1
|
McGuigan S, Abrahams BF, Scott DA. A narrative review of gas separation and conservation technologies during xenon anesthesia. Med Gas Res 2025; 15:93-100. [PMID: 39436172 PMCID: PMC11515081 DOI: 10.4103/mgr.medgasres-d-24-00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/17/2024] [Accepted: 05/31/2024] [Indexed: 10/23/2024] Open
Abstract
Xenon gas has significant advantages over conventional general anesthetic agents but its use has been limited by the cost associated with its production. Xenon also has significant potential for medical use in the treatment of acquired brain injuries and for mental health disorders. As the demand for xenon gas from other industries increases, the costs associated with its medical use are only likely to increase. One solution to mitigate the significant cost of xenon use in research or medical care is the conservation of xenon gas. During delivery of xenon anesthesia, this can be achieved either by separating xenon from the other gases within the anesthetic circuit, conserving xenon and allowing other gases to be excluded from the circuit, or by selectively recapturing xenon utilized during the anesthetic episode at the conclusion of the case. Several technologies, including the pressurization and cooling of gas mixtures, the utilization of gas selective membranes and the utilization of gas selective adsorbents have been described in the literature for this purpose. These techniques are described in this narrative review along with important clinical context that informs how these technologies might be best applied. Whilst these technologies are discussed in the context of xenon general anesthesia, they could be applied in the delivery of xenon gas inhalation for other therapeutic purposes.
Collapse
Affiliation(s)
- Steven McGuigan
- Department of Anesthesia and Acute Pain Medicine, St. Vincent’s Hospital Melbourne, Melbourne, Australia
- Department of Critical Care, University of Melbourne, Melbourne, Australia
| | | | - David A. Scott
- Department of Anesthesia and Acute Pain Medicine, St. Vincent’s Hospital Melbourne, Melbourne, Australia
- Department of Critical Care, University of Melbourne, Melbourne, Australia
| |
Collapse
|
2
|
Foo CT, Langton D, Thompson BR, Thien F. Functional lung imaging using novel and emerging MRI techniques. Front Med (Lausanne) 2023; 10:1060940. [PMID: 37181360 PMCID: PMC10166823 DOI: 10.3389/fmed.2023.1060940] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Respiratory diseases are leading causes of death and disability in the world. While early diagnosis is key, this has proven difficult due to the lack of sensitive and non-invasive tools. Computed tomography is regarded as the gold standard for structural lung imaging but lacks functional information and involves significant radiation exposure. Lung magnetic resonance imaging (MRI) has historically been challenging due to its short T2 and low proton density. Hyperpolarised gas MRI is an emerging technique that is able to overcome these difficulties, permitting the functional and microstructural evaluation of the lung. Other novel imaging techniques such as fluorinated gas MRI, oxygen-enhanced MRI, Fourier decomposition MRI and phase-resolved functional lung imaging can also be used to interrogate lung function though they are currently at varying stages of development. This article provides a clinically focused review of these contrast and non-contrast MR imaging techniques and their current applications in lung disease.
Collapse
Affiliation(s)
- Chuan T. Foo
- Department of Respiratory Medicine, Eastern Health, Melbourne, VIC, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - David Langton
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
- Department of Thoracic Medicine, Peninsula Health, Frankston, VIC, Australia
| | - Bruce R. Thompson
- Melbourne School of Health Science, Melbourne University, Melbourne, VIC, Australia
| | - Francis Thien
- Department of Respiratory Medicine, Eastern Health, Melbourne, VIC, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Performance of the bispectral index and electroencephalograph derived parameters of anesthetic depth during emergence from xenon and sevoflurane anesthesia. J Clin Monit Comput 2023; 37:71-81. [PMID: 35441313 PMCID: PMC9852153 DOI: 10.1007/s10877-022-00860-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/30/2022] [Indexed: 01/24/2023]
Abstract
Many processed EEG monitors (pEEG) are unreliable when non-GABAergic anesthetic agents are used. The primary aim of the study was to compare the response of the Bispectral Index (BIS) during emergence from anesthesia maintained by xenon and sevoflurane. To better understand the variation in response of pEEG to these agents, we also compared several EEG derived parameters relevant to pEEG monitoring during emergence. Twenty-four participants scheduled for lithotripsy were randomized to receive xenon or sevoflurane anesthesia. Participants were monitored with the BIS and had simultaneous raw EEG collected. BIS index values were compared at three key emergence timepoints: first response, eyes open and removal of airway. Two sets of EEG derived parameters, three related to the BIS: relative beta ratio, SynchFastSlow and SynchFastSlow biocoherence, and two unrelated to the BIS: spectral edge frequency and the composite cortical state, were calculated for comparison. BIS index values were significantly lower in the xenon group than the sevoflurane group at each emergence timepoint. The relative beta ratio parameter increased significantly during emergence in the sevoflurane group but not in the xenon group. The spectral edge frequency and composite cortical state parameters increased significantly in both groups during emergence. The BIS index is lower at equivalent stages of behavioural response during emergence from xenon anesthesia when compared to sevoflurane anesthesia, most likely due to differences in how these two agents influence the relative beta ratio. The spectral edge frequency and composite cortical state might better reflect emergence from xenon anaesthesia.Clinical trial number and registry Australia New Zealand Clinical Trials Registry Number: ACTRN12618000916246.
Collapse
|
4
|
Lisichenko IA, Gusarov VG, Teplykh BA, Chayanov NV, Zamyatin MN. Assessment of Amnesic Effect and the Depth of Hypnosis During Therapeutic Inhalation of Xenon-Oxygen Mixture. MESSENGER OF ANESTHESIOLOGY AND RESUSCITATION 2022. [DOI: 10.21292/2078-5658-2022-19-5-19-27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
The current literature lacks data on the incidence of intraoperative awakening during xenon anesthesia. This could be due to amnesia preventing memories of the intraoperative awakening.The objective: to determine the concentration of xenon in the xenon-oxygen mixture, which causes amnesia for events during inhalation in 100% of patients, and to make correlations with the depth of hypnosis as per Kugler scale.Subjects and Methods: 34 patients with chronic neurogenic pain who received 111 20-minute inhalations with concentration of xenon up to 50% were included in the study. Amnesia evaluation, EEG monitoring, and pain assessment on a visual analog scale (VAS) were performed.Results. Amnesic effect developed in 100% of patients at xenon concentration of 45%. On inhalation of xenon at concentrations of up to 50%, EEG changes did not exceed D1 grade on Kugler scale. The decrease in bispectral index (BIS) did not reach the level of deep sedation (Me 96.2%) at xenon concentration of 50%. The decrease in pain on VAS was approximately 60%.Conclusions. Xenon inhalations cause transient congradic amnesia at concentrations of 45% or more. The accuracy of the BIS monitoring readings may be reduced when using xenon in a monovariant. Inhalations of xenon-oxygen mixture in concentrations up to 50% showed good analgesic properties in the framework of combined therapy of chronic pain syndrome.
Collapse
|
5
|
Stewart NJ, Smith LJ, Chan HF, Eaden JA, Rajaram S, Swift AJ, Weatherley ND, Biancardi A, Collier GJ, Hughes D, Klafkowski G, Johns CS, West N, Ugonna K, Bianchi SM, Lawson R, Sabroe I, Marshall H, Wild JM. Lung MRI with hyperpolarised gases: current & future clinical perspectives. Br J Radiol 2022; 95:20210207. [PMID: 34106792 PMCID: PMC9153706 DOI: 10.1259/bjr.20210207] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The use of pulmonary MRI in a clinical setting has historically been limited. Whilst CT remains the gold-standard for structural lung imaging in many clinical indications, technical developments in ultrashort and zero echo time MRI techniques are beginning to help realise non-ionising structural imaging in certain lung disorders. In this invited review, we discuss a complementary technique - hyperpolarised (HP) gas MRI with inhaled 3He and 129Xe - a method for functional and microstructural imaging of the lung that has great potential as a clinical tool for early detection and improved understanding of pathophysiology in many lung diseases. HP gas MRI now has the potential to make an impact on clinical management by enabling safe, sensitive monitoring of disease progression and response to therapy. With reference to the significant evidence base gathered over the last two decades, we review HP gas MRI studies in patients with a range of pulmonary disorders, including COPD/emphysema, asthma, cystic fibrosis, and interstitial lung disease. We provide several examples of our experience in Sheffield of using these techniques in a diagnostic clinical setting in challenging adult and paediatric lung diseases.
Collapse
Affiliation(s)
- Neil J Stewart
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Laurie J Smith
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Ho-Fung Chan
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - James A Eaden
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Smitha Rajaram
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Andrew J Swift
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Nicholas D Weatherley
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Alberto Biancardi
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Guilhem J Collier
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - David Hughes
- Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | | | - Christopher S Johns
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Noreen West
- Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - Kelechi Ugonna
- Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - Stephen M Bianchi
- Directorate of Respiratory Medicine, Sheffield Teaching Hospitals NHS Trust, Sheffield, UK
| | - Rod Lawson
- Directorate of Respiratory Medicine, Sheffield Teaching Hospitals NHS Trust, Sheffield, UK
| | - Ian Sabroe
- Directorate of Respiratory Medicine, Sheffield Teaching Hospitals NHS Trust, Sheffield, UK
| | - Helen Marshall
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | | |
Collapse
|
6
|
Hofmann C, Sander A, Wang XX, Buerge M, Jungwirth B, Borgstedt L, Kreuzer M, Kopp C, Schorpp K, Hadian K, Wotjak CT, Ebert T, Ruitenberg M, Parsons CG, Rammes G. Inhalational Anesthetics Do Not Deteriorate Amyloid-β-Derived Pathophysiology in Alzheimer's Disease: Investigations on the Molecular, Neuronal, and Behavioral Level. J Alzheimers Dis 2021; 84:1193-1218. [PMID: 34657881 DOI: 10.3233/jad-201185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Studies suggest that general anesthetics like isoflurane and sevoflurane may aggravate Alzheimer's disease (AD) neuropathogenesis, e.g., increased amyloid-β (Aβ) protein aggregation resulting in synaptotoxicity and cognitive dysfunction. Other studies showed neuroprotective effects, e.g., with xenon. OBJECTIVE In the present study, we want to detail the interactions of inhalational anesthetics with Aβ-derived pathology. We hypothesize xenon-mediated beneficial mechanisms regarding Aβ oligomerization and Aβ-mediated neurotoxicity on processes related to cognition. METHODS Oligomerization of Aβ 1-42 in the presence of anesthetics has been analyzed by means of TR-FRET and silver staining. For monitoring changes in neuronal plasticity due to anesthetics and Aβ 1-42, Aβ 1-40, pyroglutamate-modified amyloid-(AβpE3), and nitrated Aβ (3NTyrAβ), we quantified long-term potentiation (LTP) and spine density. We analyzed network activity in the hippocampus via voltage-sensitive dye imaging (VSDI) and cognitive performance and Aβ plaque burden in transgenic AD mice (ArcAβ) after anesthesia. RESULTS Whereas isoflurane and sevoflurane did not affect Aβ 1-42 aggregation, xenon alleviated the propensity for aggregation and partially reversed AβpE3 induced synaptotoxic effects on LTP. Xenon and sevoflurane reversed Aβ 1-42-induced spine density attenuation. In the presence of Aβ 1-40 and AβpE3, anesthetic-induced depression of VSDI-monitored signaling recovered after xenon, but not isoflurane and sevoflurane removal. In slices pretreated with Aβ 1-42 or 3NTyrAβ, activity did not recover after washout. Cognitive performance and plaque burden were unaffected after anesthetizing WT and ArcAβ mice. CONCLUSION None of the anesthetics aggravated Aβ-derived AD pathology in vivo. However, Aβ and anesthetics affected neuronal activity in vitro, whereby xenon showed beneficial effects on Aβ 1-42 aggregation, LTP, and spine density.
