1
|
Xia Y, Chen Q, Liu HN, Chi Y, Zhu Y, Shan LS, Dai B, Wu L, Shi X. Synthetic routes and clinical application of new drugs approved by EMA during 2023. Eur J Med Chem 2024; 277:116762. [PMID: 39151275 DOI: 10.1016/j.ejmech.2024.116762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024]
Abstract
In 2023, the European Medicines Agency (EMA) granted approval to 77 new molecular entities (NMEs), consisting of 45 new chemical entities (NCEs) and 32 new biological entities (NBEs). These pharmacological agents encompass a broad spectrum of therapeutic domains, including oncology, cardiology, dermatology, diagnostic medicine, endocrinology, gastroenterology and hepatology, metabolic disorders, and neurology. Among the 77 approved pharmaceuticals, three received accelerated review status, and 17 (22 %) were granted orphan drug designation for the treatment of rare diseases. This review provides an overview of the clinical applications and synthetic routes of 42 newly approved NCEs by the EMA in 2023. The objective is to offer a comprehensive understanding of the synthetic approaches used in the development of these drug molecules, thereby inspiring the creation of novel, efficient, and applicable synthetic methodologies.
Collapse
Affiliation(s)
- Yu Xia
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qingqing Chen
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - He-Nan Liu
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuan Chi
- Department of Radiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Ying Zhu
- Department of Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Li-Shen Shan
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bing Dai
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Lin Wu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Xiaobao Shi
- Department of Radiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Lei L, Wang Y, Liu R, Feng J, Tang J, Gou J, Guan F, Li X. Transfer of miR-4755-5p through extracellular vesicles and particles induces decitabine resistance in recipient cells by targeting CDKN2B. Mol Carcinog 2023; 62:743-753. [PMID: 36825759 DOI: 10.1002/mc.23521] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023]
Abstract
Decitabine (5-aza-2-deoxycytidine, DAC), a DNA-hypomethylating agent, has been one of the frontline therapies for clonal hematopoietic stem cell disorders, such as myelodysplastic syndrome and acute myeloid leukemia, but DAC-resistance often occurs and leads to treatment failure. Therefore, elucidating the mechanisms of DAC resistance is important for improving its therapeutic efficacy. The extracellular vesicles and particles (EVPs) have been reported to be involved in mediating drug resistance by transporting diverse bioactive components. In this study, we established the DAC-resistant cell line (KG1a-DAC) from its parental human leukemia-derived cell line KG1a and observed that EVPs released from KG1a-DAC can promote DAC-resistant in KG1a cells. Moreover, treatment with KG1a-DAC EVPs reduced the expression of cyclin-dependent kinase inhibitor 2B (CDKN2B) in KG1a cells. miRNA-Seq analysis revealed that miR-4755-5p is overexpressed in EVPs from KG1a-DAC. Dual-luciferase reporter assay and flow cytometry analysis confirmed that miR-4755-5p rendered KG1a cells resistant to the DAC by targeting CDKN2B gene. Taken together, miR-4755-5p in EVPs released from the DAC-resistant cells plays an essential role in inducing DAC-resistance, and is a potential therapeutic target for suppression of DAC resistance.
Collapse
Affiliation(s)
- Lei Lei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China.,Provincial Key Laboratory of Biotechnology, Institute of Hematology, School of Medicine, Northwest University, Xi'an, China
| | - Yi Wang
- Department of Hematology, Provincial People's Hospital, Xi'an, China
| | - Rui Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | - Jingjing Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | - Juan Tang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | - Junjie Gou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China.,Provincial Key Laboratory of Biotechnology, Institute of Hematology, School of Medicine, Northwest University, Xi'an, China
| | - Xiang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China.,Provincial Key Laboratory of Biotechnology, Institute of Hematology, School of Medicine, Northwest University, Xi'an, China
| |
Collapse
|
3
|
Abstract
Myelodysplastic syndromes (MDS) are a family of myeloid cancers with diverse genotypes and phenotypes characterized by ineffective haematopoiesis and risk of transformation to acute myeloid leukaemia (AML). Some epidemiological data indicate that MDS incidence is increasing in resource-rich regions but this is controversial. Most MDS cases are caused by randomly acquired somatic mutations. In some patients, the phenotype and/or genotype of MDS overlaps with that of bone marrow failure disorders such as aplastic anaemia, paroxysmal nocturnal haemoglobinuria (PNH) and AML. Prognostic systems, such as the revised International Prognostic Scoring System (IPSS-R), provide reasonably accurate predictions of survival at the population level. Therapeutic goals in individuals with lower-risk MDS include improving quality of life and minimizing erythrocyte and platelet transfusions. Therapeutic goals in people with higher-risk MDS include decreasing the risk of AML transformation and prolonging survival. Haematopoietic cell transplantation (HCT) can cure MDS, yet fewer than 10% of affected individuals receive this treatment. However, how, when and in which patients with HCT for MDS should be performed remains controversial, with some studies suggesting HCT is preferred in some individuals with higher-risk MDS. Advances in the understanding of MDS biology offer the prospect of new therapeutic approaches.
Collapse
|
4
|
Gu Z, Yang J, Yang M, Deng Y, Jiao Y. Immunomodulatory effects of decitabine in pearl oyster Pinctada fucata martensii. FISH & SHELLFISH IMMUNOLOGY 2022; 129:191-198. [PMID: 36029945 DOI: 10.1016/j.fsi.2022.08.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Decitabine (DAC), an inhibitor of DNA methyltransferase, is typically used to reverse DNA methylation and is considered an epigenetic modifying drug. DNA methylation is crucial to the regulation of gene expression without altering genetic information. Our previous research showed that the DNA methylation levels of many immune-related genes changed after the pre-grafting condition in pearl production. In the present study, we evaluated the DNA methylation level and analyzed transcriptome, enzyme, and antimicrobial activities after DAC treatment to evaluate the effect of DAC on DNA methylation and immune system of pearl oyster Pinctada fucata martensii. Results showed that DAC significantly decreased the level of global DNA methylation in the hemocytes of the pearl oysters. Transcriptome analysis obtained 577 differentially expressed genes (DEGs) between the control and DAC treatment group. The DEGs were mainly enriched in the following pathways: "Relaxin signaling pathway," "Cytosolic DNA-sensing pathway," "Platelet activation," and "Peroxisome," and related genes were overexpressed after DAC treatment. DAC treatment resulted in a substantial increase in the levels of serum superoxide dismutase, interleukin-17, phenol oxidase, tumor necrosis factor, and antimicrobial activity, compared with the control. These results suggested that DAC can alter DNA methylation level, activate immune-related genes, and improve the level of humoral immunity in pearl oysters, thereby increasing our understanding of the mechanism underlying DNA methylation in immune regulation.
Collapse
Affiliation(s)
- Zefeng Gu
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Jingmiao Yang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Min Yang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Yuewen Deng
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, 524088, China
| | - Yu Jiao
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China.
| |
Collapse
|
5
|
Development of GBRT Model as a Novel and Robust Mathematical Model to Predict and Optimize the Solubility of Decitabine as an Anti-Cancer Drug. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27175676. [PMID: 36080444 PMCID: PMC9457620 DOI: 10.3390/molecules27175676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022]
Abstract
The efficient production of solid-dosage oral formulations using eco-friendly supercritical solvents is known as a breakthrough technology towards developing cost-effective therapeutic drugs. Drug solubility is a significant parameter which must be measured before designing the process. Decitabine belongs to the antimetabolite class of chemotherapy agents applied for the treatment of patients with myelodysplastic syndrome (MDS). In recent years, the prediction of drug solubility by applying mathematical models through artificial intelligence (AI) has become known as an interesting topic due to the high cost of experimental investigations. The purpose of this study is to develop various machine-learning-based models to estimate the optimum solubility of the anti-cancer drug decitabine, to evaluate the effects of pressure and temperature on it. To make models on a small dataset in this research, we used three ensemble methods, Random Forest (RFR), Extra Tree (ETR), and Gradient Boosted Regression Trees (GBRT). Different configurations were tested, and optimal hyper-parameters were found. Then, the final models were assessed using standard metrics. RFR, ETR, and GBRT had R2 scores of 0.925, 0.999, and 0.999, respectively. Furthermore, the MAPE metric error rates were 1.423 × 10−1 7.573 × 10−2, and 7.119 × 10−2, respectively. According to these facts, GBRT was considered as the primary model in this paper. Using this method, the optimal amounts are calculated as: P = 380.88 bar, T = 333.01 K, Y = 0.001073.
Collapse
|
6
|
Sagulkoo P, Suratanee A, Plaimas K. Immune-Related Protein Interaction Network in Severe COVID-19 Patients toward the Identification of Key Proteins and Drug Repurposing. Biomolecules 2022; 12:biom12050690. [PMID: 35625619 PMCID: PMC9138873 DOI: 10.3390/biom12050690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 02/05/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is still an active global public health issue. Although vaccines and therapeutic options are available, some patients experience severe conditions and need critical care support. Hence, identifying key genes or proteins involved in immune-related severe COVID-19 is necessary to find or develop the targeted therapies. This study proposed a novel construction of an immune-related protein interaction network (IPIN) in severe cases with the use of a network diffusion technique on a human interactome network and transcriptomic data. Enrichment analysis revealed that the IPIN was mainly associated with antiviral, innate immune, apoptosis, cell division, and cell cycle regulation signaling pathways. Twenty-three proteins were identified as key proteins to find associated drugs. Finally, poly (I:C), mitomycin C, decitabine, gemcitabine, hydroxyurea, tamoxifen, and curcumin were the potential drugs interacting with the key proteins to heal severe COVID-19. In conclusion, IPIN can be a good representative network for the immune system that integrates the protein interaction network and transcriptomic data. Thus, the key proteins and target drugs in IPIN help to find a new treatment with the use of existing drugs to treat the disease apart from vaccination and conventional antiviral therapy.
