1
|
Williams PDE, Kashyap SS, Robertson AP, Martin RJ. Diethylcarbamazine elicits Ca 2+ signals through TRP-2 channels that are potentiated by emodepside in Brugia malayi muscles. Antimicrob Agents Chemother 2023; 67:e0041923. [PMID: 37728916 PMCID: PMC10583680 DOI: 10.1128/aac.00419-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/03/2023] [Indexed: 09/22/2023] Open
Abstract
Filarial nematode infections are a major health concern in several countries. Lymphatic filariasis is caused by Wuchereria bancrofti and Brugia spp. affecting over 120 million people. Heavy infections can lead to elephantiasis, which has serious effects on individuals' lives. Although current anthelmintics are effective at killing microfilariae in the bloodstream, they have little to no effect against adult parasites found in the lymphatic system. The anthelmintic diethylcarbamazine is one of the central pillars of lymphatic filariasis control. Recent studies have reported that diethylcarbamazine can open transient receptor potential (TRP) channels in the muscles of adult female Brugia malayi, leading to contraction and paralysis. Diethylcarbamazine has synergistic effects in combination with emodepside on Brugia, inhibiting motility: emodepside is an anthelmintic that has effects on filarial nematodes and is under trial for the treatment of river blindness. Here, we have studied the effects of diethylcarbamazine on single Brugia muscle cells by measuring the change in Ca2+ fluorescence in the muscle using Ca2+-imaging techniques. Diethylcarbamazine interacts with the transient receptor potential channel, C classification (TRPC) ortholog receptor TRP-2 to promote Ca2+ entry into the Brugia muscle cells, which can activate Slopoke (SLO-1) Ca2+-activated K+ channels, the putative target of emodepside. A combination of diethylcarbamazine and emodepside leads to a bigger Ca2+ signal than when either compound is applied alone. Our study shows that diethylcarbamazine targets TRP channels to promote Ca2+ entry that is increased by emodepside activation of SLO-1 K+ channels.
Collapse
Affiliation(s)
| | | | - Alan P. Robertson
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| | - Richard J. Martin
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
2
|
Williams PDE, Kashyap SS, Robertson AP, Martin RJ. Diethylcarbamazine elicits Ca 2+ signals through TRP-2 channels that are potentiated by emodepside in Brugia malayi muscles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536248. [PMID: 37090573 PMCID: PMC10120635 DOI: 10.1101/2023.04.10.536248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Filarial nematode infections are a major health concern in several countries. Lymphatic filariasis is caused by Wucheria bancrofti and Brugia spp. affecting over 120 million people. Heavy infections can lead to elephantiasis having serious effects on individuals’ lives. Although current anthelmintics are effective at killing the microfilariae in the bloodstream, they have little to no effect against adult parasites found in the lymphatic system. The anthelmintic diethylcarbamazine is one of the central pillars of lymphatic filariasis control. Recent studies have reported that diethylcarbamazine can open Transient Receptor Potential (TRP) channels on the muscles of adult female Brugia malayi leading to contraction and paralysis. Diethylcarbamazine has synergistic effects in combination with emodepside on Brugia inhibiting motility: emodepside is an anthelmintic that has effects on filarial nematodes and is under trials for treatment of river blindness. Here we have studied the effects of diethylcarbamazine on single Brugia muscle cells by measuring the change in Ca 2+ fluorescence in the muscle using Ca 2+ -imaging techniques. Diethylcarbamazine interacts with the TRPC orthologue receptor TRP-2 to promote Ca 2+ entry into the Brugia muscle cells which can activate SLO-1 Ca 2+ activated K + channels, the putative target of emodepside. A combination of diethylcarbamazine and emodepside leads to a bigger Ca 2+ signal than when either compound is applied alone. Our study shows that diethylcarbamazine targets TRP channels to promote Ca 2+ entry that is increased by emodepside activation of SLO-1 channels.
