1
|
Botzolakis EJ, Gurba KN, Lagrange AH, Feng HJ, Stanic AK, Hu N, Macdonald RL. Comparison of γ-Aminobutyric Acid, Type A (GABAA), Receptor αβγ and αβδ Expression Using Flow Cytometry and Electrophysiology: EVIDENCE FOR ALTERNATIVE SUBUNIT STOICHIOMETRIES AND ARRANGEMENTS. J Biol Chem 2016; 291:20440-61. [PMID: 27493204 DOI: 10.1074/jbc.m115.698860] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Indexed: 01/23/2023] Open
Abstract
The subunit stoichiometry and arrangement of synaptic αβγ GABAA receptors are generally accepted as 2α:2β:1γ with a β-α-γ-β-α counterclockwise configuration, respectively. Whether extrasynaptic αβδ receptors adopt the analogous β-α-δ-β-α subunit configuration remains controversial. Using flow cytometry, we evaluated expression levels of human recombinant γ2 and δ subunits when co-transfected with α1 and/or β2 subunits in HEK293T cells. Nearly identical patterns of γ2 and δ subunit expression were observed as follows: both required co-transfection with α1 and β2 subunits for maximal expression; both were incorporated into receptors primarily at the expense of β2 subunits; and both yielded similar FRET profiles when probed for subunit adjacency, suggesting similar underlying subunit arrangements. However, because of a slower rate of δ subunit degradation, 10-fold less δ subunit cDNA was required to recapitulate γ2 subunit expression patterns and to eliminate the functional signature of α1β2 receptors. Interestingly, titrating γ2 or δ subunit cDNA levels progressively altered GABA-evoked currents, revealing more than one kinetic profile for both αβγ and αβδ receptors. This raised the possibility of alternative receptor isoforms, a hypothesis confirmed using concatameric constructs for αβγ receptors. Taken together, our results suggest a limited cohort of alternative subunit arrangements in addition to canonical β-α-γ/δ-β-α receptors, including β-α-γ/δ-α-α receptors at lower levels of γ2/δ expression and β-α-γ/δ-α-γ/δ receptors at higher levels of expression. These findings provide important insight into the role of GABAA receptor subunit under- or overexpression in disease states such as genetic epilepsies.
Collapse
Affiliation(s)
| | | | - Andre H Lagrange
- the Departments of Neurology, Pharmacology, and the Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee 37212, and
| | | | - Aleksandar K Stanic
- the Department of Obstetrics and Gynecology, University of Wisconsin, Madison, Wisconsin 53792
| | | | - Robert L Macdonald
- the Departments of Neurology, Pharmacology, and Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37240-7915,
| |
Collapse
|
2
|
Sarto I, Wabnegger L, Dögl E, Sieghart W. Homologous sites of GABA(A) receptor alpha(1), beta(3) and gamma(2) subunits are important for assembly. Neuropharmacology 2002; 43:482-91. [PMID: 12367595 DOI: 10.1016/s0028-3908(02)00160-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
GABA(A) receptors are the major inhibitory transmitter receptors in the central nervous system. The majority of these receptors is composed of two alpha, two beta and one gamma subunit that assemble around an aqueous pore and form an intrinsic chloride ion channel. Using full-length or truncated chimeric subunits it was demonstrated that homologous sequences from different subunit classes, alpha(1)(54-68), beta(3)(52-66), and gamma(2)(67-81), are important for assembly of GABA(A) receptors composed of alpha(1), beta(3), and gamma(2) subunits. In addition, evidence was provided that these sequences all are located in topologically homologous regions of the different subunits. Finally, it was demonstrated that the sequences investigated cause a selective assembly with certain subunits only and thus influence subunit arrangement within GABA(A) receptors.