Collapse
Affiliation(s)
- Pakorn Sagulkoo
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Biomedical Informatics, Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Apichat Suratanee
- Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand;
- Intelligent and Nonlinear Dynamics Innovations Research Center, Science and Technology Research Institute, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Kitiporn Plaimas
- Advance Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence:
| |
Collapse
|
7
|
Heppt MV, Wessely A, Hornig E, Kammerbauer C, Graf SA, Besch R, French LE, Matthies A, Kuphal S, Kappelmann-Fenzl M, Bosserhoff AK, Berking C. HDAC2 Is Involved in the Regulation of BRN3A in Melanocytes and Melanoma. Int J Mol Sci 2022; 23:ijms23020849. [PMID: 35055045 PMCID: PMC8778714 DOI: 10.3390/ijms23020849] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
The neural crest transcription factor BRN3A is essential for the proliferation and survival of melanoma cells. It is frequently expressed in melanoma but not in normal melanocytes or benign nevi. The mechanisms underlying the aberrant expression of BRN3A are unknown. Here, we investigated the epigenetic regulation of BRN3A in melanocytes and melanoma cell lines treated with DNA methyltransferase (DNMT), histone acetyltransferase (HAT), and histone deacetylase (HDAC) inhibitors. DNMT and HAT inhibition did not significantly alter BRN3A expression levels, whereas panHDAC inhibition by trichostatin A led to increased expression. Treatment with the isoform-specific HDAC inhibitor mocetinostat, but not with PCI-34051, also increased BRN3A expression levels, suggesting that class I HDACs HDAC1, HDAC2, and HDAC3, and class IV HDAC11, were involved in the regulation of BRN3A expression. Transient silencing of HDACs 1, 2, 3, and 11 by siRNAs revealed that, specifically, HDAC2 inhibition was able to increase BRN3A expression. ChIP-Seq analysis uncovered that HDAC2 inhibition specifically increased H3K27ac levels at a distal enhancer region of the BRN3A gene. Altogether, our data suggest that HDAC2 is a key epigenetic regulator of BRN3A in melanocytes and melanoma cells. These results highlight the importance of epigenetic mechanisms in regulating melanoma oncogenes.
Collapse
Affiliation(s)
- Markus V. Heppt
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (A.W.); (C.B.)
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-85-35747
| | - Anja Wessely
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (A.W.); (C.B.)
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
| | - Eva Hornig
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80337 Munich, Germany; (E.H.); (C.K.); (S.A.G.); (R.B.); (L.E.F.)
| | - Claudia Kammerbauer
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80337 Munich, Germany; (E.H.); (C.K.); (S.A.G.); (R.B.); (L.E.F.)
| | - Saskia A. Graf
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80337 Munich, Germany; (E.H.); (C.K.); (S.A.G.); (R.B.); (L.E.F.)
| | - Robert Besch
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80337 Munich, Germany; (E.H.); (C.K.); (S.A.G.); (R.B.); (L.E.F.)
| | - Lars E. French
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80337 Munich, Germany; (E.H.); (C.K.); (S.A.G.); (R.B.); (L.E.F.)
| | - Alexander Matthies
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (A.M.); (S.K.); (A.K.B.)
| | - Silke Kuphal
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (A.M.); (S.K.); (A.K.B.)
| | | | - Anja K. Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (A.M.); (S.K.); (A.K.B.)
| | - Carola Berking
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (A.W.); (C.B.)
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
| |
Collapse
|
8
|
Mahmood I, Azfaralariff A, Mohamad A, Airianah OB, Law D, Dyari HRE, Lim YC, Fazry S. Mutated Shiitake extracts inhibit melanin-producing neural crest-derived cells in zebrafish embryo. Comp Biochem Physiol C Toxicol Pharmacol 2021; 245:109033. [PMID: 33737223 DOI: 10.1016/j.cbpc.2021.109033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/17/2021] [Accepted: 03/06/2021] [Indexed: 02/07/2023]
Abstract
The ability of natural extracts to inhibit melanocyte activity is of great interest to researchers. This study evaluates and explores the ability of mutated Shiitake (A37) and wildtype Shiitake (WE) extract to inhibit this activity. Several properties such as total phenolic (TPC) and total flavonoid content (TFC), antioxidant activity, effect on cell and component profiling were conducted. While having no significant differences in total phenolic content, mutation resulted in A37 having a TFC content (1.04 ± 0.7 mg/100 ml) compared to WE (0.86 ± 0.9 mg/100 ml). Despite that, A37 extract has lower antioxidant activity (EC50, A37 = 549.6 ± 2.70 μg/ml) than WE (EC50 = 52.8 ± 1.19 μg/ml). Toxicity tests on zebrafish embryos show that both extracts, stop the embryogenesis process when the concentration used exceeds 900 μg/ml. Although both extracts showed pigmentation reduction in zebrafish embryos, A37 extract showed no effect on embryo heartbeat. Cell cycle studies revealed that WE significantly affect the cell cycle while A37 not. Further tests found that these extracts inhibit the phosphorylation of Glycogen synthase kinase 3 β (pGSK3β) in HS27 cell line, which may explain the activation of apoptosis in melanin-producing cells. It was found that from 19 known compounds, 14 compounds were present in both WE and A37 extracts. Interestingly, the presence of decitabine in A37 extract makes it very potential for use in the medical application such as treatment of melanoma, skin therapy and even cancer.
Collapse
Affiliation(s)
- Ibrahim Mahmood
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Ahmad Azfaralariff
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Azhar Mohamad
- Malaysian Nuclear Agency, Bangi 43000, Kajang, Selangor, Malaysia
| | - Othman B Airianah
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Tasik Chini Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Innovative Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Douglas Law
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Herryawan Ryadi Eziwar Dyari
- Tasik Chini Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Yi Chieh Lim
- Danish Cancer Society Research Centre, Strand boulevard 49, Copenhagen 2100, Denmark
| | - Shazrul Fazry
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Tasik Chini Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Innovative Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| |
Collapse
|
9
|
Ari F, Napieralski R, Akgun O, Magdolen V, Ulukaya E. Epigenetic modulators combination with chemotherapy in breast cancer cells. Cell Biochem Funct 2021; 39:571-583. [PMID: 33608886 DOI: 10.1002/cbf.3626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 12/15/2022]
Abstract
Despite the concerning adverse effects on tumour development, epigenetic drugs are very promising in cancer treatment. The aim of this study was to compare the differential effects of standard chemotherapy regimens (FEC: 5-fluorouracil plus epirubicine plus cyclophosphamide) in combination with epigenetic modulators (decitabine, valproic acid): (a) on gene methylation levels of selected tumour biomarkers (LINE-1, uPA, PAI-1, DAPK); (b) their expression status (uPA and PAI-1); (c) differentiation status (5meC and H3K27me3). Furthermore, cell survival as well as changes concerning the invasion capacity were monitored in cell culture models of breast cancer (MCF-7, MDA-MB-231). A significant overall decrease of cell survival was observed in the FEC-containing combination therapies for both cell lines. Methylation results showed a general tendency towards increased demethylation of the uPA and PAI-1 gene promoters for the MCF-7 cells, as well as the proapoptotic DAPK gene in the treatment regimens for both cell lines. The uPA and PAI-1 antigen levels were mainly increased in the supernatant of FEC-only treated MDA-MB-231 cells. DAC-only treatment induced an increase of secreted uPA protein in MCF-7 cell culture, while most of the VPA-containing regimens also induced uPA and PAI-1 expression in MCF-7 cell fractions. Epigenetically active substances can also induce a re-differentiation in tumour cells, as shown by 5meC, H3K27me3 applying ICC. SIGNIFICANCE OF THE STUDY: Epigenetic modulators especially in the highly undifferentiated and highly malignant MDA-MB-231 tumour cells significantly reduced tumour malignancy thus; further clinical studies applying specific combination therapies with epigenetic modulators may be warranted.
Collapse
Affiliation(s)
- Ferda Ari
- Science and Art Faculty, Department of Biology, Bursa Uludag University, Bursa, Turkey
| | - Rudolf Napieralski
- Department of Obstetrics and Gynecology, Clinical Research Unit, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Therawis Diagnostics GmbH, Munich, Germany
| | - Oguzhan Akgun
- Science and Art Faculty, Department of Biology, Bursa Uludag University, Bursa, Turkey
| | - Viktor Magdolen
- Department of Obstetrics and Gynecology, Clinical Research Unit, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Engin Ulukaya
- Faculty of Medicine, Department of Clinical Biochemistry, Istinye University, Istanbul, Turkey
| |
Collapse
|
10
|
Li W, Xu L. Epigenetic Function of TET Family, 5-Methylcytosine, and 5-Hydroxymethylcytosine in Hematologic Malignancies. Oncol Res Treat 2019; 42:309-318. [PMID: 31055566 DOI: 10.1159/000498947] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/14/2019] [Indexed: 11/19/2022]
Abstract
DNA methylation plays significant roles in a variety of biological and pathological processes including mammalian development, genomic imprinting, retrotransposon silencing, and X-chromosome inactivation. Recent discoveries indicated that ten-eleven translocation (TET) family of dioxygenases can convert 5-methylcytosine (5-mC) into 5-hydroxymethylcytosine (5-hmC). The TET family includes three members: TET1, TET2, and TET3. With increasing evidence, more and more biological and pathological processes in which 5-hmC and TET family serve unparalleled biological roles are noticed, for example, DNA demethylation and transcriptional regulation of different target genes, which are involved in many human diseases, especially hematologic malignancies, resembling chronic myelomonocytic leukemia, myelodysplastic syndromes, and so on. In this review, we focus on the diverse functions of TET family and the novel epigenetic marks, 5-mC and 5-hmC, in hematologic malignancies. This review will provide valuable insights into the potential targets of hematologic malignancies. Further understanding of the normal and pathological functions of TET family may provide new methods to develop novel epigenetic therapies for treating hematologic malignancies.
Collapse
Affiliation(s)
- Wei Li
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.,School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Linping Xu
- Department of Research and Foreign Affairs, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China,
| |
Collapse
|
11
|
Zhang W, Liu C, Wu D, Liang C, Zhang L, Zhang Q, Liu Y, Xia M, Wang H, Su P, Feng S, Han M, Zhou J, Wang F, Jiang E. Decitabine improves platelet recovery by down-regulating IL-8 level in MDS/AML patients with thrombocytopenia. Blood Cells Mol Dis 2019; 76:66-71. [PMID: 30846359 DOI: 10.1016/j.bcmd.2019.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/02/2019] [Accepted: 02/17/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Wenxia Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China; Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Cuicui Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, China
| | - Dan Wu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, China
| | - Chen Liang
- Hematopoietic Stem Cell Transplant Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Leisheng Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, China
| | - Qiuqiu Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China; Hematopoietic Stem Cell Transplant Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Yiying Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, China
| | - Meijuan Xia
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, China
| | - Hongtao Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, China
| | - Pei Su
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, China
| | - Sizhou Feng
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China; Hematopoietic Stem Cell Transplant Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Mingzhe Han
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China; Hematopoietic Stem Cell Transplant Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Jiaxi Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, China
| | - Fuxu Wang
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China.
