1
|
Yang X, Lu W, Wang M, Tan C, Wang B. "CO in a pill": Towards oral delivery of carbon monoxide for therapeutic applications. J Control Release 2021; 338:593-609. [PMID: 34481027 PMCID: PMC8526413 DOI: 10.1016/j.jconrel.2021.08.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023]
Abstract
Along with the impressive achievements in understanding the endogenous signaling roles and mechanism(s) of action of carbon monoxide (CO), much research has demonstrated the potential of using CO as a therapeutic agent for treating various diseases. Because of CO's toxicity at high concentrations and the observed difference in toxicity profiles of CO depending on the route of administration, this review analyzes and presents the benefits of developing orally active CO donors. Such compounds have the potential for improved safety profiles, enhancing the chance for developing CO-based therapeutics. In this review, the difference between inhalation and oral administration in terms of toxicity, CO delivery efficiency, and the potential mechanism(s) of action is analyzed. The evolution from CO gas inhalation to oral administration is also extensively analyzed by summarizing published studies up to date. The concept of "CO in a pill" can be achieved by oral administration of novel formulations of CO gas or appropriate CO donors.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Wen Lu
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Minjia Wang
- Department of Pharmaceutical Sciences, University of Mississippi, MS 38677, USA
| | - Chalet Tan
- Department of Pharmaceutical Sciences, University of Mississippi, MS 38677, USA
| | - Binghe Wang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
2
|
Factors Contributing to CO Uptake and Elimination in the Body: A Critical Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17020528. [PMID: 31947671 PMCID: PMC7014120 DOI: 10.3390/ijerph17020528] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 11/17/2022]
Abstract
BACKGROUND Carbon monoxide (CO) poisoning is an important public health issue around the world. Research indicates that many factors may be related to the rate of CO uptake and elimination in the human body. However, some factors related to CO uptake and elimination are considered controversial. Relatively little attention has been devoted to review and synthesis of factors affecting CO uptake and elimination. PURPOSE This paper provides a critical scoping review of the factors and divides them into four aspects, including environmental, demographic, physiological and treatment factors. METHODS We searched the scientific databases for research that has proposed a mathematical equation as a synthesis of quantities related to CO poisoning, CO elimination, CO uptake, CO half-life, CO uptake and elimination and their relationships. After excluding the studies that did not meet the study criteria, there were 39 studies included in the review and the search was completed before 16 December 2019. RESULTS AND CONCLUSION This review discusses most of the factors that impact the rate of CO uptake and elimination. Several factors may be related to CO uptake and elimination, such as CO concentration, the duration of exposure to CO, age, sex, exercise, minute ventilation, alveolar ventilation, total haemoglobin mass and different treatments for CO poisoning. Although some potential factors were not included in the review, the findings are useful by presenting an overview for discussing factors affecting CO uptake and elimination and provide a starting point for further study regarding strategies for CO poisoning and the environmental standard of CO.
Collapse
|
3
|
Abstract
Exposure to carbon monoxide (CO) during general anesthesia can result from volatile anesthetic degradation by carbon dioxide absorbents and rebreathing of endogenously produced CO. Although adherence to the Anesthesia Patient Safety Foundation guidelines reduces the risk of CO poisoning, patients may still experience subtoxic CO exposure during low-flow anesthesia. The consequences of such exposures are relatively unknown. In contrast to the widely recognized toxicity of high CO concentrations, the biologic activity of low concentration CO has recently been shown to be cytoprotective. As such, low-dose CO is being explored as a novel treatment for a variety of different diseases. Here, we review the concept of anesthesia-related CO exposure, identify the sources of production, detail the mechanisms of overt CO toxicity, highlight the cellular effects of low-dose CO, and discuss the potential therapeutic role for CO as part of routine anesthetic management.
Collapse
Affiliation(s)
- Richard J Levy
- From the Department of Anesthesiology, Columbia University Medical Center, New York, New York
| |
Collapse
|
4
|
Levy RJ. Carbon monoxide and anesthesia-induced neurotoxicity. Neurotoxicol Teratol 2016; 60:50-58. [PMID: 27616667 DOI: 10.1016/j.ntt.2016.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 08/10/2016] [Accepted: 09/06/2016] [Indexed: 10/21/2022]
Abstract
The majority of commonly used anesthetic agents induce widespread neuronal degeneration in the developing mammalian brain. Downstream, the process appears to involve activation of the oxidative stress-associated mitochondrial apoptosis pathway. Targeting this pathway could result in prevention of anesthetic toxicity in the immature brain. Carbon monoxide (CO) is a gas that exerts biological activity in the developing brain and low dose exposures have the potential to provide neuroprotection. In recent work, low concentration CO exposures limited isoflurane-induced neuronal apoptosis in a dose-dependent manner in newborn mice and modulated oxidative stress within forebrain mitochondria. Because infants and children are routinely exposed to low levels of CO during low-flow general endotracheal anesthesia, such anti-oxidant and pro-survival cellular effects are clinically relevant. Here we provide an overview of anesthesia-related CO exposure, discuss the biological activity of low concentration CO, detail the effects of CO in the brain during development, and provide evidence for CO-mediated inhibition of anesthesia-induced neurotoxicity.