Collapse
Affiliation(s)
- Carolin Hofmann
- Department of Anesthesiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Annika Sander
- Department of Anesthesiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Xing Xing Wang
- Department of Anesthesiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Martina Buerge
- Department of Anesthesiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Bettina Jungwirth
- Department of Anesthesiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Anesthesiology, University Hospital Ulm, Ulm, Germany
| | - Laura Borgstedt
- Department of Anesthesiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Matthias Kreuzer
- Department of Anesthesiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Claudia Kopp
- Department of Anesthesiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Kenji Schorpp
- Assay Development and Screening Platform, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Kamyar Hadian
- Assay Development and Screening Platform, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Carsten T Wotjak
- Max Planck Institute of Psychiatry, Neuronal Plasticity, Munich, Germany.,Central Nervous System Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Tim Ebert
- Max Planck Institute of Psychiatry, Neuronal Plasticity, Munich, Germany
| | | | | | - Gerhard Rammes
- Department of Anesthesiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
7
|
McGuigan S, Evered L, Scott DA, Silbert B, Zetterberg H, Blennow K. Comparing the effect of xenon and sevoflurane anesthesia on postoperative neural injury biomarkers: a randomized controlled trial. Med Gas Res 2021; 12:10-17. [PMID: 34472497 PMCID: PMC8447955 DOI: 10.4103/2045-9912.324591] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
General anesthesia and surgery are associated with an increase in neural injury biomarkers. Elevations of these neural injury biomarkers in the perioperative period are associated with postoperative delirium. Xenon has been shown to be protective against a range of neurological insults in animal models. It remains to be seen if xenon anesthesia is neuroprotective in the perioperative setting in humans. Twenty-four participants scheduled for lithotripsy were randomized to receive either xenon or sevoflurane general anesthesia. There was no statistically significant difference in the concentrations of postoperative neural injury biomarkers between the xenon and sevoflurane group. Following the procedure there was a significant increase in the concentration from baseline of all three biomarkers at 1 hour post-induction with a return to baseline at 5 hours. General anesthesia for lithotripsy was associated with a significant increase at 1 hour post-induction in the neural injury biomarkers total tau, neurofilament light and tau phosphorylated at threonine 181, a marker of tau phosphorylation. The protocol was approved by the St. Vincent’s Hospital Melbourne Ethics Committee (approval No. HREC/18/SVHM/221) on July 20, 2018 and was registered with the Australia New Zealand Clinical Trials Registry (registration No. ACTRN12618000916246) on May 31, 2018.
Collapse
Affiliation(s)
- Steven McGuigan
- Department of Anaesthesia and Acute Pain Medicine, St. Vincent's Hospital; Department of Critical Care, University of Melbourne, Melbourne, Australia
| | - Lisbeth Evered
- Department of Anaesthesia and Acute Pain Medicine, St. Vincent's Hospital; Department of Critical Care, University of Melbourne, Melbourne, Australia; Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | - David A Scott
- Department of Anaesthesia and Acute Pain Medicine, St. Vincent's Hospital; Department of Critical Care, University of Melbourne, Melbourne, Australia
| | - Brendan Silbert
- Department of Anaesthesia and Acute Pain Medicine, St. Vincent's Hospital; Department of Critical Care, University of Melbourne, Melbourne, Australia
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology; UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
8
|
McGuigan S, Evered L, Silbert B, Scott DA, Cormack JR, Devapalasundaram A, Liley DTJ. Comparison of the Spectral Features of the Frontal Electroencephalogram in Patients Receiving Xenon and Sevoflurane General Anesthesia. Anesth Analg 2021; 133:1269-1279. [PMID: 34081045 DOI: 10.1213/ane.0000000000005608] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Depth-of-anesthesia monitoring is often utilized for patients receiving xenon anesthesia. Processed electroencephalogram (EEG) depth-of-anesthesia monitoring relies to a significant extent on frequency domain analysis of the frontal EEG, and there is evidence that the spectral features observed under anesthesia vary significantly between anesthetic agents. The spectral features of the EEG during xenon anesthesia for a surgical procedure have not previously been described. METHODS Twenty-four participants scheduled for general anesthesia for lithotripsy were randomized to receive either xenon anesthesia or sevoflurane anesthesia. Frontal EEG recordings were obtained from each participant via the Brain Anesthesia Response Monitor (BARM). Twenty-two EEG recordings were suitable for analysis: 11 in participants who received sevoflurane and 11 in participants who received xenon. Spectrograms for the duration of the anesthetic episode were produced for each participant. Group-level spectral analysis was calculated for two 30-second EEG epochs: one recorded at awake baseline and the other during maintenance anesthesia. A linear mixed-effects model was utilized to compare the changes in 5 frequency bands from baseline to maintenance between the 2 groups. RESULTS The spectrograms of sevoflurane participants illustrate an increase in frontal delta (0.5-4 Hz), theta (4-8 Hz), and alpha (8-13 Hz) band power during maintenance anesthesia. In contrast, spectrograms of the xenon participants did not illustrate an increase in alpha power. The results of the linear mixed-effects model indicate that both agents were associated with a significant increase in delta power from baseline to maintenance. There was no significant difference in the magnitude of this increase observed between the agents. In contrast, sevoflurane anesthesia was associated with significantly greater absolute power in the theta, alpha, and beta (13-30 Hz) bands when compared to xenon. In terms of relative power, xenon was associated with a significant increase in delta power compared to sevoflurane, while sevoflurane was associated with greater increases in relative theta, alpha, and beta power. CONCLUSIONS Both xenon anesthesia and sevoflurane anesthesia were associated with significant increases in delta power. Sevoflurane anesthesia was also associated with increases in theta, alpha, and beta power, while xenon anesthesia was associated with greater consolidation of power in the delta band. Xenon anesthesia and sevoflurane anesthesia are associated with distinct spectral features. These findings suggest that appropriate depth-of-anesthesia monitoring may require the development of agent-specific spectral measures of unconsciousness.
Collapse
Affiliation(s)
- Steven McGuigan
- From the Department of Anesthesia and Acute Pain Medicine, St. Vincent's Hospital, Melbourne, Australia.,the Department of Medicine, Dentistry and Health Sciences, University of Melbourne, Australia
| | - Lisbeth Evered
- From the Department of Anesthesia and Acute Pain Medicine, St. Vincent's Hospital, Melbourne, Australia.,the Department of Medicine, Dentistry and Health Sciences, University of Melbourne, Australia
| | - Brendan Silbert
- From the Department of Anesthesia and Acute Pain Medicine, St. Vincent's Hospital, Melbourne, Australia.,the Department of Medicine, Dentistry and Health Sciences, University of Melbourne, Australia
| | - David A Scott
- From the Department of Anesthesia and Acute Pain Medicine, St. Vincent's Hospital, Melbourne, Australia.,the Department of Medicine, Dentistry and Health Sciences, University of Melbourne, Australia
| | - John R Cormack
- From the Department of Anesthesia and Acute Pain Medicine, St. Vincent's Hospital, Melbourne, Australia
| | - Abarna Devapalasundaram
- From the Department of Anesthesia and Acute Pain Medicine, St. Vincent's Hospital, Melbourne, Australia
| | - David T J Liley
- the Department of Medicine, Dentistry and Health Sciences, University of Melbourne, Australia
| |
Collapse
|
9
|
Hayashida K, Miyara SJ, Shinozaki K, Takegawa R, Yin T, Rolston DM, Choudhary RC, Guevara S, Molmenti EP, Becker LB. Inhaled Gases as Therapies for Post-Cardiac Arrest Syndrome: A Narrative Review of Recent Developments. Front Med (Lausanne) 2021; 7:586229. [PMID: 33585501 PMCID: PMC7873953 DOI: 10.3389/fmed.2020.586229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/04/2020] [Indexed: 01/22/2023] Open
Abstract
Despite recent advances in the management of post-cardiac arrest syndrome (PCAS), the survival rate, without neurologic sequelae after resuscitation, remains very low. Whole-body ischemia, followed by reperfusion after cardiac arrest (CA), contributes to PCAS, for which established pharmaceutical interventions are still lacking. It has been shown that a number of different processes can ultimately lead to neuronal injury and cell death in the pathology of PCAS, including vasoconstriction, protein modification, impaired mitochondrial respiration, cell death signaling, inflammation, and excessive oxidative stress. Recently, the pathophysiological effects of inhaled gases including nitric oxide (NO), molecular hydrogen (H2), and xenon (Xe) have attracted much attention. Herein, we summarize recent literature on the application of NO, H2, and Xe for treating PCAS. Recent basic and clinical research has shown that these gases have cytoprotective effects against PCAS. Nevertheless, there are likely differences in the mechanisms by which these gases modulate reperfusion injury after CA. Further preclinical and clinical studies examining the combinations of standard post-CA care and inhaled gas treatment to prevent ischemia-reperfusion injury are warranted to improve outcomes in patients who are being failed by our current therapies.