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China; Hematopoietic Stem Cell Transplant Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China.
| |
Collapse
|
12
|
Wang XZ, Cheng Y, Wang KL, Liu R, Yang XL, Wen HM, Chai C, Liang JY, Wu H. Peperomin E reactivates silenced tumor suppressor genes in lung cancer cells by inhibition of DNA methyltransferase. Cancer Sci 2016; 107:1506-1519. [PMID: 27501331 PMCID: PMC5084666 DOI: 10.1111/cas.13029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/26/2016] [Accepted: 08/01/2016] [Indexed: 12/18/2022] Open
Abstract
Advanced lung cancer has poor prognosis owing to its low sensitivity to current chemotherapy agents. Therefore, discovery of new therapeutic agents is urgently needed. In this study, we investigated the antitumor effects of peperomin E, a secolignan isolated from Peperomia dindygulensis, a frequently used Chinese folk medicine for lung cancer treatment. The results indicate that peperomin E has antiproliferative effects, promoting apoptosis and cell cycle arrest in non‐small‐cell lung cancer (NSCLC) cell lines in a dose‐dependent manner, while showing lower toxicity against normal human lung epidermal cells. Peperomin E inhibited tumor growth in A549 xenograft BALB/c nude mice without significant secondary adverse effects, indicating that it may be safely used to treat NSCLC. Furthermore, the mechanisms underlying the anticancer effects of peperomin E have been investigated. Using an in silico target fishing method, we observed that peperomin E directly interacts with the active domain of DNA methyltransferase 1 (DNMT1), potentially affecting its genome methylation activity. Subsequent experiments verified that peperomin E decreased DNMT1 activity and expression, thereby decreasing global methylation and reactivating the epigenetically silenced tumor suppressor genes including RASSF1A,APC,RUNX3, and p16INK4, which in turn activates their mediated pro‐apoptotic and cell cycle regulatory signaling pathways in lung cancer cells. The observations herein report for the first time that peperomin E is a potential chemotherapeutic agent for NSCLC. The anticancer effects of peperomin E may be partly attributable to its ability to demethylate and reactivate methylation‐silenced tumor suppressor genes through direct inhibition of the activity and expression of DNMT1.
Collapse
Affiliation(s)
- Xin-Zhi Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying Cheng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Kui-Long Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rui Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiao-Lin Yang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hong-Mei Wen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chuan Chai
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing-Yu Liang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Hao Wu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
13
|
Combination treatment with decitabine and ionizing radiation enhances tumor cells susceptibility of T cells. Sci Rep 2016; 6:32470. [PMID: 27671170 PMCID: PMC5037374 DOI: 10.1038/srep32470] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 08/09/2016] [Indexed: 02/07/2023] Open
Abstract
Decitabine has been found to have anti-metabolic and anti-tumor activities in various tumor cells. Recently, the use of decitabine in combination with other conventional therapies reportedly resulted in improved anti-tumor activity against various tumors. Ionizing radiation (IR) is widely used as a cancer treatment. Decitabine and IR improve immunogenicity and susceptibility of tumor cells to immune cells by up-regulating the expression of various molecules such as major histocompatibility complex (MHC) class I; natural-killer group 2, member D (NKG2D) ligands; and co-stimulatory molecules. However, the effects of combining decitabine and IR therapies are largely unknown. Our results indicate that decitabine or IR treatment upregulates MHC class I, along with various co-stimulatory molecules in target tumor cells. Furthermore, decitabine and IR combination treatment further upregulates MHC class I, along with the co-stimulatory molecules, when compared to the effect of each treatment alone. Importantly, decitabine treatment further enhanced T cell-mediated cytotoxicity and release of IFN- γ against target tumor cells which is induced by IR. Interestingly, decitabine did not affect NKG2D ligand expression or NK cell-mediated cytotoxicity in target tumor cells. These observations suggest that decitabine may be used as a useful immunomodulator to sensitize tumor cells in combination with other tumor therapies.
Collapse
|
14
|
Oncogenic cancer/testis antigens: prime candidates for immunotherapy. Oncotarget 2016; 6:15772-87. [PMID: 26158218 PMCID: PMC4599236 DOI: 10.18632/oncotarget.4694] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/21/2015] [Indexed: 12/15/2022] Open
Abstract
Recent developments have set the stage for immunotherapy as a supplement to conventional cancer treatment. Consequently, a significant effort is required to further improve efficacy and specificity, particularly the identification of optimal therapeutic targets for clinical testing. Cancer/testis antigens are immunogenic, highly cancer-specific, and frequently expressed in various types of cancer, which make them promising candidate targets for cancer immunotherapy, including cancer vaccination and adoptive T-cell transfer with chimeric T-cell receptors. Our current understanding of tumor immunology and immune escape suggests that targeting oncogenic antigens may be beneficial, meaning that identification of cancer/testis antigens with oncogenic properties is of high priority. Recent work from our lab and others provide evidence that many cancer/testis antigens, in fact, have oncogenic functions, including support of growth, survival and metastasis. This novel insight into the function of cancer/testis antigens has the potential to deliver more effective cancer vaccines. Moreover, immune targeting of oncogenic cancer/testis antigens in combination with conventional cytotoxic therapies or novel immunotherapies such as checkpoint blockade or adoptive transfer, represents a highly synergistic approach with the potential to improve patient survival.
Collapse
|
15
|
Gayet O, Loncle C, Duconseil P, Gilabert M, Lopez MB, Moutardier V, Turrini O, Calvo E, Ewald J, Giovannini M, Gasmi M, Bories E, Barthet M, Ouaissi M, Goncalves A, Poizat F, Raoul JL, Secq V, Garcia S, Viens P, Dusetti N, Iovanna J. A subgroup of pancreatic adenocarcinoma is sensitive to the 5-aza-dC DNA methyltransferase inhibitor. Oncotarget 2015; 6:746-54. [PMID: 25481873 PMCID: PMC4359252 DOI: 10.18632/oncotarget.2685] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 11/02/2014] [Indexed: 12/31/2022] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is a disease with a great heterogeneity in the response to treatments. To improve the responsiveness to treatments there are two different approaches, the first one consist to develop new and more efficient drugs that intent to cure all patients and the second one is to use already-approved drugs, alone or in combination, but selecting beforehand the most sensitive patients. In this work we explored the efficiency of the second possibility. We developed a collection of 17 PDAC samples collected by Endoscopic Ultrasound-Guided Fine-Needle Aspiration (EUS-FNA) or surgery and preserved as xenografts and as primary cultures. This collection was characterized at molecular level by a transcriptomic analysis using an Affymetrix approach. In this paper we present data demonstrating that a subgroup of PDAC responds to low doses of 5-aza-dC. These tumors show a specific RNA expression profile that could serve as a marker, but there is no correlation with Dnmt1, Dnmt3A or Dnmt3B expression. Responder tumors corresponded to well-differentiated samples and longer survival patients. In conclusion, we present data obtained with the well-known drug 5-aza-dC as a proof of concept that a drug that seems to be inefficient in solid tumors in general could be applicable to a particular subgroup of patients with PDAC.
Collapse
Affiliation(s)
- Odile Gayet
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Celine Loncle
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Pauline Duconseil
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Marine Gilabert
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Maria Belen Lopez
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Vincent Moutardier
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
- Hôpital Nord, Marseille, France
| | - Olivier Turrini
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
| | - Ezequiel Calvo
- Centre Génomique du Centre de recherche du CHUL Research Center, Quebec, Canada
| | | | | | - Mohamed Gasmi
- Hôpital Nord, Département de Gastroentérologie, Marseille, France
| | | | - Marc Barthet
- Hôpital Nord, Département de Gastroentérologie, Marseille, France
| | | | | | | | | | - Veronique Secq
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
- Hôpital Nord, Marseille, France
| | - Stephane Garcia
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
- Hôpital Nord, Marseille, France
| | | | - Nelson Dusetti
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| |
Collapse
|
16
|
Li X, Mei Q, Nie J, Fu X, Han W. Decitabine: a promising epi-immunotherapeutic agent in solid tumors. Expert Rev Clin Immunol 2015; 11:363-75. [DOI: 10.1586/1744666x.2015.1002397] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Decitabine, a new star in epigenetic therapy: the clinical application and biological mechanism in solid tumors. Cancer Lett 2014; 354:12-20. [DOI: 10.1016/j.canlet.2014.08.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/05/2014] [Accepted: 08/06/2014] [Indexed: 11/23/2022]
|
18
|
Li K, Hu C, Mei C, Ren Z, Vera JC, Zhuang Z, Jin J, Tong H. Sequential combination of decitabine and idarubicin synergistically enhances anti-leukemia effect followed by demethylating Wnt pathway inhibitor promoters and downregulating Wnt pathway nuclear target. J Transl Med 2014; 12:167. [PMID: 24923330 PMCID: PMC4082426 DOI: 10.1186/1479-5876-12-167] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 06/05/2014] [Indexed: 11/25/2022] Open
Abstract
Background The methylation inhibitor 5-Aza-2′-deoxycytidine (decitabine, DAC) has a great therapeutic value for acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS). But decitabine monotherapy was associated with a relatively low rate of complete remission in AML and MDS. We aimed to investigate the effect of several anti-leukemia drugs in combination with decitabine on the proliferation of myeloid leukemia cells, to select the most efficient combination group and explore the associated mechanisms of these combination therapies. Methods Cell proliferation was tested by MTT assay and CFU-GM assay. Cell apoptosis was evaluated by Annexin V and PI staining in cell culture, TUNEL assay and transmission electron microscopy in animal study. MicroPET was used to imaging the tumor in mouse model. Molecular studies were conducted using microarray expression analysis, which was used to explore associated pathways, and real-time quantitative reverse transcription-PCR, western blot and immunohistochemistry, used to assess regulation of Wnt/β-catenin pathway. Statistical significance among groups was determined by one-way ANOVA analysis followed by post hoc Bonferroni’s multiple comparison test. Results Among five anti-leukemia agents in combining with decitabine, the sequential combination of decitabine and idarubicin induced synergistic cell death in U937 cells, and this effect was verified in HEL, SKM-1 cells and AML cells isolated from AML patients. Importantly, tumor growth inhibition in this sequential combination was found to be higher than in single agent or controls in vivo. Moreover, sequential combination of the two agents induced apoptosis and depression of the Wnt/β-catenin pathway in both AML cell culture and animal studies. Conclusions The findings demonstrated that sequentially combination of decitabine and idarubicin had synergistic anti-leukemia effects. These effects were mainly attributed to demethylation of Wnt/β-catenin pathway inhibitors and downregulation of Wnt/β-catenin pathway nuclear targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hongyan Tong
- Department of Hematology, the First Affiliated Hospital of Zhejiang University, Hangzhou 310003, Zhejiang Province, People's Republic of China.
| |
Collapse
|
19
|
Thomas X, Heiblig M, Bozzoli V, Elhamri M. Decitabine for the treatment of adult patients (age ≥65 years) with newly diagnosed de novoor secondary acute myeloid leukemia. Int J Hematol Oncol 2013. [DOI: 10.2217/ijh.13.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
>SUMMARY Decitabine is a deoxynucleoside analogue of cytidine. Its use for the treatment of acute myeloid leukemia (AML) has been recently refined. It selectively inhibits DNA methyltransferases when administered at a dose of 20 mg/m2by a 1-h intravenous infusion for 5 consecutive days of a 4-week cycle in the AML study. This schedule has recently been approved by the EMA as a well-tolerated alternative treatment to cytarabine or supportive care in patients aged ≥65 years with de novo or secondary AML who are not candidates for intensive chemotherapy.