Collapse
Affiliation(s)
- I Sarto
- Division of Biochemistry and Molecular Biology, Brain Research Institute, University of Vienna, Spitalgasse 4, Austria
| | | | | | | |
Collapse
|
3
|
Sarto I, Klausberger T, Ehya N, Mayer B, Fuchs K, Sieghart W. A novel site on gamma 3 subunits important for assembly of GABA(A) receptors. J Biol Chem 2002; 277:30656-64. [PMID: 12065588 DOI: 10.1074/jbc.m203597200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gamma-aminobutyric acid, type A (GABA(A)) receptors are ligand-gated chloride channels and are the major inhibitory transmitter receptors in the central nervous system. The majority of these receptors is composed of two alpha, two beta, and one gamma subunits. To identify sequences important for subunit assembly, we generated C-terminally truncated and chimeric gamma(3) constructs. From their ability to associate with full-length alpha(1) and beta(3) subunits, we concluded that amino acid sequence gamma(3)(70-84) either directly interacts with alpha(1) or beta(3) subunits or stabilizes a contact site elsewhere in the protein. The observation that this sequence contains amino acid residues homologous to gamma(2) residues contributing to the benzodiazepine-binding site at the alpha(1)/gamma(2) interface suggested that in alpha(1)beta(3)gamma(3) receptors the sequence gamma(3)(70-84) is located at the alpha(1)/gamma(3) interface. In the absence of alpha(1) subunits this sequence might allow assembly of beta(3) with gamma(3) subunits. Other experiments indicated that sequences gamma(3)(86-95) and gamma(3)(94-107), which are homologous to previously identified sequences important for assembly of gamma(2) subunits, are also important for assembly of gamma(3) subunits. This indicates that during assembly of the GABA(A) receptor, more than one N-terminal sequence is important for binding to the same neighboring subunit. Whether the three sequences investigated are involved in direct interaction or stabilize other regions involved in intersubunit contacts has to be further studied.
Collapse
Affiliation(s)
- Isabella Sarto
- Division of Biochemistry and Molecular Biology, Brain Research Institute, University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
4
|
Didelon F, Sciancalepore M, Savic' N, Mladinic' M, Bradbury A, Cherubini E. gamma-Aminobutyric acidA rho receptor subunits in the developing rat hippocampus. J Neurosci Res 2002; 67:739-44. [PMID: 11891787 DOI: 10.1002/jnr.10178] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The RT-PCR approach was used to estimate the expression of gamma-aminobutyric acid (GABA)(A) rho receptor subunits in the hippocampus of neonatal and adult rats. All three rho subunits were detected at postnatal day (P) 2, the rho3 subunit being expressed at an extremely low level. The rho1 and rho2 products appeared to be developmentally regulated; they were found to be more pronounced in adulthood. In another set of experiments, to correlate gene expression with receptor function, GABA(A) rho subunit mRNAs were detected with single-cell RT-PCR in CA3 pyramidal cells (from P3-P4 hippocampal slices), previously characterized with electrophysiological experiments for their bicuculline-sensitive or -insensitive responses to GABA. In 6 of 19 cells (31%), pressure application of GABA evoked at -70 mV inward currents that persisted in the presence of 100 microM bicuculline (314 plus minus 129 pA). RT-PCR performed in two of these neurons revealed the presence of rho1 and rho2 subunits, the latter being present with the alpha2 subunit. A rho2 subunit was also found in 1 neuron (among 9) exhibiting a response to GABA, which was completely abolished by bicuculline. This might be due to the lack of putative accessory GABA(A) subunits that can coassemble with rho2 to make functional receptors. Similar experiments from 10 P15 CA3 pyramidal cells failed to reveal any rho1-3 transcripts. However, these neurons abundantly express alpha3 subunits. It is likely that in CA3 pyramidal cells of neonatal and adult hippocampus GABA(A) rho subunits are present but at very low levels of expression.