Collapse
Affiliation(s)
- Richard J Levy
- Department of Anesthesiology, Columbia University Medical Center, United States.
| |
Collapse
|
5
|
Nasr V, Emmanuel J, Deutsch N, Slack M, Kanter J, Ratnayaka K, Levy R. Carbon monoxide re-breathing during low-flow anaesthesia in infants and children. Br J Anaesth 2010; 105:836-41. [PMID: 20947594 DOI: 10.1093/bja/aeq271] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Carbon monoxide (CO) has been detected within anaesthesia breathing systems. One potential source in this setting is exhaled endogenous CO. We hypothesized that CO is re-breathed during low-flow anaesthesia (LFA) in infants and children. METHODS Twenty children (age 2 months-7 yr) undergoing general anaesthesia were evaluated in a prospective observation study. LFA was established for 60 min followed by high-flow anaesthesia (HFA) for the next 60 min. Exhaled and inspired CO were measured every 5 min within the breathing circuit. Carboxyhaemoglobin (COHb%) was measured at baseline, at 60 min, after LFA, and at 120 min, after HFA. RESULTS CO concentrations increased during LFA. Inspired CO peaked at 14 ppm. During HFA, exhaled CO levels remained constant whereas inspired CO decreased markedly. Exhaled and inspired CO during HFA differed significantly from LFA. The trajectory of change in exhaled and inspired CO was most closely associated with the fresh-gas flow (FGF):minute ventilation ratio. COHb% significantly increased in children <2 yr of age at 60 min after LFA and remained increased. CONCLUSIONS LFA increased exhaled and inspired CO and increased COHb% in children <2 yr of age. Thus, LFA resulted in re-breathing of exhaled CO and exposure, especially in the youngest children. Re-breathing exhaled gas during LFA could pose a risk for an acute CO exposure in patients who have elevated COHb and high baseline levels of exhaled CO. If practitioners match or exceed minute ventilation with FGF to avoid LFA, CO re-breathing can be limited.
Collapse
Affiliation(s)
- V Nasr
- Division of Anesthesiology and Pain Medicine, Children's National Medical Center, The George Washington University School of Medicine and Health Sciences, 111 Michigan Ave., NW, Washington, DC 20010, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Levy RJ, Nasr VG, Rivera O, Roberts R, Slack M, Kanter JP, Ratnayaka K, Kaplan RF, McGowan FX. Detection of Carbon Monoxide During Routine Anesthetics in Infants and Children. Anesth Analg 2010; 110:747-53. [DOI: 10.1213/ane.0b013e3181cc4b9f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
|
8
|
An evaluation of the contributions by fresh gas flow rate, carbon dioxide concentration and desflurane partial pressure to carbon monoxide concentration during low fresh gas flows to a circle anaesthetic breathing system. Eur J Anaesthesiol 2008; 25:620-6. [PMID: 18339215 DOI: 10.1017/s0265021508003918] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND AND OBJECTIVE Numerous in vitro studies have shown that volatile anaesthetics react with desiccated carbon dioxide (CO2) absorbents to produce carbon monoxide (CO). The effects of anaesthetic concentration, fresh gas flow rate, and the hydration of absorbent or the excretion of CO2 by patients on CO production have also been investigated. This work aims to identify the most significant one of these factors on CO concentration in a low-flow anaesthesia system, without control of the hydration of the absorbents. METHODS A simulated clinical circle anaesthetic breathing system was used to study the CO concentration under various conditions. Desflurane was used at three different concentrations. Two CO2 flow rates and three fresh gas flow rates were used. The absorbent temperatures and hydration were measured simultaneously. RESULTS Desflurane degraded to produce CO in the breathing tube, when the CO2 absorbents were not dried beforehand. In this imitation clinical low-flow setting, fresh gas flow affected the CO production more than the CO2 did (31.7% vs. 9.5%). The actual desflurane partial pressure was not a significant factor. The CO2 flow rate explained 18.2% and 54.0% of the variation of the absorbent hydration changes (%) and temperature, respectively. CONCLUSIONS In clinical practice, the CO2 production varies among patients and is uncontrollable, but markedly affects CO production. The only controllable factor is the fresh gas flow rate if the ultimate goal is to reduce the undesirable exposure of patients to CO from the breathing tube according to this bench model without counting the oxygen consumption.