Collapse
Affiliation(s)
- Xavier Thomas
- Hospices Civils de Lyon, Lyon-Sud Hospital, Hematology Department, Pavillon Marcel Bérard, Bat.1G, 69495 Pierre-Bénite, France
| | - Mael Heiblig
- Hospices Civils de Lyon, Lyon-Sud Hospital, Hematology Department, Pavillon Marcel Bérard, Bat.1G, 69495 Pierre-Bénite, France
| | - Valentina Bozzoli
- Hospices Civils de Lyon, Lyon-Sud Hospital, Hematology Department, Pavillon Marcel Bérard, Bat.1G, 69495 Pierre-Bénite, France
| | - Mohamed Elhamri
- Hospices Civils de Lyon, Lyon-Sud Hospital, Hematology Department, Pavillon Marcel Bérard, Bat.1G, 69495 Pierre-Bénite, France
| |
Collapse
|
20
|
Targeted Casp8AP2 methylation increases drug resistance in mesenchymal stem cells and cancer cells. Biochem Biophys Res Commun 2012; 422:578-85. [DOI: 10.1016/j.bbrc.2012.05.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Accepted: 05/08/2012] [Indexed: 12/18/2022]
|
21
|
Liu QY, Chen DW, Xie LP, Zhang RQ, Wang HZ. Decitabine, independent of apoptosis, exerts its cytotoxic effects on cell growth in melanoma cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2011; 32:423-429. [PMID: 22004962 DOI: 10.1016/j.etap.2011.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 08/14/2011] [Indexed: 05/31/2023]
Abstract
Decitabine is a synthesized cytosine analog that is a potent inhibitor of DNA methylation. There have been a few reports on the in vitro anti-melanoma effect of decitabine or its functional mechanisms. We investigated the anti-proliferation effect of decitabine on the cultured murine melanoma cell line K1735M2. MTT assay showed that decitabine had strong inhibition on melanoma K1735M2 in a time- and dose-dependent manner in vitro. Morphological observation showed that decitabine could induce melanoma K1735M2 cells to produce dendrite-like structures with the increase of decitabine concentration and incubation time. Decitabine could effectively induce K1735M2 cells to differentiate in vitro. Additionally, decitabine could induce a dose-dependent G2/M cell cycle arrest in K1735M2 cells. We provided experimental evidences that the anti-proliferation effect of decitabine on murine K1735M2 melanoma cells was associated predominately with G2/M cell cycle arrest and the induction of differentiation rather than apopotosis.
Collapse
Affiliation(s)
- Qian-Ying Liu
- School of Life Science, Tsinghua University, Beijing 100084, China
| | | | | | | | | |
Collapse
|
22
|
Wang J, Yi Z, Wang S, Li Z. The effect of decitabine on megakaryocyte maturation and platelet release. Thromb Haemost 2011; 106:337-43. [PMID: 21713321 DOI: 10.1160/th10-11-0744] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 05/03/2011] [Indexed: 11/05/2022]
Abstract
Thrombocytopenia is a common feature of myelodysplastic syndromes (MDS). 5-aza-2'-deoxycytidine (decitabine) has been used to treat MDS with an approximately 20% response rate in thrombocytopenia. However, the mechanism of how decitabine increases platelet count is not clear. In this study, we investigated the effect of decitabine on megakaryocyte maturation and platelet release in the mouse. The effect of decitabine on megakaryocyte maturation was studied in an in vitro megakaryocyte differentiation model utilising mouse bone marrow cells and mouse megakaryoblastic cell line L8057. Decitabine (2.5 μM) is able to induce L8057 cells to differentiate into a megakaryocyte-like polyploidy cells with positive markers of acetylcholinesterase and αIIb integrin (CD41). Higher expression of αIIb integrin was also found in primary mouse bone marrow cells and human cord blood CD34+ cells cultured with both thrombopoietin and decitabine as compared to thrombopoietin alone. In addition, we noted a 30% platelet count increase in Balb/c mice 12 hours after the injection of decitabine at a clinically relevant dose (15 mg/m2), suggesting a rapid platelet release from the spleen or bone marrow. Our data suggest that decitabine increases platelet counts by enhancing platelet release and megakaryocyte maturation.
Collapse
Affiliation(s)
- Jianhui Wang
- Department of Medicine, NYU Cancer Institute, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | |
Collapse
|
23
|
Gjerstorff MF, Burns J, Ditzel HJ. Cancer-germline antigen vaccines and epigenetic enhancers: future strategies for cancer treatment. Expert Opin Biol Ther 2010; 10:1061-75. [PMID: 20420535 DOI: 10.1517/14712598.2010.485188] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
IMPORTANCE OF THE FIELD Immunotherapy holds great potential for disseminated cancer, and cancer-germline (CG) antigens are among the most promising tumor targets. They are widely expressed in different cancer types and are essentially tumor-specific, since their expression in normal tissues is largely restricted to immune-privileged sites. Although the therapeutic potential of these antigens may be compromised by their highly heterogeneous expression in many tumors and low frequency in some cancers, recent developments suggest that tumor-cell-selective enhancement of CG antigen gene expression can be achieved using epigenetic modifiers. AREAS COVERED IN THIS REVIEW We provide an overview of the potential of CG antigens as targets for cancer immunotherapy, including advantages and disadvantages. We also discuss the current state of development of CG antigen vaccines, and the potential synergistic effect of combining CG antigen immunotherapeutic strategies with epigenetic modifiers. WHAT THE READER WILL GAIN The reader will gain an overview of the past, present and future role of CG antigens in cancer immunotherapy. TAKE HOME MESSAGE Chemoimmunotherapy using epigenetic drugs and CG antigen vaccines may be a useful approach for treating cancer.
Collapse
|
24
|
Natsume A, Kondo Y, Ito M, Motomura K, Wakabayashi T, Yoshida J. Epigenetic aberrations and therapeutic implications in gliomas. Cancer Sci 2010; 101:1331-6. [PMID: 20384628 PMCID: PMC11159342 DOI: 10.1111/j.1349-7006.2010.01545.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 02/16/2010] [Accepted: 02/17/2010] [Indexed: 12/24/2022] Open
Abstract
Almost all cancer cells have multiple epigenetic abnormalities, which combine with genetic changes to affect many cellular processes, including cell proliferation and invasion, by silencing tumor-suppressor genes. In this review, we focus on the epigenetic mechanisms of DNA hypomethylation and CpG island hypermethylation in gliomas. Aberrant hypermethylation in promoter CpG islands has been recognized as a key mechanism involved in the silencing of cancer-associated genes and occurs at genes with diverse functions related to tumorigenesis and tumor progression. Such promoter hypermethylation can modulate the sensitivity of glioblastomas to drugs and radiotherapy. As an example, the methylation of the O6-methylguanine DNA methyltransferase (MGMT) promoter is a specific predictive biomarker of tumor responsiveness to chemotherapy with alkylating agents. Further, we reviewed reports on pyrosequencing - a simple technique for the accurate and quantitative analysis of DNA methylation. We believe that the quantification of MGMT methylation by pyrosequencing might enable the selection of patients who are most likely to benefit from chemotherapy. Finally, we also evaluated the potential of de novo NY-ESO-1, the most immunogenic cancer/testis antigen (CTA) discovered thus far, as an immunotherapy target. The use of potent epigenetics-based therapy for cancer cells might restore the abnormally regulated epigenomes to a more normal state through epigenetic reprogramming. Thus, epigenetic therapy may be a promising and potent treatment for human neoplasia.
Collapse
Affiliation(s)
- Atsushi Natsume
- Department of Neurosurgery, Nagoya University School of Medicine, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Reexpression of epigenetically silenced AML tumor suppressor genes by SUV39H1 inhibition. Oncogene 2009; 29:576-88. [PMID: 19881540 DOI: 10.1038/onc.2009.361] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Reexpression of hypermethylated tumor suppressor genes using DNA methyltransferase (DNMT) and histone deacetylase inhibitors occurs by a mechanism whereby promoter demethylation is the dominant event. In support of this model, we found in acute myeloid leukemia cells with hypermethylated p15INK4B and E-cadherin promoters that the DNMT inhibitor, 5-aza-2'-deoxycytidine, induced p15INK4B and E-cadherin expression, and decreased levels of DNA methylation, histone H3 lysine 9 (H3K9) methylation and SUV39H1 associated with p15INK4B and E-cadherin promoters. On the basis of these observations, we examined whether promoter demethylation was dominant to H3K9 demethylation in p15INK4B and E-cadherin reexpression. We observed that SUV39H1 short hairpin RNA and chaetocin, a SUV39H1 inhibitor, induced p15INK4B and E-cadherin expression and H3K9 demethylation without promoter demethylation. Reexpression of hypermethylated p15INK4B and E-cadherin required histone H3K9 demethylation that was achieved directly by inhibiting SUV39H1 expression or activity, or indirectly by decreasing the amount of SUV39H1 associated with the p15INK4B and E-cadherin promoters using 5-aza-2'-deoxycytidine. The results from this study highlight the potential of H3K9 methyltransferases as therapeutic targets for reactivating expression of hypermethylated genes.