Collapse
Affiliation(s)
- Frédéric Didelon
- Neuroscience Program and Istituto Nazionale Fisica della Materia (INFM), International School for Advanced Studies (SISSA), Trieste, Italy
| | | | | | | | | | | |
Collapse
|
5
|
Büttner C, Sadtler S, Leyendecker A, Laube B, Griffon N, Betz H, Schmalzing G. Ubiquitination precedes internalization and proteolytic cleavage of plasma membrane-bound glycine receptors. J Biol Chem 2001; 276:42978-85. [PMID: 11560918 DOI: 10.1074/jbc.m102121200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The inhibitory glycine receptor (GlyR) in developing spinal neurones is internalized efficiently upon antagonist inhibition. Here we used surface labeling combined with affinity purification to show that homopentameric alpha1 GlyRs generated in Xenopus oocytes are proteolytically nicked into fragments of 35 and 13 kDa upon prolonged incubation. Nicked GlyRs do not exist at the cell surface, indicating that proteolysis occurs exclusively in the endocytotic pathway. Consistent with this interpretation, elevation of the lysosomal pH, but not the proteasome inhibitor lactacystin, prevents GlyR cleavage. Prior to internalization, alpha1 GlyRs are conjugated extensively with ubiquitin in the plasma membrane. Our results are consistent with ubiquitination regulating the endocytosis and subsequent proteolysis of GlyRs residing in the plasma membrane. Ubiquitin-conjugating enzymes thus may have a crucial role in synaptic plasticity by determining postsynaptic receptor numbers.
Collapse
Affiliation(s)
- C Büttner
- Department of Pharmacology, Biocenter of the Johann Wolfgang Goethe University, Marie Curie Strasse 9, Frankfurt am Main 60439, Germany
| | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
In the central nervous system inhibitory neurotransmission is primarily achieved through activation of receptors for gamma-aminobutyric acid (GABA). Three types of GABA receptors have been identified on the basis of their pharmacological and electrophysiological properties. The predominant type, termed GABA(A), and a recently identified GABA(C) type, form ligand-gated chloride channels, whereas GABA(B) receptors activate separate cation channels via G proteins. Based on their homology to nicotinic acetylcholine receptors, GABA(C) receptors are believed to be oligomeric protein complexes composed of five subunits in a pentameric arrangement. To date up to five different GABA(C) receptors subunits have been identified in various species. Recent studies have shed new light on the biological characteristics of GABA(C) receptors, including the chromosomal localization of its subunit genes and resulting links to deseases, the cloning of new splice variants, the identification of GABA(C) receptor-associated proteins, the identification of domains involved in subunit assembly, and finally structure/function studies examining functional consequences of introduced mutations. This review summarizes recent data in view of the molecular structure of GABA(C) receptors and presents new insights into the biological function of this protein in the retina.
Collapse
Affiliation(s)
- R Enz
- Emil-Fischer Zentrum, Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
7
|
Zhang D, Pan ZH, Awobuluyi M, Lipton SA. Structure and function of GABA(C) receptors: a comparison of native versus recombinant receptors. Trends Pharmacol Sci 2001; 22:121-32. [PMID: 11239575 DOI: 10.1016/s0165-6147(00)01625-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In less than a decade our knowledge of the GABA(C) receptor, a new type of Cl(-)-permeable ionotropic GABA receptor, has greatly increased based on studies of both native and recombinant receptors. Careful comparison of properties of native and recombinant receptors has provided compelling evidence that GABA receptor rho-subunits are the major molecular components of GABA(C) receptors. Three distinct rho-subunits from various species have been cloned and the pattern of their expression in the retina, as well as in various brain regions, has been established. The pharmacological profile of GABA(C) receptors has been refined and more specific drugs have been developed. Molecular determinants that underlie functional properties of the receptors have been assigned to specific amino acid residues in rho-subunits. This information has helped determine the subunit composition of native receptors, as well as the molecular basis underlying subtle variations among GABA(C) receptors in different species. Finally, GABA(C) receptors play a unique functional role in retinal signal processing via three mechanisms: (1) slow activation; (2) segregation from other inhibitory receptors; and (3) contribution to multi-neuronal pathways.
