R, Banegas I, García-Lora ÁM, Quesada A, Osuna A, Vargas F. Effect of thyroid hormone–nitric oxide interaction on tumor growth, angiogenesis, and aminopeptidase activity in mice. Tumour Biol 2014; 35:5519-26. [DOI: 10.1007/s13277-014-1726-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/04/2014] [Indexed: 11/24/2022] Open
|
7
|
Abstract
Thyroid hormones (THs) may play a role in diseases other than hyper- and hypothyroidism. Several lines of evidence suggest tumor-promoting effects of TH and TH receptors. They are possibly mediated by phosphatidylinositol-3-kinase and MAPK and involve among others stimulation of angiogenesis via αvβ3. Thus, an increased risk for colon, lung, prostate, and breast cancer with lower TSH has been demonstrated in epidemiological studies, even suggesting a TH dose effect on cancer occurrence. Furthermore, higher TH levels were associated with an advanced clinical stage of breast and prostate cancer. In rodent models, TH stimulated growth and metastasis of tumor transplants, whereas hypothyroidism had opposite effects. In clinical studies of glioblastoma and head and neck cancer, hypothyroid patients showed longer survival than euthyroid patients. Also, patients with renal cell cancer that were treated with the tyrosine kinase inhibitor sunitinib and developed hypothyroidism in due course showed significantly longer survival than patients that remained euthyroid. Development of hypothyroidism was an independent predictor for survival in two studies. Yet, it is still possible that hypothyroidism is only a surrogate marker for treatment efficacy and does not positively influence treatment outcome by itself. Future cancer treatment studies, especially with substances that can induce hypothyroidism, should therefore be designed in a way that allows for an analysis of thyroid function status and its contribution on treatment outcome.
Collapse
Affiliation(s)
- Lars C Moeller
- Division of Laboratory Research, Department of Endocrinology and Metabolic Diseases, University of Duisburg-Essen, Hufelandstraße 55, 45127 Essen, Germany.
| | | |
Collapse
|
8
|
|