Collapse
|
27
|
Cord blood stem cell expansion is permissive to epigenetic regulation and environmental cues. Exp Hematol 2009; 37:1084-95. [DOI: 10.1016/j.exphem.2009.05.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 05/15/2009] [Accepted: 05/28/2009] [Indexed: 11/20/2022]
|
28
|
Abstract
DNA methylation, histone modifications, and the chromatin structure are profoundly altered in human cancers. The silencing of cancer-related genes by these epigenetic regulators is recognized as a key mechanism in tumor formation. Recent findings revealed that DNA methylation and histone modifications appear to be linked to each other. However, it is not clearly understood how the formation of histone modifications may affect DNA methylation and which genes are relevantly involved with tumor formation. The presence of histone modifications does not always link to DNA methylation in human cancers, which suggests that another factor is required to connect these two epigenetic mechanisms. In this review, examples of studies that demonstrated the relationship between histone modifications and DNA methylation in human cancers are presented and the potential implications of these epigenetic mechanisms in human neoplasia are discussed.
Collapse
Affiliation(s)
- Yutaka Kondo
- Division of Molecular Oncology, Aichi Cancer Center Research Institute, Nagoya, Japan.
| |
Collapse
|
29
|
Kusy S, Larsen CJ, Roche J. p14ARF, p15INK4band p16INK4aMethylation Status in Chronic Myelogenous Leukemia. Leuk Lymphoma 2009; 45:1989-94. [PMID: 15370242 DOI: 10.1080/10428190410001714025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The INK4 family of proteins p15INK4b, p14ARF and p16INK4a function as cell cycle inhibitors where they are involved in the inhibition of G1 phase progression. Methylation of the p15INK4b promoter never seems to occur in solid tumors but is a major gene silencing mechanism in hematological malignancies. p14ARF and p16INK4a promoter methylation often occurs in solid tumors but also in leukemias and lymphomas. In chronic myelogenous leukemia (CML), only a few reports have been published regarding INK4 methylation and the results of the literature are discordant. Thus clearly, more works on large series have to be performed independently.
Collapse
Affiliation(s)
- Sophie Kusy
- Laboratoire Interactions et Communication Cellulaires, CNRS UMR 6187, Pôle Biologie Santé, Faculté des Sciences de Poitiers, 40 Av du Recteur Pineau, 86022 Poitiers Cédex, France
| | | | | |
Collapse
|
30
|
Fiskus W, Buckley K, Rao R, Mandawat A, Yang Y, Joshi R, Wang Y, Balusu R, Chen J, Koul S, Joshi A, Upadhyay S, Atadja P, Bhalla KN. Panobinostat treatment depletes EZH2 and DNMT1 levels and enhances decitabine mediated de-repression of JunB and loss of survival of human acute leukemia cells. Cancer Biol Ther 2009; 8:939-50. [PMID: 19279403 DOI: 10.4161/cbt.8.10.8213] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The PRC2 complex protein EZH2 is a histone methyltransferase that is known to bind and recruit DNMT1 to the DNA to modulate DNA methylation. Here, we determined that the pan-HDAC inhibitor panobinostat (LBH589) treatment depletes DNMT1 and EZH2 protein levels, disrupts the interaction of DNMT1 with EZH2, as well as de-represses JunB in human acute leukemia cells. Similar to treatment with the hsp90 inhibitor 17-DMAG, treatment with panobinostat also inhibited the chaperone association of heat shock protein 90 with DNMT1 and EZH2, which promoted the proteasomal degradation of DNMT1 and EZH2. Unlike treatment with the DNA methyltransferase inhibitor decitabine, which demethylates JunB promoter DNA, panobinostat treatment mediated chromatin alterations in the JunB promoter. Combined treatment with panobinostat and decitabine caused greater attenuation of DNMT1 and EZH2 levels than either agent alone, which was accompanied by more JunB de-repression and loss of clonogenic survival of K562 cells. Co-treatment with panobinostat and decitabine also caused more loss of viability of primary AML but not normal CD34(+) bone marrow progenitor cells. Collectively, these findings indicate that co-treatment with panobinostat and decitabine targets multiple epigenetic mechanisms to de-repress JunB and exerts antileukemia activity against human acute myeloid leukemia cells.
Collapse
Affiliation(s)
- Warren Fiskus
- MCG Cancer Center, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Song Y, Zhang C. Hydralazine inhibits human cervical cancer cell growth in vitro in association with APC demethylation and re-expression. Cancer Chemother Pharmacol 2008; 63:605-13. [PMID: 18521605 DOI: 10.1007/s00280-008-0773-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 05/09/2008] [Indexed: 11/24/2022]
Abstract
PURPOSE The tumor suppressor adenomatous polyposis coli (APC) is frequently silenced by promoter hypermethylation in human cervical cancer. Clinically, it has been approved that DNA methylation inhibitors, such as 5-aza-2'-deoxycytidine (5-Aza-dC), can reverse APC promoter methylation, but widespread clinical use of these inhibitors is limited by their toxicity and instability in aqueous solution. Hydralazine is a stable DNA methylation inhibitor that has minimal toxicity in vitro and in vivo. The purpose of this study was to evaluate the effects of hydralazine on APC reactivation and the inhibition of human cervical cancer cells in vitro. METHODS Expression of APC gene, and methylation status were analyzed by RT-PCR, quantitative real time RT-PCR, and methylation-specific PCR methods. beta-Catenin protein that correlates closely with APC was detected by immunohistochemistry method after treatment with hydralazine. MTT and FCM assays were used to observe the changes of proliferation activity, cell cycle, and apoptosis of the cells. RESULTS Methylated APC was not expressed in HeLa cell, hemimethylated APC was expressed in CaSki cells, and unmethylated APC was expressed normally in SiHa cells. Hydralazine induces APC expression and promotes demethylation in HeLa and CaSki cells. After treatment with 40 mumol/L hydralazine for 72 h, growth inhibitive rates (%) of HeLa, CaSki, and SiHa cell lines were 52.12 +/- 3.78, 44.31 +/- 2.59, and 47.73 +/- 4.73, respectively. On the contrary, the normal cell ECV304 growth inhibitory rate was only 27.18 +/- 0.79. The expression of APC mRNA in HeLa, CaSki, and SiHa cell lines increased 10.35-, 11.40-, and 0.73-fold, respectively. HeLa and CaSki cells were arrested in S phase of the cell cycle by hydralazine, and the percentage of apoptotic cells in the two cell lines treated with hydralazine was increased significantly compared to the untreated cells (P < 0.01). The expression of beta-catenin protein in the cell membrane was observed after the treatment with hydralazine. CONCLUSIONS Hydralazine, an effective inhibitor of APC methylation and promoter of APC re-expression, can inhibit cell growth in human cervical cancer in vitro and be potentially used for the clinical treatment of human cervical cancer.
Collapse
Affiliation(s)
- Yinhong Song
- Department of Immunology, Medical College of Three Gorges University, Yichang, Hubei, People's Republic of China
| | | |
Collapse
|
33
|
Scott SA, Lakshimikuttysamma A, Sheridan DP, Sanche SE, Geyer CR, DeCoteau JF. Zebularine inhibits human acute myeloid leukemia cell growth in vitro in association with p15INK4B demethylation and reexpression. Exp Hematol 2007; 35:263-73. [PMID: 17258075 DOI: 10.1016/j.exphem.2006.10.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 09/30/2006] [Accepted: 10/05/2006] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The p15INK4B tumor suppressor is frequently silenced by promoter hypermethylation in myelodysplastic syndrome and acute myeloid leukemia (AML). Clinically approved DNA methylation inhibitors, such as 5-aza-2'-deoxycytidine, can reverse p15INK4B promoter methylation, but widespread clinical use of these inhibitors is limited by their toxicity and instability in aqueous solution. The cytidine analog zebularine is a stable DNA methylation inhibitor that has minimal toxicity in vitro and in vivo. We evaluated zebularine effects on p15INK4B reactivation and cell growth in vitro to investigate a potential role for zebularine in treating myeloid malignancies. METHODS We examined the specific effects of zebularine on reexpression of transcriptionally silenced p15INK4B and its global effects on cell cycle and apoptosis in AML cell lines and primary patient samples. RESULTS Zebularine treatment of AML193, which has a densely methylated p15INK4B promoter, results in a dose-dependent increase in p15INK4B expression that correlates with CpG island promoter demethylation and enrichment of local histone acetylation. We observed enhanced p15INK4B induction following co-treatment with zebularine and the histone deacetylase inhibitor Trichostatin A. Zebularine inhibits cell proliferation, arrests cells at G(2)/M, and induces apoptosis at dosages that effectively demethylate the p15INK4B promoter. Zebularine treatment of KG-1 cells and AML patient blasts with hypermethylated p15INK4B promoters also reactivates p15INK4B reexpression and induces apoptosis. CONCLUSION Zebularine is an effective inhibitor of p15INK4B methylation and cell growth in human AML in vitro. Our results extend the spectrum of zebularine effects to nonepithelial malignancies and provide a strong rationale for evaluating its clinical utility in the treatment of myeloid malignancies.