Collapse
Affiliation(s)
- D Zhang
- Center for Neuroscience and Aging, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
8
|
Expression of gamma-aminobutyric acid rho 1 and rho 1 Delta 450 as gene fusions with the green fluorescent protein. Proc Natl Acad Sci U S A 2001; 98. [PMID: 11172056 PMCID: PMC29362 DOI: 10.1073/pnas.031584898] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The functional characteristics and cellular localization of the gamma aminobutyric acid (GABA) rho 1 receptor and its nonfunctional isoform rho 1 Delta 450 were investigated by expressing them as gene fusions with the enhanced version of the green fluorescent protein (GFP). Oocytes injected with rho 1-GFP had receptors that gated chloride channels when activated by GABA. The functional characteristics of these receptors were the same as for those of wild-type rho 1 receptors. Fluorescence, because of the chimeric receptors expressed, was over the whole oocyte but was more intense near the cell surface and more abundant in the animal hemisphere. Similar to the wild type, rho 1 Delta 450-GFP did not lead to the expression of functional GABA receptors, and injected oocytes failed to generate currents even after exposure to high concentrations of GABA. Nonetheless, the fluorescence displayed by oocytes expressing rho 1 Delta 450-GFP was distributed similarly to that of rho 1-GFP. Mammalian cells transfected with the rho 1-GFP or rho 1 Delta 450-GFP constructs showed mostly intracellularly distributed fluorescence in confocal microscope images. A sparse localization of fluorescence was observed in the plasma membrane regardless of the cell line used. We conclude that rho 1 Delta 450 is expressed and transported close to, and perhaps incorporated into, the plasma membrane. Thus, rho 1- and rho 1 Delta 450-GFP fusions provide a powerful tool to visualize the traffic of GABA type C receptors.
Collapse
|
9
|
Martinez-Torres A, Miledi R. Expression of gamma-aminobutyric acid rho 1 and rho 1 Delta 450 as gene fusions with the green fluorescent protein. Proc Natl Acad Sci U S A 2001; 98:1947-51. [PMID: 11172056 PMCID: PMC29362 DOI: 10.1073/pnas.98.4.1947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2000] [Indexed: 11/18/2022] Open
Abstract
The functional characteristics and cellular localization of the gamma aminobutyric acid (GABA) rho 1 receptor and its nonfunctional isoform rho 1 Delta 450 were investigated by expressing them as gene fusions with the enhanced version of the green fluorescent protein (GFP). Oocytes injected with rho 1-GFP had receptors that gated chloride channels when activated by GABA. The functional characteristics of these receptors were the same as for those of wild-type rho 1 receptors. Fluorescence, because of the chimeric receptors expressed, was over the whole oocyte but was more intense near the cell surface and more abundant in the animal hemisphere. Similar to the wild type, rho 1 Delta 450-GFP did not lead to the expression of functional GABA receptors, and injected oocytes failed to generate currents even after exposure to high concentrations of GABA. Nonetheless, the fluorescence displayed by oocytes expressing rho 1 Delta 450-GFP was distributed similarly to that of rho 1-GFP. Mammalian cells transfected with the rho 1-GFP or rho 1 Delta 450-GFP constructs showed mostly intracellularly distributed fluorescence in confocal microscope images. A sparse localization of fluorescence was observed in the plasma membrane regardless of the cell line used. We conclude that rho 1 Delta 450 is expressed and transported close to, and perhaps incorporated into, the plasma membrane. Thus, rho 1- and rho 1 Delta 450-GFP fusions provide a powerful tool to visualize the traffic of GABA type C receptors.