Collapse
Affiliation(s)
- Kei Hayashida
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, United States.,Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, Manhasset, NY, United States
| | - Santiago J Miyara
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, United States.,Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, Manhasset, NY, United States.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States.,Department of Surgery, Medicine, and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, New York, NY, United States.,Institute of Health Innovations and Outcomes Research, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Koichiro Shinozaki
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, United States.,Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, Manhasset, NY, United States
| | - Ryosuke Takegawa
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, United States.,Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, Manhasset, NY, United States
| | - Tai Yin
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, United States.,Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, Manhasset, NY, United States
| | - Daniel M Rolston
- Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, Manhasset, NY, United States.,Department of Surgery, Northwell Health, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Hempstead, NY, United States
| | - Rishabh C Choudhary
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, United States.,Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, Manhasset, NY, United States
| | - Sara Guevara
- Department of Surgery, Northwell Health, Manhasset, NY, United States
| | - Ernesto P Molmenti
- Department of Surgery, Medicine, and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, New York, NY, United States.,Institute of Health Innovations and Outcomes Research, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Hempstead, NY, United States
| | - Lance B Becker
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, United States.,Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Hempstead, NY, United States
| |
Collapse
|
10
|
Jin Z, Hu J, Ma D. Postoperative delirium: perioperative assessment, risk reduction, and management. Br J Anaesth 2020; 125:492-504. [DOI: 10.1016/j.bja.2020.06.063] [Citation(s) in RCA: 285] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/22/2020] [Accepted: 06/20/2020] [Indexed: 12/20/2022] Open
|
11
|
Devroe S, Devriese L, Debuck F, Fieuws S, Cools B, Gewillig M, Van de Velde M, Rex S. Effect of xenon and dexmedetomidine as adjuncts for general anesthesia on postoperative emergence delirium after elective cardiac catheterization in children: study protocol for a randomized, controlled, pilot trial. Trials 2020; 21:310. [PMID: 32245513 PMCID: PMC7126401 DOI: 10.1186/s13063-020-4231-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/04/2020] [Indexed: 12/29/2022] Open
Abstract
Background Emergence delirium, a manifestation of acute postoperative brain dysfunction, is frequently observed after pediatric anesthesia and has been associated with the use of sevoflurane. Both xenon and dexmedetomidine possess numerous desirable properties for the anesthesia of children with congenital heart disease, including hemodynamic stability, lack of neurotoxicity, and a reduced incidence of emergence delirium. Combining both drugs has never been studied as a balanced-anesthesia technique. This combination allows the provision of anesthesia without administering anesthetic drugs against which the Food and Drug Administration (FDA) issued a warning for the use in young children. Methods/Design In this phase-II, mono-center, prospective, single-blinded, randomized, controlled pilot trial, we will include a total of 80 children aged 0–3 years suffering from congenital heart disease and undergoing general anesthesia for elective diagnostic and/or interventional cardiac catheterization. Patients are randomized into two study groups, receiving either a combination of xenon and dexmedetomidine or mono-anesthesia with sevoflurane for the maintenance of anesthesia. The purpose of this study is to estimate the effect size for xenon-dexmedetomidine versus sevoflurane anesthesia with respect to the incidence of emergence delirium in children. We will also describe group differences for a variety of secondary outcome parameters including peri-interventional hemodynamics, emergence characteristics, incidence of postoperative vomiting, and the feasibility of a combined xenon-dexmedetomidine anesthesia in children. Discussion Sevoflurane is the most frequently used anesthetic in young children, but has been indicated as an independent risk factor in the development of emergence delirium. Xenon and dexmedetomidine have both been associated with a reduction in the incidence of emergence delirium. Combining xenon and dexmedetomidine has never been described as a balanced-anesthesia technique in children. Our pilot study will therefore deliver important data required for future prospective clinical trials. Trial registration EudraCT, 2018–002258-56. Registered on 20 August 2018. https://www.clinicaltrialsregister.eu.
Collapse
Affiliation(s)
- Sarah Devroe
- Department of Anesthesiology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium. .,Department of Pediatric and Congenital Cardiology, University Hospitals Leuven, Leuven, Belgium.
| | - Lisa Devriese
- Department of Anesthesiology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Frederik Debuck
- Department of Anesthesiology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Steffen Fieuws
- I-Biostat, KU Leuven - University of Leuven, Leuven, Belgium
| | - Bjorn Cools
- Department of Pediatric and Congenital Cardiology, University Hospitals Leuven, Leuven, Belgium.,Department of Cardiovascular Sciences, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Marc Gewillig
- Department of Pediatric and Congenital Cardiology, University Hospitals Leuven, Leuven, Belgium.,Department of Cardiovascular Sciences, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Marc Van de Velde
- Department of Anesthesiology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium.,Department of Cardiovascular Sciences, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Steffen Rex
- Department of Anesthesiology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium.,Department of Cardiovascular Sciences, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Lawley JS, Gatterer H, Dias KA, Howden EJ, Sarma S, Cornwell WK, Hearon CM, Samels M, Everding B, Bruick RK, Hendrix M, Piper T, Thevis M, Levine BD. Safety, hemodynamic effects, and detection of acute xenon inhalation: rationale for banning xenon from sport. J Appl Physiol (1985) 2019; 127:1511-1518. [DOI: 10.1152/japplphysiol.00290.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
This study aimed to quantify the sedative effects, detection rates, and cardiovascular responses to xenon. On 3 occasions, participants breathed xenon (FiXe 30% for 20 min; FiXe 50% for 5 min; FiXe 70% for 2 min) in a nonblinded design. Sedation was monitored by a board-certified anesthesiologist. During 70% xenon, participants were also verbally instructed to operate a manual value with time-to-task failure being recorded. Beat-by-beat hemodynamics were measured continuously by ECG, photoplethysmography, and transcranial Doppler. Over 48 h postadministration, xenon was measured in blood and urine by gas chromatography-mass spectrometry. Xenon caused variable levels of sedation and restlessness. Task failure of the self-operating value occurred at 60–90 s in most individuals. Over the first minute, 50% and 70% xenon caused a substantial reduction in total peripheral resistance ( P < 0.05). All dosages caused an increase in cardiac output ( P < 0.05). By the end of xenon inhalation, slight hypertension was observed after all three doses ( P < 0.05), with an increase in middle cerebral artery velocity ( P < 0.05). Xenon was consistently detected, albeit in trace amounts, up to 3 h after all three doses of xenon inhalation in blood and urine with variable results thereafter. Xenon inhalation caused sedation incompatible with self-operation of a breathing apparatus, thus causing a potential life-threatening condition in the absence of an anesthesiologist. Yet, xenon can only be reliably detected in blood and urine up to 3 h postacute dosing. NEW & NOTEWORTHY Breathing xenon in dosages conceivable for doping purposes (FiXe 30% for 20 min; FiXe 50% for 5 min; FiXe 70% for 2 min) causes an initial rapid fall in total peripheral resistance with tachycardia and thereafter a mild hypertension with elevated middle cerebral artery velocity. These dose duration intervals cause sedation that is incompatible with operating a breathing apparatus and can only be detected in blood and urine samples with a high probability for up to ~3 h.
Collapse
Affiliation(s)
- Justin S. Lawley
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, Texas
- University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Hannes Gatterer
- Institute of Mountain Emergency Medicine, EURAC Research, Bolzano, Italy
| | - Katrin A. Dias
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, Texas
- University of Texas Southwestern Medical Center, Dallas, Texas
| | - Erin J. Howden
- The Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Satyam Sarma
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, Texas
- University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Christopher M. Hearon
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, Texas
- University of Texas Southwestern Medical Center, Dallas, Texas
| | - Mitchel Samels
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, Texas
| | - Braden Everding
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, Texas
| | | | - Max Hendrix
- University of Texas Southwestern Medical Center, Dallas, Texas
| | - Thomas Piper
- German Sport University Cologne, Institute of Biochemistry/Center for Preventive Doping Research, Cologne, Germany
| | - Mario Thevis
- German Sport University Cologne, Institute of Biochemistry/Center for Preventive Doping Research, Cologne, Germany
| | - Benjamin D. Levine
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, Texas
- University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
13
|
Bürge M, Kratzer S, Mattusch C, Hofmann C, Kreuzer M, Parsons CG, Rammes G. The anaesthetic xenon partially restores an amyloid beta-induced impairment in murine hippocampal synaptic plasticity. Neuropharmacology 2019; 151:21-32. [PMID: 30940537 DOI: 10.1016/j.neuropharm.2019.03.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/15/2019] [Accepted: 03/26/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND It is controversially discussed whether general anaesthesia increases the risk of Alzheimer's disease (AD) or accelerates its progression. One important factor in AD pathogenesis is the accumulation of soluble amyloid beta (Aβ) oligomers which affect N-methyl-d-aspartate (NMDA) receptor function and abolish hippocampal long-term potentiation (LTP). NMDA receptor antagonists, at concentrations allowing physiological activation, can prevent Aβ-induced deficits in LTP. The anaesthetics xenon and S-ketamine both act as NMDA receptor antagonists and have been reported to be neuroprotective. In this study, we investigated the effects of subanaesthetic concentrations of these drugs on LTP deficits induced by different Aβ oligomers and compared them to the effects of radiprodil, a NMDA subunit 2B (GluN2B)-selective antagonist. METHODS We applied different Aβ oligomers to murine brain slices and recorded excitatory postsynaptic field potentials before and after high-frequency stimulation in the CA1 region of hippocampus. Radiprodil, xenon and S-ketamine were added and recordings evoked from a second input were measured. RESULTS Xenon and radiprodil, applied at low concentrations, partially restored the LTP deficit induced by pre-incubated Aβ1-42. S-ketamine showed no effect. None of the drugs tested were able to ameliorate Aβ1-40-induced LTP-deficits. CONCLUSIONS Xenon administered at subanaesthetic concentrations partially restored Aβ1-42-induced impairment of LTP, presumably via its weak NMDA receptor antagonism. The effects were in a similar range than those obtained with the NMDA-GluN2B antagonist radiprodil. Our results point to protective properties of xenon in the context of pathological distorted synaptic physiology which might be a meaningful alternative for anaesthesia in AD patients.
Collapse
Affiliation(s)
- Martina Bürge
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany; Department of Perioperative Medicine, Barts Heart Centre, St Bartholomew's Hospital, West Smithfield, London EC1A 7BE, United Kingdom.
| | - Stephan Kratzer
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Corinna Mattusch
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany; Hexal AG, Industriestr. 25, 83607 Holzkirchen, Germany
| | - Carolin Hofmann
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Matthias Kreuzer
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | | | - Gerhard Rammes
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| |
Collapse
|
14
|
|
15
|
Abstract
Xenon is an inert, highly polarizable noble gas with demonstrated safety and application in general anesthesia for over 50 years. A potent inhibitor of the N-methyl-D-aspartate subtype of glutamate receptors, xenon has a well-documented ameliorating effect on excitotoxic neuronal injury in numerous cellular and animal models of hypoxic-ischemic brain injury. The most important determinant of overall survival and morbidity in out-of-hospital cardiac arrest is the severity of neurological injury. The only approved neuroprotective strategy in this setting is mild therapeutic hypothermia, which has demonstrated significant, albeit modest, improvements in mortality. The combination therapy of therapeutic hypothermia and xenon in porcine models of cardiac arrest has shown a greater improvement in functional outcomes than either intervention alone, thereby prompting the study of combination therapy in randomized clinical trials. The treatment of postarrest patients with xenon and mild hypothermia is safe and demonstrates favorable cardiovascular features, including a reduced heart rate, a reduction in troponin elevations, and a decreased need for vasopressors. Combination therapy is superior in protecting white matter integrity than hypothermia alone, but did not significantly impact neurological outcomes at 6-month follow-up. Despite an abundance of preclinical evidence supporting xenon's neuroprotective properties, its translational potential in postcardiac arrest care is indeterminate due to a lack of adequately-powered studies.