Collapse
Affiliation(s)
- Stuart A Scott
- Department of Human Genetics, Mount Sinai School of Medicine, New York, NY., USA
| | | | | | | | | | | |
Collapse
|
34
|
Appleton K, Mackay HJ, Judson I, Plumb JA, McCormick C, Strathdee G, Lee C, Barrett S, Reade S, Jadayel D, Tang A, Bellenger K, Mackay L, Setanoians A, Schätzlein A, Twelves C, Kaye SB, Brown R. Phase I and pharmacodynamic trial of the DNA methyltransferase inhibitor decitabine and carboplatin in solid tumors. J Clin Oncol 2007; 25:4603-9. [PMID: 17925555 DOI: 10.1200/jco.2007.10.8688] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PURPOSE The DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (decitabine) induces DNA demethylation and re-expression of epigenetically silenced genes, and increases carboplatin sensitivity of tumor xenograft models. We designed a clinical study to determine the feasibility of delivering a dose of decitabine, combined with carboplatin, that would be capable of producing equivalent biologic effects in patients with solid tumors. PATIENTS AND METHODS In a two-stage design, 33 patients received escalating doses of decitabine administered as a 6-hour infusion on day 1 followed by carboplatin, area under the concentration-time curve (AUC) 5 (cohort 1) and AUC 6 (cohort 2), on day 8 of a 28-day cycle. Pharmacodynamic analyses included 5-methyl-2'-deoxycytidine levels, MAGE1A CpG island methylation, and fetal hemoglobin (HbF) expression. RESULTS The major toxicity was myelosuppression. Dose limiting toxicities, prolonged grade 4 neutropenia (one patient), and sepsis and grade 3 anorexia/fatigue (one patient), were seen in two of four patients treated with decitabine 135 mg/m2 and carboplatin AUC 5. Dose limiting toxicity comprising neutropenic sepsis (one patient) and grade 3 fatigue (one patient) was seen in two of 10 patients treated at decitabine 90 mg/m2 and carboplatin AUC 6. Decitabine induced dose-dependent, reversible demethylation in peripheral-blood cells (PBCs) maximally at day 10. Furthermore, decitabine 90 mg/m2 induced demethylation of the MAGE1A CpG island in PBCs, buccal cells, and tumor biopsies, as well as elevation of HbF expression. CONCLUSION Decitabine can be combined safely with carboplatin at a dose and schedule that causes epigenetic changes equivalent to or greater than that observed in mice with carboplatin-sensitized xenografts. The recommended dose/schedule for phase II trials is decitabine 90 mg/m2 (day 1) followed by carboplatin AUC 6 (day 8) every 28 days.
Collapse
Affiliation(s)
- Kim Appleton
- Centre for Oncology and Applied Pharmacology, Glasgow University, Cancer Research UK Beatson Laboratories, Glasgow, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Snykers S, Vinken M, Rogiers V, Vanhaecke T. Differential role of epigenetic modulators in malignant and normal stem cells: a novel tool in preclinical in vitro toxicology and clinical therapy. Arch Toxicol 2007; 81:533-44. [PMID: 17387455 DOI: 10.1007/s00204-007-0195-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Accepted: 02/22/2007] [Indexed: 02/06/2023]
Abstract
Adult stem cells are primitive cells that undergo asymmetric division, thereby giving rise to one clonogenic, self-renewing cell and one cell able to undergo multipotent differentiation. Disturbance of this controlled process by epigenetic alterations, including imbalance of histone acetylation/histone deacetylation and DNA methylation/demethylation, may result in uncontrolled growth, formation of self-renewing malignant stem cells and eventually cancer. In view of this notion, several epigenetic modulators, in particular those with histone deacetylase inhibiting activity, are currently being tested in phase I and II clinical trials for their promising chemotherapeutic properties in cancer therapy. As chromatin modulation is also involved in regulation of differentiation, normal development, embryonic and adult stem cell functions and maintenance of their plasticity during embryonic organogenesis, the question can be raised whether predestined cell fate can be modified through epigenetic interference. And if so, could this strategy enforce adult stem cells to differentiate into different types of functional cells? In particular, functional hepatocytes seem important for preclinical toxicity screening of candidate drugs. This paper reviews the potential use and relevance of epigenetic modifiers, including inhibitors of histone deacetylases and DNA methyltransferases (1) to change cell fate and 'trans'differentiate normal adult stem cells into hepatocyte-like cells and (2) to cure disorders, caused by uncontrolled growth of malignant stem cells.
Collapse
Affiliation(s)
- Sarah Snykers
- Department of Toxicology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | | | | | | |
Collapse
|
36
|
Roman-Gomez J, Jimenez-Velasco A, Agirre X, Castillejo JA, Navarro G, Jose-Eneriz ES, Garate L, Cordeu L, Cervantes F, Prosper F, Heiniger A, Torres A. Epigenetic regulation of PRAME gene in chronic myeloid leukemia. Leuk Res 2007; 31:1521-8. [PMID: 17382387 DOI: 10.1016/j.leukres.2007.02.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 02/15/2007] [Accepted: 02/24/2007] [Indexed: 01/14/2023]
Abstract
Tumor associated antigens (TAA) provide attractive targets for cancer-specific immunotherapy. PRAME is a TAA gene up-regulated in advanced phases of chronic myeloid leukemia (CML). To date, molecular mechanisms for the expression of PRAME have never been studied. We found that some Ph'-positive cell lines did not express PRAME. The expression of PRAME was restored in these cell lines by treatment with 5'-aza-2'-deoxycytidine, suggesting that the expression of PRAME is mainly suppressed by hypermethylation. Bisulfite sequencing analysis of the CpG sites of the PRAME exon 2 in these cancer cell lines revealed a close relationship between the methylation status of the PRAME gene and its expression. A methylation-specific PCR analysis demonstrated that hypomethylation of PRAME was significantly more frequent in CML blast crisis (70%) than in chronic phase (36%) (P=0.01) and was correlated with high expression levels of PRAME transcripts (P<0.0001). These results suggest that hypomethylation of PRAME up-regulates its expression in CML and might play a significant role in the progression of the disease.
Collapse
Affiliation(s)
- Jose Roman-Gomez
- Hematology Department, Reina Sofia Hospital, Avda, Menendez Pidal s/n, 14004, Cordoba, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Affiliation(s)
- Tasneem Motiwala
- Department of Molecular and Cellular Biochemistry, The Ohio State University, College of Medicine, Columbus, Ohio 43210, USA
| | | |
Collapse
|
38
|
Sato N, Goggins M. The role of epigenetic alterations in pancreatic cancer. ACTA ACUST UNITED AC 2007; 13:286-95. [PMID: 16858539 DOI: 10.1007/s00534-005-1057-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 09/01/2005] [Indexed: 12/22/2022]
Abstract
The past several years have witnessed an explosive increase in our knowledge about epigenetic features in human cancers. It has become apparent that pancreatic cancer is an epigenetic disease, as it is a genetic disease, characterized by widespread and profound alterations in DNA methylation. The introduction of genome-wide screening techniques has accelerated the discovery of a growing list of genes with abnormal methylation patterns in pancreatic cancer, and some of these epigenetic events play a role in the neoplastic process. The detection and quantification of DNA methylation alterations in pancreatic juice is likely a promising tool for the diagnosis of pancreatic cancer. The potential reversibility of epigenetic changes in genes involved in tumor progression makes them attractive therapeutic targets, but the efficacy of epigenetic therapies in pancreatic cancer, such as the use of DNA methylation inhibitors, remains undetermined. In this review, we briefly summarize recent research findings in the field of pancreatic cancer epigenetics and discuss their biological and clinical implications.
Collapse
Affiliation(s)
- Norihiro Sato
- Department of Pathology, The Johns Hopkins Medical Institutions, The Sol Goldman Center for Pancreatic Cancer Research, 342 Cancer Research Building 2, 1550 Orleans St., Baltimore, MD 21231, USA
| | | |
Collapse
|
39
|
Oki Y, Aoki E, Issa JPJ. Decitabine--bedside to bench. Crit Rev Oncol Hematol 2006; 61:140-52. [PMID: 17023173 DOI: 10.1016/j.critrevonc.2006.07.010] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Revised: 07/17/2006] [Accepted: 07/19/2006] [Indexed: 12/31/2022] Open
Abstract
PURPOSE OF THE REVIEW Epigenetic changes marked by DNA methylation are known to contribute to the malignant transformation of cells by silencing critical genes. Decitabine inhibits DNA methyltransferase and has shown therapeutic effects in patients with hematologic malignancies. However, the connection between the clinical activity of decitabine and its demethylating activity is not clear. Herein, we summarize the results of recent clinical trials of decitabine in hematologic malignancies, and review the translational research into decitabine's mechanism of clinical activity. RECENT FINDINGS Low-dose decitabine has been studied recently in multiple clinical trials and has been shown to be effective for treatment of myelodysplastic syndromes. Correlative laboratory studies of clinical trials have shown that decitabine induces global hypomethylation as well as hypomethylation of gene-specific promoters and activation of gene expression. Past a given threshold, induction of higher degrees of hypomethylation is not directly associated with a better clinical outcome. Moreover, studies have suggested that patients with promoter hypermethylation of p15(INK4B) at baseline have paradoxically a lower chance of achieving response than those without hypermethylation. Furthermore, several other genes activated by decitabine were independent of hypomethylation in the promoter regions. CONCLUSION While at least part of decitabine's activity is through induction of hypomethylation and reactivation of critical genes, mechanisms independent from hypomethylation are also important for decitabine's antitumor activity.
Collapse
Affiliation(s)
- Yasuhiro Oki
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | |
Collapse
|
40
|
Majumder S, Ghoshal K, Datta J, Smith DS, Bai S, Jacob ST. Role of DNA methyltransferases in regulation of human ribosomal RNA gene transcription. J Biol Chem 2006; 281:22062-22072a. [PMID: 16735507 PMCID: PMC2243234 DOI: 10.1074/jbc.m601155200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have previously demonstrated that the expression of human ribosomal RNA genes (rDNA) in normal and cancer cells is differentially regulated by methylation of the promoter CpG islands. Furthermore, we showed that the methyl CpG-binding protein MBD2 plays a selective role in the methylation-mediated block in rDNA expression. Here, we analyzed the role of three functional mammalian DNA methyltransferases (DNMTs) in regulating the rDNA promoters activity. Immunofluorescence analysis and biochemical fractionation showed that all three DNMTs (DNMT1, DNMT3A, and DNMT3B) are associated with the inactive rDNA in the nucleolus. Although DNMTs associate with both methylated and unmethylated rDNA promoters, DNMT1 preferentially associates with the methylated genes. The rDNA primary transcript level was significantly elevated in DNMT1-/- or DNMT3B-/- human colon carcinoma (HCT116) cells. Southern blot analysis demonstrated a moderate level of rDNA promoter hypomethylation in DNMT1-/- cells and a dramatic loss of rDNA promoter methylation in double knockout cells. Transient overexpression of DNMT1 or DNMT3B suppressed the luciferase expression from both methylated and unmethylated pHrD-IRES-Luc, a reporter plasmid where the rDNA promoter drives luciferase expression. DNMT1-mediated suppression of the unmethylated promoter involves de novo methylation of the promoter, whereas histone deacetylase 2 cooperates with DNMT1 to inhibit the methylated rDNA promoter. Unlike DNMT1, both the wild type and catalytically inactive DNMT3B mutant can suppress rDNA promoter irrespective of its methylation status. DNMT3B-mediated suppression of the rDNA promoter also involves histone deacetylation. Treatment of HCT116 cells with Decitabine (a DNMT inhibitor) or trichostatin A (a histone deacetylase inhibitor) up-regulated endogenous rDNA expression. These inhibitors synergistically activated methylated pHrD-IRES-Luc, whereas they exhibited additive effects on the unmethylated promoter. These results demonstrate localization of DNMTs with the inactive rDNA in the nucleolus, the specific role of DNMT1 and DNMT3B in rDNA expression and the differential regulation of rDNA expression from the methylated and unmethylated rDNA promoters.