Collapse
Affiliation(s)
- A Martinez-Torres
- Laboratory of Cellular and Molecular Neurobiology, Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | | |
Collapse
|
10
|
Chebib M, Johnston GA. GABA-Activated ligand gated ion channels: medicinal chemistry and molecular biology. J Med Chem 2000; 43:1427-47. [PMID: 10780899 DOI: 10.1021/jm9904349] [Citation(s) in RCA: 259] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- M Chebib
- Adrien Albert Laboratory of Medicinal Chemistry, Department of Pharmacology, University of Sydney, Sydney, New South Wales 2006, Australia
| | | |
Collapse
|
11
|
Identification of residues within GABA(A) receptor alpha subunits that mediate specific assembly with receptor beta subunits. J Neurosci 2000. [PMID: 10662819 DOI: 10.1523/jneurosci.20-04-01297.2000] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
GABA(A) receptors can be constructed from a range of differing subunit isoforms: alpha, beta, gamma, delta, and epsilon. Expression studies have revealed that production of GABA-gated channels is achieved after coexpression of alpha and beta subunits. The expression of a gamma subunit isoform is essential to confer benzodiazepine sensitivity on the expressed receptor. However, how the specificity of subunit interactions is controlled during receptor assembly remains unknown. Here we demonstrate that residues 58-67 within alpha subunit isoforms are important in the assembly of receptors comprised of alphabeta and alphabetagamma subunits. Deletion of these residues from the alpha1 or alpha6 subunits results in retention of either alpha subunit isoform in the endoplasmic reticulum on coexpression with the beta3, or beta3 and gamma2 subunits. Immunoprecipitation revealed that residues 58-67 mediated oligomerization of the alpha1 and beta3 subunits, but were without affect on the production of alpha/gamma complexes. Within this domain, glutamine 67 was of central importance in mediating the production of functional alpha1beta3 receptors. Mutation of this residue resulted in a drastic decrease in the cell surface expression of alpha1beta3 receptors and the resulting expression of beta3 homomers. Sucrose density gradient centrifugation revealed that this residue was important for the production of a 9S alpha1beta3 complex representing functional GABA(A) receptors. Therefore, our studies detail residues that specify GABA(A) receptor alphabeta subunit interactions. This domain, which is conserved in all alpha subunit isoforms, will therefore play a critical role in the assembly of GABA(A) receptors composed of alphabeta and alphabetagamma subunits.
Collapse
|
12
|
Abstract
gamma-Aminobutyric acid (GABA) is the most important inhibitory neurotransmitter in the mammalian central nervous system and gates at least three subclasses of receptors, termed GABA(A), GABA(B) and GABA(C). Accumulating evidence indicates that GABA(C) receptors are composed exclusively of rho subunits. The N-terminal half of the rho subunits has been shown to mediate formation of homo- and heterooligomeric GABA(C) receptors. In this study, we searched for specific sequences within the N-terminus of the rho1 subunit involved in the assembly process. Assembly sequences were localized to a 128-amino acid region by deletion of progressively larger regions of a chimeric rho1beta1 subunit previously shown to disrupt rho1 and rho2 assembly. To confirm this observation, a series of GABA(A) receptor beta subunit chimeras containing different regions of the rho1 N-terminus were tested for interference with rho1 and rho2 subunit assembly into functional GABA receptors. Transfer of 70 residues within the 128 amino acid region to the beta1 subunit created a chimera that disrupted rho1, but not rho2, assembly into functional receptors. These observations refine the location of signals involved in rho1 subunit assembly, and suggest that different signals exist for the formation of rho1 homooligomeric and rho1/rho2 heterooligomeric GABA(C) receptors.
Collapse
Affiliation(s)
- R Enz
- Institut fuer Biochemie, Universitaet Erlangen-Nuernberg, Erlangen, Germany
| | | |
Collapse
|
13
|
Abstract
1. In the mammalian central nervous system, GABA is the main inhibitory neurotransmitter. GABA is a highly flexible molecule and, thus, can exist in many low-energy conformations. Conformationally restricted analogues of GABA have been used to help identify three major GABA receptors, termed GABAA, GABAB and GABAC receptors. 2. GABAA and GABAC receptors are members of a super-family of transmitter-gated ion channels that include nicotinic acetylcholine, strychnine-sensitive glycine and 5HT3 receptors. GABAA receptors are hetero-oligomeric Cl- channels that are selectively blocked by the alkaloid bicuculline and modulated by steroids, barbiturates and benzodiazepines. To date, 16 human GABAA receptor cDNA have been cloned. 3. GABAB receptors are seven transmembrane receptors that are coupled to G-proteins and activate second messenger systems and Ca2+ and K+ ion channels. To date, three GABAB receptor proteins have been cloned and these resemble metabotropic glutamate receptors. GABAB receptors are hetero-oligomeric receptors made up of a mixture of a combination of the subunits. These receptors are selectively activated by (-)-baclofen and CCGP27492 and are blocked by phaclofen, the phosphonic acid analogue of baclofen. 4. In contrast, GABAC receptors represent a relatively simple form of transmitter-gated Cl- channel made up of a single type of protein subunit. Two human GABAC receptor cDNA have been cloned. These receptors are not blocked by bicuculline nor are they modulated by steroids, barbiturates or benzodiazepines. Instead, GABAC receptors are selectively activated by the conformationally restricted analogues of GABA in the folded conformation cis-4-aminocrotonic acid and (1s,2R)-2-(aminomethyl)-1-carboxycyclopropane. (1,2,5,6-Tetrahydropyridine-4-yl)methylphosphinic acid, a methylphosphinic acid analogue of GABA in a partially folded conformation, is a selective antagonist at GABAC receptors.