Collapse
|
3
|
Hübner MP, Townson S, Gokool S, Tagboto S, Maclean MJ, Verocai GG, Wolstenholme AJ, Frohberger SJ, Hoerauf A, Specht S, Scandale I, Harder A, Glenschek-Sieberth M, Hahnel SR, Kulke D. Evaluation of the in vitro susceptibility of various filarial nematodes to emodepside. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2021; 17:27-35. [PMID: 34339934 PMCID: PMC8347670 DOI: 10.1016/j.ijpddr.2021.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 11/25/2022]
Abstract
Filariae are vector-borne nematodes responsible for an enormous burden of disease. Human lymphatic filariasis, caused by Wuchereria bancrofti, Brugia malayi, and Brugia timori, and onchocerciasis (caused by Onchocerca volvulus) are neglected parasitic diseases of major public health significance in tropical regions. To date, therapeutic efforts to eliminate human filariasis have been hampered by the lack of a drug with sufficient macrofilaricidal and/or long-term sterilizing effects that is suitable for use in mass drug administration (MDA) programs, particularly in areas co-endemic with Loa loa, the causative agent of loiasis. Emodepside, a semi-synthetic cyclooctadepsipeptide, has been shown to have broad-spectrum efficacy against gastrointestinal nematodes in a variety of mammalian hosts, and has been approved as an active ingredient in dewormers for cats and dogs. This paper evaluates, compares (where appropriate) and summarizes the in vitro effects of emodepside against a range of filarial nematodes at various developmental stages. Emodepside inhibited the motility of all tested stages of filariae frequently used as surrogate species for preclinical investigations (Acanthocheilonema viteae, Brugia pahangi, Litomosoides sigmodontis, Onchocerca gutturosa, and Onchocerca lienalis), human-pathogenic filariae (B. malayi) and filariae of veterinary importance (Dirofilaria immitis) in a concentration-dependent manner. While motility of all filariae was inhibited, both stage- and species-specific differences were observed. However, whether these differences were detected because of stage- and/or species-specific factors or as a consequence of variations in protocol parameters among the participating laboratories (such as purification of the parasites, read-out units, composition of media, incubation conditions, duration of incubation etc.) remains unclear. This study, however, clearly shows that emodepside demonstrates broad-spectrum in vitro activity against filarial nematode species across different genera and can therefore be validated as a promising candidate for the treatment of human filariases, including onchocerciasis and lymphatic filariasis.
Collapse
Affiliation(s)
- Marc P Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany.
| | - Simon Townson
- Griffin Institute (formerly Northwick Park Institute for Medical Research), London, HA1 3UJ, United Kingdom.
| | - Suzanne Gokool
- Griffin Institute (formerly Northwick Park Institute for Medical Research), London, HA1 3UJ, United Kingdom.
| | - Senyo Tagboto
- Griffin Institute (formerly Northwick Park Institute for Medical Research), London, HA1 3UJ, United Kingdom.
| | - Mary J Maclean
- National Institutes of Health, National Eye Institute, Clinical and Translational Immunology Section, Laboratory of Immunology, 10 Center Drive, Building 10, Room 10N113, Bethesda, MD, 20892, USA.
| | - Guilherme G Verocai
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, (current Address: INRAE Centre Val de Loire, 37380 Nouzilly, France), Athens, GA, 30602, USA; Department of Veterinary Pathobiology, College of Veterinary & Biomedical Sciences, Texas A&M University, 4467 TAMU College Station, TX, 77843, USA.
| | - Adrian J Wolstenholme
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, (current Address: INRAE Centre Val de Loire, 37380 Nouzilly, France), Athens, GA, 30602, USA.
| | - Stefan J Frohberger
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany.
| | - Sabine Specht
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland.
| | - Ivan Scandale
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland.
| | - Achim Harder
- Independent Scholar, Europaring 54, 51109, Cologne, Germany.
| | | | - Steffen R Hahnel
- Elanco Animal Health, Alfred-Nobel-Str. 50, 40789, Monheim, Germany.
| | - Daniel Kulke
- Elanco Animal Health, Alfred-Nobel-Str. 50, 40789, Monheim, Germany; Iowa State University, Department of Biomedical Sciences, 2008 Vet Med, Ames, IA, 50011, United States.
| |
Collapse
|
4
|
Colebunders R, Stolk WA, Siewe Fodjo JN, Mackenzie CD, Hopkins A. Elimination of onchocerciasis in Africa by 2025: an ambitious target requires ambitious interventions. Infect Dis Poverty 2019; 8:83. [PMID: 31578157 PMCID: PMC6775645 DOI: 10.1186/s40249-019-0593-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/04/2019] [Indexed: 11/10/2022] Open
Abstract
To achieve the elimination of onchocerciasis transmission in all African countries will entail enormous challenges, as has been highlighted by the active discussion around onchocerciasis intervention strategies and evaluation procedures in this journal.Serological thresholds for onchocerciasis elimination, adapted for the African setting, need to be established. The Onchocerciasis Technical Advisory Subgroup of the World Health Organization is currently developing improved guidelines to allow country elimination committees to make evidence-based decisions. Importantly, onchocerciasis-related morbidity should not be forgotten when debating elimination prospects. A morbidity management and disease prevention (MMDP) strategy similar to that for lymphatic filariasis will need to be developed. This will require collaboration between the onchocerciasis elimination program, the community and other partners including primary health and mental health programs.In order to reach the goal of onchocerciasis elimination in most African countries by 2025, we should prioritize community participation and advocate for tailored interventions which are scientifically proven to be effective, but currently considered to be too expensive.
Collapse
Affiliation(s)
| | - Wilma A Stolk
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | - Adrian Hopkins
- Neglected and Disabling Diseases of Poverty Consultant, Gravesend, Kent, UK
| |
Collapse
|