Collapse
Affiliation(s)
- Sarmila Majumder
- Department of Molecular and Cellular Biochemistry, College of Medicine, Ohio State University, Columbus, Ohio 43210.
| | - Kalpana Ghoshal
- Department of Molecular and Cellular Biochemistry, College of Medicine, Ohio State University, Columbus, Ohio 43210
| | - Jharna Datta
- Department of Molecular and Cellular Biochemistry, College of Medicine, Ohio State University, Columbus, Ohio 43210
| | - David Spencer Smith
- Department of Molecular and Cellular Biochemistry, College of Medicine, Ohio State University, Columbus, Ohio 43210
| | - Shoumei Bai
- Department of Molecular and Cellular Biochemistry, College of Medicine, Ohio State University, Columbus, Ohio 43210
| | - Samson T Jacob
- Department of Molecular and Cellular Biochemistry, College of Medicine, Ohio State University, Columbus, Ohio 43210.
| |
Collapse
|
41
|
Araki H, Mahmud N, Milhem M, Nunez R, Xu M, Beam CA, Hoffman R. Expansion of human umbilical cord blood SCID-repopulating cells using chromatin-modifying agents. Exp Hematol 2006; 34:140-9. [PMID: 16459182 DOI: 10.1016/j.exphem.2005.10.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Revised: 10/13/2005] [Accepted: 10/13/2005] [Indexed: 11/29/2022]
Abstract
OBJECTIVE We investigated whether the addition of two chromatin-modifying agents, 5-aza-2'-deoxycytidine (5azaD) and trichostatin A (TSA), to cord blood (CB) CD34(+) cells in culture results in expansion of the numbers of severe combined immunodeficient (SCID) repopulating cells (SRC). MATERIALS AND METHODS Human CB CD34(+) cells were cultured with cytokines in the presence or absence of 5azaD/TSA. After 9 days of culture, the fold expansion of CD34(+) and CD34(+)CD90(+) cell numbers, colony-forming unit (CFU)-mix, cobblestone area-forming cell (CAFC), and SRC numbers were determined. RESULTS A 12.5-fold expansion of CD34(+)CD90(+) cells was observed in the 5azaD/TSA-treated cultures in comparison to the input cell numbers. Expansion of CD34(+)CD90(+) cells was associated with a 9.8-fold increase in the numbers of CFU-mix and 11.5-fold increase in CAFC. 5azaD/TSA treatment of the CB CD34(+) cells resulted in a 9.6-fold expansion of the absolute number of SRC following 9 days of culture as determined by limiting dilution analysis. Expansion of cells maintaining CD34(+)CD90(+) phenotype was not due to the retention of a quiescent population of cells because all of the CD34(+)CD90(+) cells in the culture had undergone cellular division. 5azaD/TSA-treated CD34(+)CD90(+) cells, but not CD34(+)CD90(-) cells were responsible for in vivo hematopoietic repopulation potential of nonobese diabetic/SCID mice. CONCLUSION Ex vivo expansion strategy using chromatin-modifying agents provides a potential avenue by which to expand the number of hematopoietic stem cells (HSC) with a single CB unit for use as an alternative source of HSC grafts for adult recipients.
Collapse
Affiliation(s)
- Hiroto Araki
- Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, 60607, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Silverman LR, Mufti GJ. Methylation inhibitor therapy in the treatment of myelodysplastic syndrome. ACTA ACUST UNITED AC 2006; 2 Suppl 1:S12-23. [PMID: 16341236 DOI: 10.1038/ncponc0347] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Accepted: 08/30/2005] [Indexed: 11/09/2022]
Abstract
The class of DNA methyltransferase inhibitors is represented by azacitidine and decitabine. Azacitidine is approved for the treatment of patients in both low- and high-risk subtypes of myelodysplastic syndrome (MDS), and decitabine is currently under review by the FDA. Azacitidine phase III trial data, based upon the Cancer and Leukemia Group B (CALGB) study 9221, showed durable clinical and symptomatic improvement in bone marrow function, a reduction in the risk of leukemic transformation, and significant improvements in the quality of life of patients treated with azacitidine compared with supportive care alone. This study also provided data suggestive of improvement in survival in MDS patients. The experience with decitabine comprises a number of phase I/II studies and a phase III trial yet to be published. While there is a strong base of experience supporting the efficacy of DNA methyltransferase inhibitors in the treatment of MDS, a number of practical issues need to be explored further. These include the optimization of the timing and duration of treatment, and the prediction of response to therapy. Along with current experience, future studies will lead to the development of treatment algorithms, strategies for selecting patients (e.g. according to age, risk, classification, and cytogenetic profile), and the combination strategies, particularly with histone deacetylase inhibitors, in the management of MDS.
Collapse
Affiliation(s)
- Lewis R Silverman
- Myelodisplastic Syndrome/Myeloproliferative Disease Center, Mount Sinai School of Medicine, NewYork, NY, USA
| | | |
Collapse
|
43
|
Arce C, Segura-Pacheco B, Perez-Cardenas E, Taja-Chayeb L, Candelaria M, Dueñnas-Gonzalez A. Hydralazine target: from blood vessels to the epigenome. J Transl Med 2006; 4:10. [PMID: 16507100 PMCID: PMC1413557 DOI: 10.1186/1479-5876-4-10] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Accepted: 02/28/2006] [Indexed: 12/22/2022] Open
Abstract
Hydralazine was one of the first orally active antihypertensive drugs developed. Currently, it is used principally to treat pregnancy-associated hypertension. Hydralazine causes two types of side effects. The first type is an extension of the pharmacologic effect of the drug and includes headache, nausea, flushing, hypotension, palpitation, tachycardia, dizziness, and salt retention. The second type of side effects is caused by immunologic reactions, of which the drug-induced lupus-like syndrome is the most common, and provides clues to underscoring hydralazine's DNA demethylating property in connection with studies demonstrating the participation of DNA methylation disorders in immune diseases. Abnormalities in DNA methylation have long been associated with cancer. Despite the fact that malignant tumors show global DNA hypomethylation, regional hypermethylation as a means to silence tumor suppressor gene expression has attracted the greatest attention. Reversibility of methylation-induced gene silencing by pharmacologic means, which in turns leads to antitumor effects in experimental and clinical scenarios, has directed efforts toward developing clinically useful demethylating agents. Among these, the most widely used comprise the nucleosides 5-azacytidine and 2'deoxy-5-azacytidine; however, these agents, like current cytotoxic chemotherapy, causes myelosuppression among other side effects that could limit exploitation of their demethylating properties. Among non-nucleoside DNA demethylating drugs currently under development, the oral drug hydralazine possess the ability to reactivate tumor suppressor gene expression, which is silenced by promoter hypermethylation in vitro and in vivo. Decades of extensive hydralazine use for hypertensive disorders that demonstrated hydralazine's clinical safety and tolerability supported its testing in a phase I trial in patients with cancer, confirming its DNA demethylating activity. Hydralazine is currently being evaluated, along with histone deacetylase inhibitors either alone or as adjuncts to chemotherapy and radiation, for hematologic and solid tumors in phase II studies.
Collapse
Affiliation(s)
- Claudia Arce
- Division of Clinical Research, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Blanca Segura-Pacheco
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas (IIB)/Instituto Nacional de Cancerología, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Enrique Perez-Cardenas
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas (IIB)/Instituto Nacional de Cancerología, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Lucia Taja-Chayeb
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas (IIB)/Instituto Nacional de Cancerología, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Myrna Candelaria
- Division of Clinical Research, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Alfonso Dueñnas-Gonzalez
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas (IIB)/Instituto Nacional de Cancerología, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| |
Collapse
|
44
|
Sato N, Fukushima N, Chang R, Matsubayashi H, Goggins M. Differential and epigenetic gene expression profiling identifies frequent disruption of the RELN pathway in pancreatic cancers. Gastroenterology 2006; 130:548-65. [PMID: 16472607 DOI: 10.1053/j.gastro.2005.11.008] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Accepted: 11/02/2005] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Recently described genome-wide approaches robustly detect many candidate genes that are regulated by DNA methylation, but many of these genes do not represent important targets for functional inactivation. Here we used a microarray-based strategy to identify biologically relevant genes associated with epigenetic silencing in pancreatic cancer. METHODS We compared information from differential gene expression analysis with the transcriptional responses to epigenetic modifiers. RESULTS Using this approach, we identified 7 novel targets for aberrant methylation in pancreatic cancer. One of the genes identified, RELN (Reelin), a key regulator of neuronal migration, is frequently silenced in pancreatic cancers, as are several of its downstream mediators. Importantly, small interfering RNA-mediated knockdown of RELN in pancreatic cancer cells that retain RELN expression resulted in greatly enhanced cell motility, invasiveness, and colony-forming ability. Increased cell motility was also induced by knockdown of downstream components of the RELN pathway, including ApoER2, VLDLR, and DAB1. Treatment of pancreatic cancer cells with histone deacetylase inhibitors, valproic acid and suberoylanilide hydroxamic acid, restored the expression of RELN and DAB1 and markedly inhibited their migration. CONCLUSIONS The high prevalence of the silencing of RELN pathway components and its reversal by histone deacetylase inhibitors suggest the importance of this pathway as a diagnostic and therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Norihiro Sato
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
45
|
Hsi LC, Xi X, Wu Y, Lippman SM. The methyltransferase inhibitor 5-aza-2-deoxycytidine induces apoptosis via induction of 15-lipoxygenase-1 in colorectal cancer cells. Mol Cancer Ther 2006; 4:1740-6. [PMID: 16275995 DOI: 10.1158/1535-7163.mct-05-0218] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
DNA methylation by DNA methyltransferases in CpG-rich promoter regions of genes is a well-described component of epigenetic silencing in human cells. Dysregulation of this process in cancer cells may lead to hypermethylation of promoter CpG islands, thus disabling transcription initiation of certain genes, such as tumor suppressor genes. Reversing epigenetic silencing and up-regulating genes involved in preventing or reversing the malignant phenotype has become a new, important targeted approach for cancer prevention and treatment. Therefore, methyltransferase inhibitors (MTI) have emerged recently as promising chemotherapeutic or preventive agents. The potent MTI 5-aza-2-deoxycytidine (5-Azadc) causes growth arrest, differentiation, and/or apoptosis of many tumor types in vitro and in vivo. The present study shows that low micromolar concentrations of 5-Azadc induce the expression of 15-lipoxygenase-1 (15-LOX-1) in human colorectal cancer cells. The expression of 15-LOX-1 correlates with 5-Azadc-induced increases in 13-S-hydroxyoctadecadienoic acid levels, growth inhibition, and apoptosis in these cells. Furthermore, specific inhibition of 15-LOX-1 by pharmacologic means or small interfering RNA significantly reduced the 5-Azadc-induced effects. These novel findings are the first demonstration of a mechanistic link between the induction of 15-LOX-1 by a MTI and apoptosis in cancer cells. This result has important implications for the study of 5-Azadc and other MTIs in the prevention and therapy of colorectal cancer and supports future investigations of the mechanisms by which MTIs up-regulate 15-LOX-1.