Collapse
Affiliation(s)
- M Chebib
- Adrien Albert Laboratory of Medicinal Chemistry, Department of Pharmacology, University of Sydney, New South Wales, Australia.
| | | |
Collapse
|
14
|
Chebib M, Mewett KN, Johnston GA. GABA(C) receptor antagonists differentiate between human rho1 and rho2 receptors expressed in Xenopus oocytes. Eur J Pharmacol 1998; 357:227-34. [PMID: 9797041 DOI: 10.1016/s0014-2999(98)00552-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The selective GABA(C) receptor antagonist, (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA), is eight times more potent against human recombinant p receptors than p2 receptors expressed in Xenopus oocytes. (3-Aminopropyl)methylphosphinic acid (CGP35024), the methylphosphinic acid analogue of GABA, and [(E)-3-aminopropen-1-yl]methylphosphinic acid (CGP44530), an open chain analogue of TPMPA, were five and four times, respectively, more potent as antagonists of p1 receptors than as antagonists of p2 receptors. Isoguvacine was a weak partial agonist at both p1 and p2 receptors with intrinsic activities (calculated as a percentage of the maximum whole cell current produced by a maximum dose of GABA) of 45 and 68%, respectively, of the maximum response produced by GABA. In agreement with other workers, it was found that imidazole-4-acetic acid was a partial agonist at both p1 and p2 receptors, showing higher intrinsic activity at p2 than at p1 receptors. The p1 receptor antagonist, trans-4-amino-2-methylbut-2-enoic acid (2-MeTACA), was a partial agonist at p2 receptors with an intrinsic activity of 34%. 2-MeTACA may be useful in differentiating between homo-oligomeric p1 and p2 receptors in native systems. These studies reveal significant differences in the antagonist profile of human recombinant p1 and p2 GABA(C) receptors.
Collapse
Affiliation(s)
- M Chebib
- Department of Pharmacology, The University of Sydney, NSW, Australia.
| | | | | |
Collapse
|
15
|
Abstract
In the central nervous system inhibitory neurotransmission is primarily achieved through activation of receptors for gamma-aminobutyric acid (GABA). Three types of GABA receptors have been identified on the basis of their pharmacology and electrophysiology. The predominant type, termed GABAA and a recently identified type, GABAC, have integral chloride channels, whereas GABAB receptors couple to separate K+ or Ca2+ channels via G-proteins. By analogy to nicotinic acetylcholine receptors, native GABAA receptors are believed to be heterooligomers of five subunits, drawn from five classes (alpha, beta, gamma, delta, epsilon/chi). An additional class, called rho, is often categorized with GABAA receptor subunits due to a high degree of sequence similarity. However, rho subunits are capable of forming functional homooligomeric and heterooligomeric receptors, whereas GABAA receptors only express efficiently as heterooligomers. Intriguingly, the pharmacological properties of receptors formed from rho subunits are very similar to those exhibited by GABAC receptors and rho subunits and GABAC responses have been colocalized to the same retina cells, indicating that rho subunits are the sole components of GABAC receptors. In contrast, the propensity of GABAA receptor and rho subunits to form multimeric structures and their coexistence in retinal cells suggests that GABAC receptors might be heterooligomers of rho and GABAA receptor subunits. This review will summarize our current understanding of the molecular composition of GABAC receptors based upon studies of rho subunit assembly.
Collapse
Affiliation(s)
- R Enz
- CMSC 1004, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | |
Collapse
|