Collapse
|
16
|
Devroe S, Lemiere J, Van Hese L, Gewillig M, Boshoff D, Poesen K, Van de Velde M, Rex S. The effect of xenon-augmented sevoflurane anesthesia on intraoperative hemodynamics and early postoperative neurocognitive function in children undergoing cardiac catheterization: A randomized controlled pilot trial. Paediatr Anaesth 2018; 28:726-738. [PMID: 30004615 DOI: 10.1111/pan.13444] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/17/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND In adults, xenon has only minimal hemodynamic side effects when compared with other anesthetics. Moreover, in preclinical experiments, xenon has been demonstrated to possess cardio- and neuroprotective properties. Altogether, the favorable hemodynamic profile combined with its potential for organ-protection could render xenon an attractive option for anesthesia in children with cardiovascular compromise. AIMS The aim of this study was to explore safety and feasibility of sevoflurane-augmented xenon anesthesia in school-aged children and to assess early postoperative neurocognitive effects of xenon-sevoflurane and sevoflurane anesthesia when compared to a control group that did not have anesthesia. METHODS Forty children aged 4-12 years, suffering from congenital heart disease, undergoing diagnostic or interventional cardiac catheterization were randomized to either xenon-augmented sevoflurane anesthesia or sevoflurane alone. Safety was assessed by the incidence of intraprocedural hemodynamic instability and feasibility by anesthetic depth and respiratory profile. In addition, neurocognitive performance was assessed preoperatively, 2 hours after discharge from PACU and at 24 hours after anesthesia using the Amsterdam Neuropsychological Tasks system. A healthy control group of 22 age- and gender-matched children not exposed to anesthesia underwent an identical neurocognitive test battery, at comparable time intervals. RESULTS Overall hemodynamics did not differ between groups. Xenon-sevoflurane anesthesia resulted in decreased intraoperative ephedrine requirements (median [IQR]) (0.00 mg/kg [0.00-0.00] vs 0.00 mg/kg [0.00-0.01], P = 0.047). Only neurocognitive tests in the domain of alertness were significantly impaired 2 hours postoperatively in both anesthesia groups in comparison with the control group (alertness variability: P = 0.02, odds ratio 5.8), but recovered at 24 hours. For working memory, inhibition, cognitive flexibility, and motor coordination tasks, no significant interaction effects of anesthesia were found in the early postoperative period. CONCLUSION In this pilot trial, xenon-augmented sevoflurane anesthesia in school-aged children was feasible, and associated with decreased ephedrine requirements. All children exposed to anesthesia showed impaired neurocognitive performance in the immediate postoperative period when compared to control children; however, without significant differences between both treatment groups.
Collapse
Affiliation(s)
- Sarah Devroe
- Department of Anesthesiology, University Hospitals Leuven, Leuven, Belgium
| | - Jurgen Lemiere
- Department of Child and Adolescent Psychiatry, University Hospitals Leuven, Leuven, Belgium.,Department of Paediatric Haemato-Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Laura Van Hese
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Marc Gewillig
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium.,Department of Pediatric and Congenital Cardiology, University Hospitals Leuven, Leuven, Belgium
| | - Derize Boshoff
- Department of Pediatric and Congenital Cardiology, University Hospitals Leuven, Leuven, Belgium
| | - Koen Poesen
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Marc Van de Velde
- Department of Anesthesiology, University Hospitals Leuven, Leuven, Belgium.,Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Steffen Rex
- Department of Anesthesiology, University Hospitals Leuven, Leuven, Belgium.,Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Jin Z, Piazza O, Ma D, Scarpati G, De Robertis E. Xenon anesthesia and beyond: pros and cons. Minerva Anestesiol 2018; 85:83-89. [PMID: 30019577 DOI: 10.23736/s0375-9393.18.12909-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Xenon is a colorless and odorless noble gas, licensed for human use as an anesthetic gas as well as a radiological marker. The MAC of this gas is about 63% but xenon anesthesia is associated with fast recovery of cognitive function and cardiovascular stability. Nevertheless, postoperative nausea and vomiting (PONV) incidence for xenon anesthesia is very high. It has been reported that Xenon has cytoprotective effects that may have therapeutic values in both CNS protection, and in organ graft preservation. Currently, there are few studies about the effect of xenon on ischemia reperfusion injury of transplantable organs and insufficient clinical data upon its effect on intracranial and cerebral perfusion pressure. We shortly review the pros and cons of xenon as an anesthetic agent.
Collapse
Affiliation(s)
- Zhaosheng Jin
- Anesthetics, Pain Medicine, and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Ornella Piazza
- Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Daqing Ma
- Anesthetics, Pain Medicine, and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Giuliana Scarpati
- Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Edoardo De Robertis
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy -
| |
Collapse
|
18
|
Amer AR, Oorschot DE. Xenon Combined With Hypothermia in Perinatal Hypoxic-Ischemic Encephalopathy: A Noble Gas, a Noble Mission. Pediatr Neurol 2018; 84:5-10. [PMID: 29887039 DOI: 10.1016/j.pediatrneurol.2018.02.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/21/2018] [Indexed: 12/14/2022]
Abstract
Perinatal hypoxia-ischemia is a major cause of neonatal morbidity. It generates primary neuronal damage of the neonatal brain and later secondary damage when reperfusion of the ischemic brain tissue causes a surge of oxygen free radicals and inflammation. This post-hypoxic-ischemic brain damage is a leading cause of motor and intellectual disabilities in survivors. Research worldwide has focused on mitigating this injury. Mild or moderate hypothermia is the standard treatment in many centers. However, its benefit is modest and the search for combinatorial effective neuroprotectants continues. This review focuses on xenon as one such agent. The use of mild to moderate hypothermia is reviewed first. Then promising results on the use of xenon to potentiate the effect of hypothermia in in vitro and in vivo animal experiments are discussed. In the first feasibility study on human neonates, researchers found a significant benefit of using 50% xenon for 18 hours in addition to 72 hours of hypothermia. Yet, this additional benefit of xenon was lacking in a larger cohort study, potentially because xenon was used beyond six hours of birth. The future of using xenon is promising, but further clinical studies are awaited to confirm the feasibility of its routine use and its optimal timing, concentration, and duration, for human neonatal hypoxia-ischemia.
Collapse
Affiliation(s)
- Ashraf R Amer
- Department of Anatomy, School of Biomedical Sciences and the Brain Health Research Center, University of Otago, Dunedin, New Zealand
| | - Dorothy E Oorschot
- Department of Anatomy, School of Biomedical Sciences and the Brain Health Research Center, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
19
|
Abstract
Anesthesiology, as a field, has made promising advances in the discovery of novel, safe, effective, and efficient methods to deliver care. This review explores refinement in the technology of soft drug development, unique anesthetic delivery systems, and recent drug and device failures.
Collapse
Affiliation(s)
- Mohamed Mahmoud
- Department of Anesthesiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Keira P Mason
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| |
Collapse
|
20
|
Devroe S, Meeusen R, Gewillig M, Cools B, Poesen K, Sanders R, Rex S. Xenon as an adjuvant to sevoflurane anesthesia in children younger than 4 years of age, undergoing interventional or diagnostic cardiac catheterization: A randomized controlled clinical trial. Paediatr Anaesth 2017; 27:1210-1219. [PMID: 28872734 DOI: 10.1111/pan.13230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/02/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Xenon has repeatedly been demonstrated to have only minimal hemodynamic side effects when compared to other anesthetics. Moreover, in experimental models, xenon was found to be neuroprotective and devoid of developmental neurotoxicity. These properties could render xenon attractive for the anesthesia in neonates and infants with congenital heart disease. However, experience with xenon anesthesia in children is scarce. AIMS We hypothesized that in children undergoing cardiac catheterization, general anesthesia with a combination of sevoflurane with xenon results in superior hemodynamic stability, compared to sevoflurane alone. METHODS In this prospective, randomized, single-blinded, controlled clinical trial, children with a median age of 12 [IQR 3-36] months undergoing diagnostic/interventional cardiac catheterization were randomized to either general anesthesia with 50-65vol% xenon plus sevoflurane or sevoflurane alone. The primary outcome was the incidence of intraprocedural hemodynamic instability, defined as the occurrence of: (i) a heart rate change >20% from baseline; or (ii) a change in mean arterial blood pressure >20% from baseline; or (iii) the requirement of vasopressors, inotropes, chronotropes, or fluid boluses. Secondary endpoints included recovery characteristics, feasibility criteria, and safety (incidence of emergence agitation and postoperative vomiting. RESULTS After inclusion of 40 children, the trial was stopped as an a priori planned blinded interim analysis revealed that the overall rate of hemodynamic instability did not differ between groups [100% in both the xenon-sevoflurane and the sevoflurane group. However, the adjuvant administration of xenon decreased vasopressor requirements, preserved better cerebral oxygen saturation, and resulted in a faster recovery. Xenon anesthesia was feasible (with no differences in the need for rescue anesthetics in both groups). CONCLUSION Our observations suggest that combining xenon with sevoflurane in preschool children is safe, feasible, and facilitates hemodynamic management. Larger and adequately powered clinical trials are warranted to investigate the impact of xenon on short- and long-term outcomes in pediatric anesthesia.