Collapse
Affiliation(s)
- Linda C Hsi
- Department of Clinical Cancer Prevention, The University of Texas M.D. Anderson Cancer Center, Unit 1360, P.O. Box 301439, Houston, Texas 77230-1439, USA
| | | | | | | |
Collapse
|
46
|
Abstract
DNA methylation plays an important role in the establishment and maintenance of the program of gene expression. Tumor cells are characterized by a paradoxical alteration of DNA methylation pattern: global DNA demethylation and local hypermethylation of certain genes. Hypermethylation and inactivation of tumor suppressor genes are well documented in tumors. The role of global genome demethylation in carcinogenesis is less studied. New data provide evidence for independence of DNA hypo- and hypermethylation processes in tumor cells. These processes alter expression of genes that have different functions in malignant transformation. Recent studies have demonstrated that global decrease in the level of DNA methylation is related to hypomethylation of repeated sequences, increase in genetic instability, hypomethylation and activation of certain genes that favor tumor growth, and increase in their metastatic and invasive potential. The recent data on the role of DNA demethylation in carcinogenesis are discussed in this review. The understanding of relationships between hypo- and hypermethylation in tumor cells is extremely important due to reversibility of DNA methylation and attempts to utilize for anti-tumor therapy the drugs that modify DNA methylation pattern.
Collapse
Affiliation(s)
- N P Kisseljova
- Institute of Carcinogenesis, Blokhin Russian Cancer Research Center, Moscow, 115478, Russia.
| | | |
Collapse
|
47
|
Issa JP. Optimizing therapy with methylation inhibitors in myelodysplastic syndromes: dose, duration, and patient selection. ACTA ACUST UNITED AC 2005; 2 Suppl 1:S24-9. [PMID: 16341237 DOI: 10.1038/ncponc0355] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Accepted: 08/30/2005] [Indexed: 11/09/2022]
Abstract
Azacitidine (Vidaza, Pharmion Corp., Boulder, CO, USA) and decitabine (Dacogentrade mark, SuperGen, Inc., Dublin, CA, USA, and MGI Pharma, Inc., Bloomington, MN, USA) are DNA methyltransferase (DNMT) inhibitors that have clinical activity in patients with myelodysplastic syndromes. Mechanism-based laboratory studies suggest that clinical optimization of therapy with DNMT inhibitors needs to include optimizing intracellular drug uptake and maximizing drug exposure over time while still using lower doses to avoid cytotoxicity. Clinical studies suggest that increased dose intensity and multiple cycles of administration substantially increase response rates. Other strategies for optimizing the efficacy of DNMT inhibitor therapy also include identification of patients that are best qualified for treatment, and defining in vivo mechanisms of patient responses. In the future, combination strategies to increase gene reactivation and to take advantage of increased expression of target genes may be critical for achieving optimal results.
Collapse
Affiliation(s)
- Jean-Pierre Issa
- Section of Translational Research, Department of Leukemia at the MD Anderson Cancer Center, University of Texas, Houston 77030, USA.
| |
Collapse
|
48
|
Abstract
Epigenetic events, such as aberrant DNA methylation, have been demonstrated to silence the expression of many genes that suppress malignancy. Since the event is reversible, it is an interesting target for intervention with specific inhibitors of DNA methylation, such as 5-aza-2'-deoxycytidine (5-AZA-CdR, decitabine). 5-AZA-CdR is a prodrug that requires activation via phosphorylation by deoxcytidine kinase. The nucleotide analog is incorporated into DNA, where it produces an irreversible inactivation of DNA methyltransferase. 5-AZA-CdR is an S-phase-specific agent. The demethylation of DNA by this analog in neoplastic cells can lead to the reactivation of silent tumor-suppressor genes, induction of differentiation or senescence, growth inhibition, and loss of clonogenicity. 5-AZA-CdR was demonstrated to be a potent antineoplastic agent against leukemia and tumors in animal models. Preliminary clinical trials of 5-AZA-CdR using different dose-schedules have shown interesting antineoplastic activity in patients with leukemia, myelodysplastic syndrome (MDS), and non-small cell lung cancer (NSCLC). Pharmacokinetic studies have shown that 5-AZA-CdR has a short in vivo half-life of 15 to 25 minutes. The major toxicity produced by this analog is granulocytopenia. To exploit the full chemotherapeutic potential of 5-AZA-CdR for the treatment of cancer, its optimal dose-schedule has to be found. This will require a good understanding of the pharmacology of this analog and its action on both normal and neoplastic cells.
Collapse
Affiliation(s)
- Richard L Momparler
- Département de pharmacologie, Université de Montréal and Centre de recherche pédiatrique, Hõpital Ste-Justine, 3175 Côte Sainte-Catherine, Montréal, Québec H3T 1C5, Canada.
| |
Collapse
|
49
|
Dueñas-González A, Lizano M, Candelaria M, Cetina L, Arce C, Cervera E. Epigenetics of cervical cancer. An overview and therapeutic perspectives. Mol Cancer 2005; 4:38. [PMID: 16248899 PMCID: PMC1291396 DOI: 10.1186/1476-4598-4-38] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Accepted: 10/25/2005] [Indexed: 12/22/2022] Open
Abstract
Cervical cancer remains one of the greatest killers of women worldwide. It is difficult to foresee a dramatic increase in cure rate even with the most optimal combination of cytotoxic drugs, surgery, and radiation; therefore, testing of molecular targeted therapies against this malignancy is highly desirable. A number of epigenetic alterations occur during all stages of cervical carcinogenesis in both human papillomavirus and host cellular genomes, which include global DNA hypomethylation, hypermetylation of key tumor suppressor genes, and histone modifications. The reversible nature of epigenetic changes constitutes a target for transcriptional therapies, namely DNA methylation and histone deacetylase inhibitors. To date, studies in patients with cervical cancer have demonstrated the feasibility of reactivating the expression of hypermethylated and silenced tumor suppressor genes as well as the hyperacetylating and inhibitory effect upon histone deacetylase activity in tumor tissues after treatment with demethylating and histone deacetylase inhibitors. In addition, detection of epigenetic changes in cytological smears, serum DNA, and peripheral blood are of potential interest for development of novel biomolecular markers for early detection, prediction of response, and prognosis.
Collapse
Affiliation(s)
- Alfonso Dueñas-González
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología/Instituto de Investigaciones Biomédicas (INCan/IIB), Universidad Nacional Autónoma de Mexico (UNAM), Mexico City. Mexico
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología/Instituto de Investigaciones Biomédicas (INCan/IIB), Universidad Nacional Autónoma de Mexico (UNAM), Mexico City. Mexico
| | - Myrna Candelaria
- Division of Clinical Research, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Lucely Cetina
- Division of Clinical Research, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Claudia Arce
- Division of Clinical Research, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Eduardo Cervera
- Division of Clinical Research, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| |
Collapse
|
50
|
Galm O, Wilop S, Lüders C, Jost E, Gehbauer G, Herman JG, Osieka R. Clinical implications of aberrant DNA methylation patterns in acute myelogenous leukemia. Ann Hematol 2005; 84 Suppl 1:39-46. [PMID: 16231140 DOI: 10.1007/s00277-005-0005-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hypermethylation of CpG islands near gene promoter regions is associated with transcriptional inactivation and represents an important mechanism of gene silencing in carcinogenesis. Such epigenetic phenomena can act alongside DNA mutations and deletions to disrupt tumor-suppressor gene function. The methylation status of the promoter-associated CpG islands from 11 well-characterized cancer-related genes was analyzed by methylation-specific polymerase chain reaction in 60 adult patients with acute myelogenous leukemia (AML) at diagnosis. The frequency of aberrant methylation among the patient samples was 45.0% (27/60) for suppressor of cytokine signaling-1, 31.7% (19/60) for p15, 20.0% (12/60) for retinoic acid receptor beta2, 13.3% (8/60) for p73 and E-cadherin, 5.0% (3/60) for O(6)-methylguanine DNA methyltransferase, 3.3% (2/60) for death-associated protein kinase 1 and hMLH1, 1.7% (1/60) for p16, and 0% (0/60) for the tissue inhibitor of matrix metalloproteinases-3 and Ras association domain family 1A. Aberrant DNA methylation was found in AML of all French-American-British subtypes and throughout all cytogenetic risk groups. There appeared to be a trend towards a higher methylation frequency in AML patients with an unfavorable karyotype, but this difference was not statistically significant. Our data indicate that hypermethylation of multiple genes involving fundamental cellular pathways is a common event in AML, which varies greatly in frequency among the genes examined. The accumulation of epigenetic events affecting genes which are involved in regulating cell cycle inhibition, cell adhesion, growth factor signaling, and apoptosis may contribute to the malignant AML phenotype. The growing knowledge of the role of epigenetics in the aberrant silencing of cancer-related genes provides a rationale and molecular basis for targeted therapeutic approaches with demethylating agents in AML.
Collapse
Affiliation(s)
- Oliver Galm
- Medizinische Klinik IV, Universitätsklinikum Aachen, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany.
| | | | | | | | | | | | | |
Collapse
|