Collapse
|
9
|
Keijzer C, Perez RSGM, De Lange JJ. Carbon monoxide production from five volatile anesthetics in dry sodalime in a patient model: halothane and sevoflurane do produce carbon monoxide; temperature is a poor predictor of carbon monoxide production. BMC Anesthesiol 2005; 5:6. [PMID: 15932634 PMCID: PMC1164401 DOI: 10.1186/1471-2253-5-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2004] [Accepted: 06/02/2005] [Indexed: 11/24/2022] Open
Abstract
Background Desflurane and enflurane have been reported to produce substantial amounts of carbon monoxide (CO) in desiccated sodalime. Isoflurane is said to produce less CO and sevoflurane and halothane should produce no CO at all. The purpose of this study is to measure the maximum amounts of CO production for all modern volatile anesthetics, with completely dry sodalime. We also tried to establish a relationship between CO production and temperature increase inside the sodalime. Methods A patient model was simulated using a circle anesthesia system connected to an artificial lung. Completely desiccated sodalime (950 grams) was used in this system. A low flow anesthesia (500 ml/min) was maintained using nitrous oxide with desflurane, enflurane, isoflurane, halothane or sevoflurane. For immediate quantification of CO production a portable gas chromatograph was used. Temperature was measured within the sodalime container. Results Peak concentrations of CO were very high with desflurane and enflurane (14262 and 10654 ppm respectively). It was lower with isoflurane (2512 ppm). We also measured small concentrations of CO for sevoflurane and halothane. No significant temperature increases were detected with high CO productions. Conclusion All modern volatile anesthetics produce CO in desiccated sodalime. Sodalime temperature increase is a poor predictor of CO production.
Collapse
Affiliation(s)
- Christiaan Keijzer
- Department of anesthesiology, VU University medical center, Amsterdam, The Netherlands
| | - Roberto SGM Perez
- Department of anesthesiology, VU University medical center, Amsterdam, The Netherlands
| | - Jaap J De Lange
- Department of anesthesiology, VU University medical center, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Morimatsu H, Takahashi T. Exhaled CO after surgery: a consequence of postoperative narcotics? Anesth Analg 2005; 100:896. [PMID: 15728089 DOI: 10.1213/01.ane.0000146646.02457.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hiroshi Morimatsu
- Department of Anesthesiology and Resuscitology; Okayama University Medical School; Okayama, Japan;
| | | |
Collapse
|
11
|
Holak EJ, Mei DA, Dunning MB, Gundamraj R, Noseir R, Zhang L, Woehlck HJ. Carbon monoxide production from sevoflurane breakdown: modeling of exposures under clinical conditions. Anesth Analg 2003; 96:757-764. [PMID: 12598259 DOI: 10.1213/01.ane.0000049584.64886.39] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
UNLABELLED Isoflurane, enflurane, sevoflurane, and especially desflurane produce carbon monoxide (CO) during reaction with desiccated absorbents. Of these, sevoflurane is the least studied. We investigated the dependence of CO production from sevoflurane on absorbent temperature, minute ventilation (VE), and fresh gas flow rates. We measured absorbent temperature and in vitro CO concentrations when desiccated Baralyme reacted with 1 minimum alveolar anesthetic concentration of (2.1%) sevoflurane at 2.3-, 5.0-, and 10.0-L VE. Mathematical modeling of carboxyhemoglobin concentrations was performed using an existing iterative method. Rapid breakdown of sevoflurane prevented the attainment of 1 minimum alveolar anesthetic concentration with low fresh gas flow rates. CO concentrations increased with VE and with absorbent temperatures exceeding 80 degrees C, but concentrations decreased with higher fresh gas flow rates. Average CO concentrations were 150 and 600 ppm at 2.3- and 5.0-L VE; however, at 10 L, over 11,000 ppm of CO were produced followed by an explosion and fire. Methanol and formaldehyde were present and may have contributed to the flammable mixture but were not quantitated. Mathematical modeling of exposures indicates that in average cases, only patients < or =25 kg, or severely anemic patients, are at risk of carboxyhemoglobin concentrations >10% during the first 60 min of anesthesia. IMPLICATIONS Sevoflurane breakdown in desiccated absorbents is expected to result in only mild carbon monoxide (CO) exposure. Completely dry absorbent and high minute ventilation rates may degrade sevoflurane to extremely large CO concentrations. Serious CO poisoning or spontaneous ignition of flammable gases within the breathing circuit are possible in extreme circumstances.