Collapse
Affiliation(s)
- Sarah Devroe
- Department of Anesthesiology, University Hospitals Leuven, Leuven, Belgium
| | - Roselien Meeusen
- Department of Anesthesiology, University Hospitals Leuven, Leuven, Belgium
| | - Marc Gewillig
- Department of Pediatric and Congenital Cardiology, University Hospitals Leuven, Leuven, Belgium.,Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Bjorn Cools
- Department of Pediatric and Congenital Cardiology, University Hospitals Leuven, Leuven, Belgium.,Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Koen Poesen
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Robert Sanders
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA
| | - Steffen Rex
- Department of Anesthesiology, University Hospitals Leuven, Leuven, Belgium.,Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
21
|
Al tmimi L, Devroe S, Dewinter G, Van de Velde M, Poortmans G, Meyns B, Meuris B, Coburn M, Rex S. Xenon as an Adjuvant to Propofol Anesthesia in Patients Undergoing Off-Pump Coronary Artery Bypass Graft Surgery. Anesth Analg 2017; 125:1118-1128. [DOI: 10.1213/ane.0000000000002179] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
22
|
Frampas C, Augsburger M, Varlet V. Xenon: From medical applications to doping uses. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2017. [DOI: 10.1016/j.toxac.2017.03.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Mori N, Imamura M, Kawakami Y, Nagaoki Y, Kawaoka T, Tsuge M, Hiramatsu A, Hayes CN, Aikata H, Miki D, Ochi H, Honda Y, Takaki S, Tsuji K, Chayama K. IFNL4 polymorphism effects on outcome of simeprevir, peginterferon, and ribavirin therapy for older patients with genotype 1 chronic hepatitis C. Hepatol Res 2017; 47:E5-E13. [PMID: 27027531 DOI: 10.1111/hepr.12715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/09/2016] [Accepted: 03/25/2016] [Indexed: 12/17/2022]
Abstract
AIM Older patients with chronic hepatitis C have a lower virological response to interferon (IFN)-based treatments compared to younger patients. A single nucleotide polymorphism in the IFN-λ-4 (IFNL4) gene has a potent predictive effect on treatment response to IFN-based treatments. The efficacy of simeprevir (SMV) plus pegylated-IFN (PEG-IFN) and ribavirin therapy and the predictive value of IFNL4 on the outcome of therapy for older patients have not been addressed. METHODS This retrospective multicenter study included 234 consecutive Japanese patients with genotype 1 chronic hepatitis C. We assessed the predictive factors for sustained virological response (SVR) to SMV, PEG-IFN, and ribavirin triple therapy in 170 younger (<70 years) and 64 older (≥70 years) patients. IFNL4 polymorphism ss469415590 was analyzed by Invader assay. RESULTS The SVR rate for older patients was similar to that for younger patients (63.9% and 72.0%, respectively). The SVR rate for the IFNL4 TT/TT group was significantly higher than the IFNL4 TT/ΔG or ΔG/ΔG group both in younger (93.6% and 46.1%, respectively, P < 0.01) and older patients (84.4% and 33.3%, respectively, P < 0.001). In multivariate regression analysis, IFNL4 TT/TT genotype, response to previous treatment and IFNL4 TT/TT genotype were identified as independent predictive factors for SVR in older and younger patients, respectively. Decrease in hemoglobin level was similar between the two groups. CONCLUSION The virological response to SMV triple therapy in older patients was similar to that of younger patients. Analysis of IFNL4 polymorphisms is a valuable predictor in both younger and older patients.
Collapse
Affiliation(s)
- Nami Mori
- Department of Gastroenterology/Liver Center, Hiroshima Red Cross Hospital and Atomic-bomb Survivors Hospital, Hiroshima, Japan
| | - Michio Imamura
- Department of Gastroenterology and Metabolism, Applied Life Science, Institute of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Yoshiiku Kawakami
- Department of Gastroenterology and Metabolism, Applied Life Science, Institute of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Yuko Nagaoki
- Department of Gastroenterology and Metabolism, Applied Life Science, Institute of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Tomokazu Kawaoka
- Department of Gastroenterology and Metabolism, Applied Life Science, Institute of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Masataka Tsuge
- Department of Gastroenterology and Metabolism, Applied Life Science, Institute of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Akira Hiramatsu
- Department of Gastroenterology and Metabolism, Applied Life Science, Institute of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - C Nelson Hayes
- Department of Gastroenterology and Metabolism, Applied Life Science, Institute of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Aikata
- Department of Gastroenterology and Metabolism, Applied Life Science, Institute of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Daiki Miki
- Department of Gastroenterology and Metabolism, Applied Life Science, Institute of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.,Laboratory for Digestive Diseases, SNP Research Center, The Institute of Physical and Chemical Research (RIKEN), Hiroshima, Japan
| | - Hidenori Ochi
- Department of Gastroenterology and Metabolism, Applied Life Science, Institute of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.,Laboratory for Digestive Diseases, SNP Research Center, The Institute of Physical and Chemical Research (RIKEN), Hiroshima, Japan
| | - Yohji Honda
- Department of Gastroenterology/Liver Center, Hiroshima Red Cross Hospital and Atomic-bomb Survivors Hospital, Hiroshima, Japan
| | - Shintaro Takaki
- Department of Gastroenterology/Liver Center, Hiroshima Red Cross Hospital and Atomic-bomb Survivors Hospital, Hiroshima, Japan
| | - Keiji Tsuji
- Department of Gastroenterology/Liver Center, Hiroshima Red Cross Hospital and Atomic-bomb Survivors Hospital, Hiroshima, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Applied Life Science, Institute of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.,Laboratory for Digestive Diseases, SNP Research Center, The Institute of Physical and Chemical Research (RIKEN), Hiroshima, Japan
| | | |
Collapse
|
24
|
Walkup LL, Thomen RP, Akinyi T, Watters E, Ruppert K, Clancy JP, Woods JC, Cleveland ZI. Feasibility, tolerability and safety of pediatric hyperpolarized 129Xe magnetic resonance imaging in healthy volunteers and children with cystic fibrosis. Pediatr Radiol 2016; 46:1651-1662. [PMID: 27492388 PMCID: PMC5083137 DOI: 10.1007/s00247-016-3672-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 06/05/2016] [Accepted: 07/20/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Hyperpolarized 129Xe is a promising contrast agent for MRI of pediatric lung function, but its safety and tolerability in children have not been rigorously assessed. OBJECTIVE To assess the feasibility, safety and tolerability of hyperpolarized 129Xe gas as an inhaled contrast agent for pediatric pulmonary MRI in healthy control subjects and in children with cystic fibrosis. MATERIALS AND METHODS Seventeen healthy control subjects (ages 6-15 years, 11 boys) and 11 children with cystic fibrosis (ages 8-16 years, 4 boys) underwent 129Xe MRI, receiving up to three doses of 129Xe gas prepared by either a commercially available or a homebuilt 129Xe polarizer. Subject heart rate and SpO2 were monitored for 2 min post inhalation and compared to resting baseline values. Adverse events were reported via follow-up phone call at days 1 and 30 (range ±7 days) post-MRI. RESULTS All children tolerated multiple doses of 129Xe, and no children withdrew from the study. Relative to baseline, most children who received a full dose of gas for imaging (10 of 12 controls and 8 of 11 children with cystic fibrosis) experienced a nadir in SpO2 (mean -6.0 ± standard deviation 7.2%, P≤0.001); however within 2 min post inhalation SpO2 values showed no significant difference from baseline (P=0.11). There was a slight elevation in heart rate (mean +6.6 ± 13.9 beats per minute [bpm], P=0.021), which returned from baseline within 2 min post inhalation (P=0.35). Brief side effects related to the anesthetic properties of xenon were mild and quickly resolved without intervention. No serious or severe adverse events were observed; in total, four minor adverse events (14.3%) were reported following 129Xe MRI, but all were deemed unrelated to the study. CONCLUSION The feasibility, safety and tolerability of 129Xe MRI has been assessed in a small group of children as young as 6 years. SpO2 changes were consistent with the expected physiological effects of a short anoxic breath-hold, and other mild side effects were consistent with the known anesthetic properties of xenon and with previous safety assessments of 129Xe MRI in adults. Hyperpolarized 129Xe is a safe and well-tolerated inhaled contrast agent for pulmonary MR imaging in healthy children and in children with cystic fibrosis who have mild to moderate lung disease.
Collapse
Affiliation(s)
- Laura L. Walkup
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., MLC 5033, Cincinnati, OH 45229, USA
| | - Robert P. Thomen
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., MLC 5033, Cincinnati, OH 45229, USA,Department of Physics, Washington University in St. Louis, St. Louis, MO, USA
| | - Teckla Akinyi
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., MLC 5033, Cincinnati, OH 45229, USA,Biomedical Engineering Program, University of Cincinnati, Cincinnati, OH, USA
| | - Erin Watters
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., MLC 5033, Cincinnati, OH 45229, USA
| | - Kai Ruppert
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., MLC 5033, Cincinnati, OH 45229, USA
| | - John P. Clancy
- Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Jason C. Woods
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., MLC 5033, Cincinnati, OH 45229, USA,Department of Physics, Washington University in St. Louis, St. Louis, MO, USA
| | - Zackary I. Cleveland
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., MLC 5033, Cincinnati, OH 45229, USA,Biomedical Engineering Program, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
25
|
|
26
|
Xenon. Int Anesthesiol Clin 2015; 53:40-54. [PMID: 25807017 DOI: 10.1097/aia.0000000000000049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Impact of Hyperpolarization-activated, Cyclic Nucleotide-gated Cation Channel Type 2 for the Xenon-mediated Anesthetic Effect: Evidence from In Vitro and In Vivo Experiments. Anesthesiology 2015; 122:1047-59. [PMID: 25782754 DOI: 10.1097/aln.0000000000000635] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND The thalamus is thought to be crucially involved in the anesthetic state. Here, we investigated the effect of the inhaled anesthetic xenon on stimulus-evoked thalamocortical network activity and on excitability of thalamocortical neurons. Because hyperpolarization-activated, cyclic nucleotide-gated cation (HCN) channels are key regulators of neuronal excitability in the thalamus, the effect of xenon on HCN channels was examined. METHODS The effects of xenon on thalamocortical network activity were investigated in acutely prepared brain slices from adult wild-type and HCN2 knockout mice by means of voltage-sensitive dye imaging. The influence of xenon on single-cell excitability in brain slices was investigated using the whole-cell patch-clamp technique. Effects of xenon on HCN channels were verified in human embryonic kidney cells expressing HCN2 channels. RESULTS Xenon concentration-dependently diminished thalamocortical signal propagation. In neurons, xenon reduced HCN channel-mediated Ih current amplitude by 33.4 ± 12.2% (at -133 mV; n = 7; P = 0.041) and caused a left-shift in the voltage of half-maximum activation (V1/2) from -98.8 ± 1.6 to -108.0 ± 4.2 mV (n = 8; P = 0.035). Similar effects were seen in human embryonic kidney cells. The impairment of HCN channel function was negligible when intracellular cyclic adenosine monophosphate level was increased. Using HCN2 mice, we could demonstrate that xenon did neither attenuate in vitro thalamocortical signal propagation nor did it show sedating effects in vivo. CONCLUSIONS Here, we clearly showed that xenon impairs HCN2 channel function, and this impairment is dependent on intracellular cyclic adenosine monophosphate levels. We provide evidence that this effect reduces thalamocortical signal propagation and probably contributes to the hypnotic properties of xenon.
Collapse
|
28
|
Lotz C, Kehl F. Volatile Anesthetic-Induced Cardiac Protection: Molecular Mechanisms, Clinical Aspects, and Interactions With Nonvolatile Agents. J Cardiothorac Vasc Anesth 2015; 29:749-60. [DOI: 10.1053/j.jvca.2014.11.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Indexed: 02/07/2023]
|
29
|
Devroe S, Lemiere J, Van de Velde M, Gewillig M, Boshoff D, Rex S. Safety and feasibility of xenon as an adjuvant to sevoflurane anaesthesia in children undergoing interventional or diagnostic cardiac catheterization: study protocol for a randomised controlled trial. Trials 2015; 16:74. [PMID: 25886748 PMCID: PMC4350978 DOI: 10.1186/s13063-015-0587-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/02/2015] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Xenon has minimal haemodynamic side effects when compared to volatile or intravenous anaesthetics. Moreover, in in vitro and in animal experiments, xenon has been demonstrated to convey cardio- and neuroprotective effects. Neuroprotection could be advantageous in paediatric anaesthesia as there is growing concern, based on both laboratory studies and retrospective human clinical studies, that anaesthetics may trigger an injury in the developing brain, resulting in long-lasting neurodevelopmental consequences. Furthermore, xenon-mediated neuroprotection could help to prevent emergence delirium/agitation. Altogether, the beneficial haemodynamic profile combined with its putative organ-protective properties could render xenon an attractive option for anaesthesia of children undergoing cardiac catheterization. METHODS/DESIGN In a phase-II, mono-centre, prospective, single-blind, randomised, controlled study, we will test the hypothesis that the administration of 50% xenon as an adjuvant to general anaesthesia with sevoflurane in children undergoing elective cardiac catheterization is safe and feasible. Secondary aims include the evaluation of haemodynamic parameters during and after the procedure, emergence characteristics, and the analysis of peri-operative neuro-cognitive function. A total of 40 children ages 4 to 12 years will be recruited and randomised into two study groups, receiving either a combination of sevoflurane and xenon or sevoflurane alone. DISCUSSION Children undergoing diagnostic or interventional cardiac catheterization are a vulnerable patient population, one particularly at risk for intra-procedural haemodynamic instability. Xenon provides remarkable haemodynamic stability and potentially has cardio- and neuroprotective properties. Unfortunately, evidence is scarce on the use of xenon in the paediatric population. Our pilot study will therefore deliver important data required for prospective future clinical trials. TRIAL REGISTRATION EudraCT: 2014-002510-23 (5 September 2014).
Collapse
Affiliation(s)
- Sarah Devroe
- Department of Anaesthesiology, University Hospitals of the KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Jurgen Lemiere
- Department of Child and Adolescent Psychiatry, University Hospitals of the KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
- Department of Paediatric Haemato-Oncology, University Hospitals of the KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Marc Van de Velde
- Department of Anaesthesiology, University Hospitals of the KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
- Department of Cardiovascular Sciences, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Marc Gewillig
- Department of Paediatric and Congenital Cardiology, University Hospitals of the KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Derize Boshoff
- Department of Paediatric and Congenital Cardiology, University Hospitals of the KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Steffen Rex
- Department of Anaesthesiology, University Hospitals of the KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
- Department of Cardiovascular Sciences, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
30
|
Stuth EAE, Stucke AG, Zuperku EJ. Effects of anesthetics, sedatives, and opioids on ventilatory control. Compr Physiol 2013; 2:2281-367. [PMID: 23720250 DOI: 10.1002/cphy.c100061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This article provides a comprehensive, up to date summary of the effects of volatile, gaseous, and intravenous anesthetics and opioid agonists on ventilatory control. Emphasis is placed on data from human studies. Further mechanistic insights are provided by in vivo and in vitro data from other mammalian species. The focus is on the effects of clinically relevant agonist concentrations and studies using pharmacological, that is, supraclinical agonist concentrations are de-emphasized or excluded.
Collapse
Affiliation(s)
- Eckehard A E Stuth
- Medical College of Wisconsin, Anesthesia Research Service, Zablocki VA Medical Center, Milwaukee, Wisconsin, USA.
| | | | | |
Collapse
|
31
|
Feasibility and cardiac safety of inhaled xenon in combination with therapeutic hypothermia following out-of-hospital cardiac arrest. Crit Care Med 2013; 41:2116-24. [PMID: 23896830 DOI: 10.1097/ccm.0b013e31828a4337] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Preclinical studies reveal the neuroprotective properties of xenon, especially when combined with hypothermia. The purpose of this study was to investigate the feasibility and cardiac safety of inhaled xenon treatment combined with therapeutic hypothermia in out-of-hospital cardiac arrest patients. DESIGN An open controlled and randomized single-centre clinical drug trial (clinicaltrials.gov NCT00879892). SETTING A multipurpose ICU in university hospital. PATIENTS Thirty-six adult out-of-hospital cardiac arrest patients (18-80 years old) with ventricular fibrillation or pulseless ventricular tachycardia as initial cardiac rhythm. INTERVENTIONS Patients were randomly assigned to receive either mild therapeutic hypothermia treatment with target temperature of 33°C (mild therapeutic hypothermia group, n=18) alone or in combination with xenon by inhalation, to achieve a target concentration of at least 40% (Xenon+mild therapeutic hypothermia group, n=18) for 24 hours. Thirty-three patients were evaluable (mild therapeutic hypothermia group, n=17; Xenon+mild therapeutic hypothermia group, n=16). MEASUREMENTS AND MAIN RESULTS Patients were treated and monitored according to the Utstein protocol. The release of troponin-T was determined at arrival to hospital and at 24, 48, and 72 hours after out-of-hospital cardiac arrest. The median end-tidal xenon concentration was 47% and duration of the xenon inhalation was 25.5 hours. The frequency of serious adverse events, including inhospital mortality, status epilepticus, and acute kidney injury, was similar in both groups and there were no unexpected serious adverse reactions to xenon during hospital stay. In addition, xenon did not induce significant conduction, repolarization, or rhythm abnormalities. Median dose of norepinephrine during hypothermia was lower in xenon-treated patients (mild therapeutic hypothermia group=5.30 mg vs Xenon+mild therapeutic hypothermia group=2.95 mg, p=0.06). Heart rate was significantly lower in Xenon+mild therapeutic hypothermia patients during hypothermia (p=0.04). Postarrival incremental change in troponin-T at 72 hours was significantly less in the Xenon+mild therapeutic hypothermia group (p=0.04). CONCLUSIONS Xenon treatment in combination with hypothermia is feasible and has favorable cardiac features in survivors of out-of-hospital cardiac arrest.
Collapse
|
32
|
Vengeliene V, Bessiere B, Pype J, Spanagel R. The effects of xenon and nitrous oxide gases on alcohol relapse. Alcohol Clin Exp Res 2013; 38:557-63. [PMID: 24118055 DOI: 10.1111/acer.12264] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/23/2013] [Indexed: 01/09/2023]
Abstract
BACKGROUND In recent years, the glutamate theory of alcoholism has emerged as a major theory in the addiction research field and N-methyl-d-aspartate (NMDA) receptors have been shown to play a major role in alcohol craving and relapse. The NMDA receptors are considered as the primary side of action of the anesthetic gases xenon (Xe) and nitrous oxide (N2 O). Despite the rapid on/off kinetics of these gases on the NMDA receptor, a brief gas exposure can induce an analgesic or antireward effect lasting several days. The aim of this study was to examine the effect of both Xe and N2 O on alcohol-seeking and relapse-like drinking behavior (measured as the alcohol deprivation effect) in Wistar rats. METHODS We used 2 standard procedures-the alcohol deprivation model with repeated deprivation phases and the cue-induced reinstatement model of alcohol seeking-to study the effect of 2 brief gas exposures of either Xe, N2 O, or control gas on relapse-like drinking and alcohol-seeking behavior. RESULTS Here, we show that exposure to Xe during the last 24 hours of abstinence produced a trend toward reduced ethanol intake during the first alcohol re-exposure days. In addition, Xe gas exposure significantly decreased the cue-induced reinstatement of alcohol-seeking behavior. N2 O had no effect on either behavior. CONCLUSIONS Xe reduces alcohol-seeking behavior in rats and may therefore also interfere with craving in human alcoholics.
Collapse
Affiliation(s)
- Valentina Vengeliene
- Faculty of Medicine Mannheim, Institute of Psychopharmacology, Central Institute of Mental Health, University of Heidelberg, Heidelberg, Germany
| | | | | | | |
Collapse
|
33
|
Stoppe C, Fahlenkamp A, Rex S, Veeck N, Gozdowsky S, Schälte G, Autschbach R, Rossaint R, Coburn M. Feasibility and safety of xenon compared with sevoflurane anaesthesia in coronary surgical patients: a randomized controlled pilot study † †Presented, in part, at the annual congress ‘25. Herbsttreffen des wissenschaftlichen Arbeitskreises Kardioanästhesie’ in Fulda, Germany, 2011: ‘Feasibility and hemodynamic effects of xenon anaesthesia compared to sevoflurane anaesthesia in cardiac surgical patients'a randomized controlled pilot study’. Br J Anaesth 2013; 111:406-16. [DOI: 10.1093/bja/aet072] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
34
|
LIU X, DINGLEY J, ELSTAD M, SCULL-BROWN E, STEEN PA, THORESEN M. Minimum alveolar concentration (MAC) for sevoflurane and xenon at normothermia and hypothermia in newborn pigs. Acta Anaesthesiol Scand 2013; 57:646-53. [PMID: 23316707 DOI: 10.1111/aas.12055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2012] [Indexed: 12/21/2022]
Abstract
BACKGROUND Neuroprotection from therapeutic hypothermia increases when combined with the anaesthetic gas xenon in animal studies. A clinical feasibility study of the combined treatment has been successfully undertaken in asphyxiated human term newborns. It is unknown whether xenon alone would be sufficient for sedation during hypothermia eliminating or reducing the need for other sedative or analgesic infusions in ventilated sick infants. Minimum alveolar concentration (MAC) of xenon is unknown in any neonatal species. METHODS Eight newborn pigs were anaesthetised with sevoflurane alone and then sevoflurane plus xenon at two temperatures. Pigs were randomised to start at either 38.5°C or 33.5°C. MAC for sevoflurane was determined using the claw clamp technique at the preset body temperature. For xenon MAC determination, a background of 0.5 MAC sevoflurane was used, and 60% xenon added to the gas mixture. The relationship between sevoflurane and xenon MAC is assumed to be additive. Xenon concentrations were changed in 5% steps until a positive clamp reaction was noted. Pigs' temperature was changed to the second target, and two MAC determinations for sevoflurane and 0.5 MAC sevoflurane plus xenon were repeated. RESULTS MAC for sevoflurane was 4.1% [95% confidence interval (CI): 3.65-4.50] at 38.5°C and 3.05% (CI: 2.63-3.48) at 33.5°C, a significant reduction. MAC for xenon was 120% at 38.5°C and 116% at 33.5°C, not different. CONCLUSION In newborn swine sevoflurane, MAC was temperature dependent, while xenon MAC was independent of temperature. There was large individual variability in xenon MAC, from 60% to 120%.