Collapse
Affiliation(s)
- Elena J Holak
- Department of *Anesthesiology and †Pulmonary and Critical Care Medicine, Medical College of Wisconsin, Milwaukee
| | | | | | | | | | | | | |
Collapse
|
12
|
Woehlck H, Dunning MB, Nithipatikom K. Monitoring of isoflurane and desflurane breakdown: interfering gases and infrared detection. J Clin Monit Comput 2003; 16:535-40. [PMID: 12580213 DOI: 10.1023/a:1011439530765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The reaction of isoflurane, enflurane or desflurane with dried CO2 absorbents produces carbon monixide (CO), a highly toxic gas which cannot be detected by gas monitors typically available in the operating room. Trifluoromethane (CHF3) is produced along with CO when this reaction occurs with isoflurane and desflurane, and can be detected by gas monitors. This study will determine the ability of a modified SAM module (Smart Anesthesia Multigas Module, GE/Marquette Medical Systems, Milwaukee, WI) to identify the presence of CHF3, and provide a clinically useful indirect warning of CO production. METHODS Isoflurane (1.5%) and desflurane (7.5%) were reacted under clinical conditions with desiccated absorbents resulting in CO production. CO and CHF3 concentrations were measured using gas chromatography. The CHF3 concentrations measured by a modified SAM monitor were compared with the measurements obtained by gas chromatography. Alarm limits set on the SAM monitor were used to warn of the presence of CHF3. RESULTS A concentration of 0.25% CHF3, as measured by the SAM monitor, corresponds to an average CO concentration of 780 ppm for isoflurane and 1700 ppm for desflurane. Lowering the threshold to 0.05% CHF3 would result in an average CO concentration of 155 ppm CO for isoflurane and 345 ppm CO for desflurane. CONCLUSIONS We have shown that the SAM module is capable of measuring CHF3 due to anesthetic breakdown. With appropriate changes in the display programming and reference cell spectra the monitor would be able to provide an early warning of CO exposure, although the amount of CO would not be reported.
Collapse
Affiliation(s)
- H Woehlck
- Department of Anesthesiology, Froedtert Memorial Lutheran Hospital, 9200 Wisconsin Ave, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
13
|
Knolle E, Heinze G, Gilly H. Small carbon monoxide formation in absorbents does not correlate with small carbon dioxide absorption. Anesth Analg 2002; 95:650-5, table of contents. [PMID: 12198054 DOI: 10.1097/00000539-200209000-00029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
UNLABELLED In this study we sought to determine whether an absorbent in which little carbon monoxide (CO) forms has a correspondingly small capacity to absorb carbon dioxide (CO(2)). Completely dried samples (600 g) of Baralyme (A), Drägersorb 800 (B), Drägersorb 800 Plus (C), Intersorb (D), Spherasorb (E), LoFloSorb (F), Superia (G), and Amsorb (H) were exposed to a flow of 0.5% (A-H; n = 4-5) and 4% isoflurane (F-H; n = 3) in pure oxygen at 5 L/min for 60 min. Downstream CO concentration, temperature, and isoflurane concentration were recorded every 60 s to calculate CO formation and isoflurane loss. The CO(2) absorption capacity of each brand was determined by passing 5.1% CO(2) in oxygen (flow, 250 mL/min) through untreated samples (30 g; n = 5) until the outlet CO(2) concentration reached 0.5%. CO formation was largest in absorbents containing potassium hydroxide (A and B) and negligible in absorbents not containing any alkali hydroxide (F-H). The outlet temperature correlated with CO formation, but the isoflurane loss did not. The duration of CO(2) absorption also did not correlate with CO formation. We conclude that absorbents that allow only very little CO formation are not necessarily poor CO(2) absorbents. IMPLICATIONS In an in vitro study, carbon dioxide (CO(2)) absorption capacity and possible carbon monoxide (CO) formation were tested in different absorbent brands. Absorbents with very small CO formation are not necessarily poor CO(2) absorbents.
Collapse
Affiliation(s)
- Erich Knolle
- Department of Anesthesiology and General Intensive Care (B), University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria.
| | | | | |
Collapse
|
14
|
Knolle E, Heinze G, Gilly H. Small Carbon Monoxide Formation in Absorbents Does Not Correlate with Small Carbon Dioxide Absorption. Anesth Analg 2002. [DOI: 10.1213/00000539-200209000-00029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
|
16
|
|