Collapse
Affiliation(s)
- X. LIU
- Neonatal Neuroscience; School of Clinical Sciences; University of Bristol; Bristol; UK
| | - J. DINGLEY
- Anesthetics; Swansea Medical School; University of Swansea; Swansea; UK
| | - M. ELSTAD
- Department of Physiology; Institute of Basic Medical Sciences; University of Oslo; Oslo; Norway
| | - E. SCULL-BROWN
- Neonatal Neuroscience; School of Clinical Sciences; University of Bristol; Bristol; UK
| | - P. A. STEEN
- Clinic for Emergencies and Critical Care; University of Oslo and Oslo University Hospital; Norway
| | | |
Collapse
|
35
|
Stuttmann R, Schultz A, Kneif T, Krauss T, Schultz B. Assessing the depth of hypnosis of xenon anaesthesia with the EEG. ACTA ACUST UNITED AC 2012; 55:77-82. [PMID: 20180643 DOI: 10.1515/bmt.2010.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Xenon was approved as an inhaled anaesthetic in Germany in 2005 and in other countries of the European Union in 2007. Owing to its low blood/gas partition coefficient, xenons effects on the central nervous system show a fast onset and offset and, even after long xenon anaesthetics, the wake-up times are very short. The aim of this study was to examine which electroencephalogram (EEG) stages are reached during xenon application and whether these stages can be identified by an automatic EEG classification. Therefore, EEG recordings were performed during xenon anaesthetics (EEG monitor: Narcotrend®). A total of 300 EEG epochs were assessed visually with regard to the EEG stages. These epochs were also classified automatically by the EEG monitor Narcotrend® using multivariate algorithms. There was a high correlation between visual and automatic classification (Spearman's rank correlation coefficient r=0.957, prediction probability Pk=0.949). Furthermore, it was observed that very deep stages of hypnosis were reached which are characterised by EEG activity in the low frequency range (delta waves). The burst suppression pattern was not seen. In deep hypnosis, in contrast to the xenon EEG, the propofol EEG was characterised by a marked superimposed higher frequency activity. To ensure an optimised dosage for the single patient, anaesthetic machines for xenon should be combined with EEG monitoring. To date, only a few anaesthetic machines for xenon are available. Because of the high price of xenon, new and further developments of machines focus on optimizing xenon consumption.
Collapse
Affiliation(s)
- Ralph Stuttmann
- Clinic of Anaesthesiology, Intensive Care and Emergency Medicine, Pain Centre, Berufsgenossenschaftliche Kliniken Bergmannstrost, Halle/Saale, Germany
| | | | | | | | | |
Collapse
|
36
|
Noreika V, Jylhänkangas L, Móró L, Valli K, Kaskinoro K, Aantaa R, Scheinin H, Revonsuo A. Consciousness lost and found: subjective experiences in an unresponsive state. Brain Cogn 2011; 77:327-34. [PMID: 21986366 DOI: 10.1016/j.bandc.2011.09.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 09/12/2011] [Accepted: 09/14/2011] [Indexed: 10/16/2022]
Abstract
Anesthetic-induced changes in the neural activity of the brain have been recently utilized as a research model to investigate the neural mechanisms of phenomenal consciousness. However, the anesthesiologic definition of consciousness as "responsiveness to the environment" seems to sidestep the possibility that an unresponsive individual may have subjective experiences. The aim of the present study was to analyze subjective reports in sessions where sedation and the loss of responsiveness were induced by dexmedetomidine, propofol, sevoflurane or xenon in a nonsurgical experimental setting. After regaining responsiveness, participants recalled subjective experiences in almost 60% of sessions. During dexmedetomidine sessions, subjective experiences were associated with shallower "depth of sedation" as measured by an electroencephalography-derived anesthesia depth monitor. Results confirm that subjective experiences may occur during clinically defined unresponsiveness, and that studies aiming to investigate phenomenal consciousness under sedative and anesthetic effects should control the subjective state of unresponsive participants with post-recovery interviews.
Collapse
Affiliation(s)
- Valdas Noreika
- Centre for Cognitive Neuroscience, Department of Psychology, University of Turku, 20014 Turku, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Delhaye O, Robin E, Bazin JE, Ripart J, Lebuffe G, Vallet B. [Benefits and indications of xenon anaesthesia]. ANNALES FRANCAISES D'ANESTHESIE ET DE REANIMATION 2010; 29:635-641. [PMID: 20667685 DOI: 10.1016/j.annfar.2010.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2009] [Accepted: 04/16/2010] [Indexed: 05/29/2023]
Abstract
OBJECTIVE To analyze the current knowledge related to xenon anaesthesia. DATA SOURCES References were obtained from computerized bibliographic research (Medline), recent review articles, the library of the service and personal files. STUDY SELECTION All categories of articles on this topic have been selected. DATA EXTRACTION Articles have been analyzed for biophysics, pharmacology, toxicity and environmental effects, clinical effects and using prospect. DATA SYNTHESIS The noble gas xenon has anaesthetic properties that have been recognized 50 years ago. Xenon is receiving renewed interest because it has many characteristics of an ideal anaesthetic. In addition to its lack of effects on cardiovascular system, xenon has a low solubility enabling faster induction of and emergence from anaesthesia than with other inhalational agents. Nevertheless, at present, the cost and rarity of xenon limits widespread use in clinical practice. The development of closed rebreathing system that allowed recycling of xenon and therefore reducing its waste has led to a recent interest in this gas. CONCLUSION Reducing its cost will help xenon to find its place among anaesthetic agents and extend its use to severe patients with specific pathologies.
Collapse
Affiliation(s)
- O Delhaye
- Fédération d'anesthésie-réanimation, CHRU de Lille, rue Polonovski, Lille cedex, France
| | | | | | | | | | | |
Collapse
|
38
|
Dickinson R, Franks NP. Bench-to-bedside review: Molecular pharmacology and clinical use of inert gases in anesthesia and neuroprotection. Crit Care 2010; 14:229. [PMID: 20836899 PMCID: PMC2945072 DOI: 10.1186/cc9051] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In the past decade there has been a resurgence of interest in the clinical use of inert gases. In the present paper we review the use of inert gases as anesthetics and neuroprotectants, with particular attention to the clinical use of xenon. We discuss recent advances in understanding the molecular pharmacology of xenon and we highlight specific pharmacological targets that may mediate its actions as an anesthetic and neuroprotectant. We summarize recent in vitro and in vivo studies on the actions of helium and the other inert gases, and discuss their potential to be used as neuroprotective agents.
Collapse
Affiliation(s)
- Robert Dickinson
- Biophysics Section, Blackett Laboratory, Imperial College London, South Kensington, London SW7 2AZ, UK.
| | | |
Collapse
|
39
|
Stuttmann R, Jakubetz J, Schultz K, Schäfer C, Langer S, Ullmann U, Hilbert P. Recovery index, attentiveness and state of memory after xenon or isoflurane anaesthesia: a randomized controlled trial. BMC Anesthesiol 2010; 10:5. [PMID: 20459661 PMCID: PMC2877044 DOI: 10.1186/1471-2253-10-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Accepted: 05/07/2010] [Indexed: 11/15/2022] Open
Abstract
Background Performance of patients immediately after anaesthesia is an area of special interest and so a clinical trial was conducted to compare Xenon with Isoflurane anaesthesia. In order to assess the early cognitive recovery the syndrome short test (SST) according to Erzigkeit (Geromed GmbH) was applied. Methods ASA I and II patients undergoing long and short surgical interventions were randomised to receive either general anaesthesia with Xenon or Isoflurane. The primary endpoint was the validated SST which covering memory disturbances and attentiveness. The test was used on the day prior to intervention, one and three hours post extubation. The secondary endpoint was the recovery index (RI) measured after the end of the inhalation of Xenon or Isoflurane. In addition the Aldrete score was evaluated up to 180 min. On the first post-operative day the patients rated the quality of the anaesthetic using a scoring system from 1-6. Results The demographics of the groups were similar. The sum score of the SST delivered a clear trend one hour post extubation and a statistically significant superiority for Xenon three hours post extubation (p < 0.01). The RI likewise revealed a statistically significant superiority of Xenon 5 minutes post extubation (p < 0.01). The Aldrete score was significantly higher for 45 min. The scoring system results were also better after Xenon anaesthesia (p < 0.001). Conclusions The results show that recovery from anaesthesia and the early return of post-operative cognitive functions are significantly better after Xenon anaesthesia compared to Isoflurane. The results of the RI for Xenon are similar with the previously published results. Trial Registration The trial was registered with the number ISRCTN01110844 http://www.controlled-trials.com/isrctn/pf/01110844.
Collapse
Affiliation(s)
- Ralph Stuttmann
- Department of Anaesthesiology/Intensive Care and Emergency Medicine/Pain Therapy, BG-Kliniken Bergmannstrost, (Merseburger Strasse 165), Halle/Saale, (06112), Germany.
| | | | | | | | | | | | | |
Collapse
|
40
|
Stuttmann R, Schäfer C, Hilbert P, Meyer MR, Maurer HH. The breast feeding mother and xenon anaesthesia: four case reports. Breast feeding and xenon anaesthesia. BMC Anesthesiol 2010; 10:1. [PMID: 20167123 PMCID: PMC2837001 DOI: 10.1186/1471-2253-10-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 02/19/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Four nursing mothers consented to anaesthesia for urgent surgery only on condition that their ability to breast feed would not be impaired. METHODS Following induction of general anaesthesia with propofol and remifentanil, 65-69% xenon supplemented with remifentanil was used as an inhalational anaesthetic for maintenance. RESULTS After finishing surgery the women could be extubated between 2:52 and 7:22 minutes. The women were fully alert just minutes after extubation and spent about 45 minutes in the recovery room before discharge to a regular ward. They resumed regular breast feeding some time later. The propofol concentration in the blood was measured after 0, 30, 90, and 300 minutes and in the milk after 90 and 300 minutes. Just 90 minutes after extubation, the concentration of propofol in the milk was limited (> 3 mg/l) so that pharmacological effects on the babies were excluded after oral intake. Also, no traces of xenon gas were found in the maternal milk at any time. After propofol induction and maintenance of anaesthesia with xenon in combination with a water-soluble short-acting drug like remifentanil, the concentration of propofol in maternal milk is low (> 3 mg/l 90 min after anesthesia) and harmless after oral intake. CONCLUSIONS These results, as well as the rapid elimination and absence of metabolism of xenon, are of great interest to nursing mothers. General anaesthesia with propofol for induction only, combined with remifentanil and xenon for maintenance, has not yet been described in breast feeding mothers.
Collapse
Affiliation(s)
- Ralph Stuttmann
- Department of Anaesthesiology/Intensive and Emergency Medicine/Pain Therapy, BG-Kliniken Bergmannstrost, Merseburger Strasse 165, Halle/Saale, (06112), Germany.
| | | | | | | | | |
Collapse
|
41
|
Sun P, Gu J, Maze M, Ma D. Is xenon a future neuroprotectant? FUTURE NEUROLOGY 2009. [DOI: 10.2217/fnl.09.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Acute neuronal injury has devastating consequences with increased risks of morbidity and mortality. Among its survivors, neurological deficit is associated with loss of function, independence and quality of life. Currently, there is a distinctive lack of effective clinical strategies to obviate this problem. Xenon, a noble gas with anesthetic properties, exhibits neuroprotective effects. It is efficacious and nontoxic and has been used safely in clinical settings involving both anesthetic and imaging applications in patients of all ages. Xenon blocks the NMDA subtype of the glutamate receptor, a pivotal step in the pathway towards neuronal death. The preclinical data obtained from animal models of stroke, neonatal asphyxia and global ischemia induced by cardiac arrest, as well as recent data of traumatic brain injury, revealed that xenon is a potentially ideal candidate as a neuroprotectant. In addition, recent studies demonstrated that xenon can uniquely prevent anesthetic-induced neurodegeneration in the developing brain. Thus, clinical studies are urgently required to investigate the neuroprotective effects of xenon in the clinical setting of brain damage.
Collapse
Affiliation(s)
- Pamela Sun
- Department of Anaesthetics, Pain Medicine & Intensive Care, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Jianteng Gu
- Department of Anaesthetics, Pain Medicine & Intensive Care, Imperial College London, Chelsea and Westminster Hospital, London, UK and, Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Mervyn Maze
- Department of Anaesthetics, Pain Medicine & Intensive Care, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Daqing Ma
- Department of Anaesthetics, Pain Medicine & Intensive Care, Imperial College London, London SW10 9NH, UK
| |
Collapse
|
42
|
Mio Y, Shim YH, Richards E, Bosnjak ZJ, Pagel PS, Bienengraeber M. Xenon preconditioning: the role of prosurvival signaling, mitochondrial permeability transition and bioenergetics in rats. Anesth Analg 2009; 108:858-66. [PMID: 19224794 DOI: 10.1213/ane.0b013e318192a520] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Similar to volatile anesthetics, the anesthetic noble gas xenon protects the heart from ischemia/reperfusion injury, but the mechanisms responsible for this phenomenon are not fully understood. We tested the hypothesis that xenon-induced cardioprotection is mediated by prosurvival signaling kinases that target mitochondria. METHODS Male Wistar rats instrumented for hemodynamic measurements were subjected to a 30 min left anterior descending coronary artery occlusion and 2 h reperfusion. Rats were randomly assigned to receive 70% nitrogen/30% oxygen (control) or three 5-min cycles of 70% xenon/30% oxygen interspersed with the oxygen/nitrogen mixture administered for 5 min followed by a 15 min memory period. Myocardial infarct size was measured using triphenyltetrazolium staining. Additional hearts from control and xenon-pretreated rats were excised for Western blotting of Akt and glycogen synthase kinase 3 beta (GSK-3beta) phosphorylation and isolation of mitochondria. Mitochondrial oxygen consumption before and after hypoxia/reoxygenation and mitochondrial permeability transition pore opening were determined. RESULTS Xenon significantly (P < 0.05) reduced myocardial infarct size compared with control (32 +/- 4 and 59% +/- 4% of the left ventricular area at risk; mean +/- sd) and enhanced phosphorylation of Akt and GSK-3beta. Xenon pretreatment preserved state 3 respiration of isolated mitochondria compared with the results obtained in the absence of the gas. The Ca(2+) concentration required to induce mitochondrial membrane depolarization was larger in the presence compared with the absence of xenon pretreatment (78 +/- 17 and 56 +/- 17 microM, respectively). The phosphoinositol-3-kinase-kinase inhibitor wortmannin blocked the effect of xenon on infarct size and respiration. CONCLUSIONS These results indicate that xenon preconditioning reduces myocardial infarct size, phosphorylates Akt, and GSK-3beta, preserves mitochondrial function, and inhibits Ca(2+)-induced mitochondrial permeability transition pore opening. These data suggest that xenon-induced cardioprotection occurs because of activation of prosurvival signaling that targets mitochondria and renders them less vulnerable to ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Yasushi Mio
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | | | | | | | | | | |
Collapse
|
43
|
Laitio RM, Långsjö JW, Aalto S, Kaisti KK, Salmi E, Maksimow A, Aantaa R, Oikonen V, Viljanen T, Parkkola R, Scheinin H. The Effects of Xenon Anesthesia on the Relationship Between Cerebral Glucose Metabolism and Blood Flow in Healthy Subjects: A Positron Emission Tomography Study. Anesth Analg 2009; 108:593-600. [DOI: 10.1213/ane.0b013e31818ffc9d] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
44
|
Hendrickx JFA, Eger EI, Sonner JM, Shafer SL. Is Synergy the Rule? A Review of Anesthetic Interactions Producing Hypnosis and Immobility. Anesth Analg 2008; 107:494-506. [PMID: 18633028 DOI: 10.1213/ane.0b013e31817b859e] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Rex S, Meyer P, Baumert JH, Rossaint R, Fries M, Büll U, Schaefer W. Positron emission tomography study of regional cerebral blood flow and flow–metabolism coupling during general anaesthesia with xenon in humans † †Declaration of Interest. The Department of Anaesthesiology has received funding from Messer-Griesheim GmbH, Business Unit Messer Medical, Krefeld, Germany. Br J Anaesth 2008; 100:667-75. [DOI: 10.1093/bja/aen036] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
46
|
Abstract
The noble gases have always been an enigma. Discovered late in the history of chemistry and in seemingly small quantities in our atmosphere, they are some of the most unreactive elements known. However, despite being extremely inert, the noble gases (helium, neon, argon, krypton, xenon and radon) have found diverse and ever expanding applications in medicine. Of all of them, the gases that have found the greatest number of uses in the field of anaesthesia and related specialties are helium and xenon. This review focuses on the history of the discovery of both gases, their unique physicochemical properties and describes their uses in clinical practice with particular emphasis on those applicable to anaesthesia.
Collapse
Affiliation(s)
- P D Harris
- Royal Brompton and Marchfield NHS Trust, Hill End Road, Harefield, Middlesex UB9 6JH, UK.
| | | |
Collapse
|
47
|
Dingley J, Hobbs C, Ferguson J, Stone J, Thoresen M. Xenon/hypothermia neuroprotection regimes in spontaneously breathing neonatal rats after hypoxic-ischemic insult: the respiratory and sedative effects. Anesth Analg 2008; 106:916-23, table of contents. [PMID: 18292440 DOI: 10.1213/ane.0b013e3181618669] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Hypothermia (HT) reduces neuronal injury after perinatal asphyxia. The anesthetic gas xenon (XE) may enhance this effect. We investigated the sedative and respiratory effects of variable XE concentrations at 37 degrees C normothermia (NT) or 32 degrees C HT after a hypoxic-ischemic (HI) insult to determine the concentration at which XE was a respiratory depressant in spontaneously breathing 7-day-old rat pups. METHODS (I) In three control groups, the effects of fasting at NT and HT were investigated. (II) Six groups were subjected to a HI insult (left carotid ligation then 90 min breathing 8% oxygen); three then breathed Air, 50%Xe or 70%Xe for 5 h at NT (NT(Air), NT(50%Xe), NT(70%Xe)), while three breathed identical mixtures during HT (HT(Air), HT(50%Xe), or HT(70%Xe)), in addition to a control group. Blood gases, glucose, and lactate were measured. Sedation (spontaneous movement/respiratory rate) was recorded. RESULTS Blood chemistry data were successfully obtained from 70 pups. (I) Pups maintained normal blood gas, glucose, and lactate values after 9 h fasting at NT or HT. (II) After HI insult, in comparison with control and NT(Air) groups, 70%Xe at both NT and HT produced higher PCO2 and lower pH values while the HT(Air) and HT(50%Xe) groups only had lower pH values. The HT(70%Xe) combination produced the highest PCO2 and lowest pH values (56.8 mm Hg, 7.35, respectively) and the greatest sedative effect. CONCLUSION After HI insult, 70%Xe at both NT and HT induced sedation, respiratory depression, CO2 retention, and a decrease in pH relative to air and control groups. The effects were largely avoided with 50%Xe.
Collapse
Affiliation(s)
- John Dingley
- Clinical Science at South Bristol, Child Health, University of Bristol, St. Michael's Hospital, Bristol, UK.
| | | | | | | | | |
Collapse
|
48
|
Barakat AR, Schreiber MN, Flaschar J, Georgieff M, Schraag S. The Effective Concentration 50 (EC50) for Propofol with 70% Xenon Versus 70% Nitrous Oxide. Anesth Analg 2008; 106:823-9, table of contents. [DOI: 10.1213/ane.0b013e318161534b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
49
|
Xenon Does Not Affect γ-Aminobutyric Acid Type A Receptor Binding in Humans. Anesth Analg 2008; 106:129-34, table of contents. [DOI: 10.1213/01.ane.0000287658.14763.13] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
50
|
Pace NL, Stylianou MP. Advances in and limitations of up-and-down methodology: a précis of clinical use, study design, and dose estimation in anesthesia research. Anesthesiology 2007; 107:144-52. [PMID: 17585226 DOI: 10.1097/01.anes.0000267514.42592.2a] [Citation(s) in RCA: 312] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sequential design methods for binary response variables exist for determination of the concentration or dose associated with the 50% point along the dose-response curve; the up-and-down method of Dixon and Mood is now commonly used in anesthesia research. There have been important developments in statistical methods that (1) allow the design of experiments for the measurement of the response at any point (quantile) along the dose-response curve, (2) demonstrate the risk of certain statistical methods commonly used in literature reports, (3) allow the estimation of the concentration or dose-the target dose-associated with the chosen quantile without the assumption of the symmetry of the tolerance distribution, and (4) set bounds on the probability of response at this target dose. This article details these developments, briefly surveys current use of the up-and-down method in anesthesia research, reanalyzes published reports using the up-and-down method for the study of the epidural relief of pain during labor, and discusses appropriate inferences from up-and-down method studies.
Collapse
Affiliation(s)
- Nathan L Pace
- Department of Anesthesiology, University of Utah, Salt Lake City, Utah 84132-2304, USA.
| | | |
Collapse
|