1
|
Zhu Q, Wu Y, Luo R. Understanding and fine tuning the propensity of ATP-driven liquid-liquid phase separation with oligolysine. Phys Chem Chem Phys 2024; 26:10568-10578. [PMID: 38512104 PMCID: PMC11056285 DOI: 10.1039/d4cp00761a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Liquid-liquid phase separation (LLPS) plays a pivotal role in the organization and functionality of living cells. It is imperative to understand the underlying driving forces behind LLPS and to control its occurrence. In this study, we employed coarse-grained (CG) simulations as a research tool to investigate systems comprising oligolysine and adenosine triphosphate (ATP) under conditions of various ionic concentrations and oligolysine lengths. Consistent with experimental observations, our CG simulations captured the formation of LLPS upon the addition of ATP and tendency of dissociating under high ionic concentration. The electrostatic interaction between oligolysine and ATP is of great importance in forming LLPS. An in-depth analysis on the structural properties of LLPS was conducted, where the oligolysine structure remained unchanged with increased ionic concentration and the addition of ATP led to a more pronounced curvature, aligning with the observed enhancement of α-helical secondary structure in experiments. In terms of the dynamic properties, the introduction of ATP led to a significant reduction in translational and vibrational degrees of freedom but not rotational degrees of freedom. Through keeping the total number of charged residues constant and varying their entropic effects, we constructed two systems of similar biochemical significance and further validated the entropy effects on the LLPS formation. These findings provide a deeper understanding of LLPS formation and shed lights on the development of novel bioreactor and primitive artificial cells for synthesizing key chemicals for certain diseases.
Collapse
Affiliation(s)
- Qiang Zhu
- Department of Molecular Biology and Biochemistry, Chemical and Biomolecular Engineering, Materials Science and Engineering, and Biomedical Engineering, University of California, Irvine, California 92697, USA.
| | - Yongxian Wu
- Department of Molecular Biology and Biochemistry, Chemical and Biomolecular Engineering, Materials Science and Engineering, and Biomedical Engineering, University of California, Irvine, California 92697, USA.
| | - Ray Luo
- Department of Molecular Biology and Biochemistry, Chemical and Biomolecular Engineering, Materials Science and Engineering, and Biomedical Engineering, University of California, Irvine, California 92697, USA.
| |
Collapse
|
2
|
Pal S, Roy R, Paul S. Deciphering the Role of ATP on PHF6 Aggregation. J Phys Chem B 2022; 126:4761-4775. [PMID: 35759245 DOI: 10.1021/acs.jpcb.2c01768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aggregation of Tau protein, which are involved in Alzheimer's disease, are associated with the self-assembly of the hexapeptide sequence, paired helical filament 6 (PHF6) from repeat 3 of Tau. In order to treat Alzheimer's disease and other such tauopathies, one of the therapeutic strategies is to inhibit aggregation of Tau and its nucleating segments. Therefore, we have studied the effect of adenosine triphosphate (ATP) on the aggregation of PHF6. ATP has, interestingly, demonstrated its ability to inhibit and dissolve protein aggregates. Using classical molecular dynamics simulations, we observed that the hydrophobic core of PHF6 segment displays extended β-sheet conformation, which stabilizes PHF6 aggregates. However, the distribution of ATP around the vicinity of the peptides enables PHF6 to remain discrete and attain random coil conformers. The interpeptide interactions are substituted by PHF6-ATP interactions through hydrogen bonding and hydrophobic interactions (including π-π stacking). Furthermore, the adenosine moiety of ATP contributes more than the triphosphate chain toward PHF6-ATP interaction. Ultimately, this work establishes the inhibitory activity of ATP against Tau aggregation; hence, the therapeutic effect of ATP should be explored further in regard to the effective treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Saikat Pal
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Rituparna Roy
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| |
Collapse
|
3
|
Multi-omic analyses in Abyssinian cats with primary renal amyloid deposits. Sci Rep 2021; 11:8339. [PMID: 33863921 PMCID: PMC8052419 DOI: 10.1038/s41598-021-87168-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 03/19/2021] [Indexed: 02/02/2023] Open
Abstract
The amyloidoses constitute a group of diseases occurring in humans and animals that are characterized by abnormal deposits of aggregated proteins in organs, affecting their structure and function. In the Abyssinian cat breed, a familial form of renal amyloidosis has been described. In this study, multi-omics analyses were applied and integrated to explore some aspects of the unknown pathogenetic processes in cats. Whole-genome sequences of two affected Abyssinians and 195 controls of other breeds (part of the 99 Lives initiative) were screened to prioritize potential disease-associated variants. Proteome and miRNAome from formalin-fixed paraffin-embedded kidney specimens of fully necropsied Abyssinian cats, three affected and three non-amyloidosis-affected were characterized. While the trigger of the disorder remains unclear, overall, (i) 35,960 genomic variants were detected; (ii) 215 and 56 proteins were identified as exclusive or overexpressed in the affected and control kidneys, respectively; (iii) 60 miRNAs were differentially expressed, 20 of which are newly described. With omics data integration, the general conclusions are: (i) the familial amyloid renal form in Abyssinians is not a simple monogenic trait; (ii) amyloid deposition is not triggered by mutated amyloidogenic proteins but is a mix of proteins codified by wild-type genes; (iii) the form is biochemically classifiable as AA amyloidosis.
Collapse
|
4
|
Heo CE, Han JY, Lim S, Lee J, Im D, Lee MJ, Kim YK, Kim HI. ATP Kinetically Modulates Pathogenic Tau Fibrillations. ACS Chem Neurosci 2020; 11:3144-3152. [PMID: 32915536 DOI: 10.1021/acschemneuro.0c00479] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Advanced understanding of Alzheimer's disease (AD) and several tauopathies over the past decades indicates the pathological importance of tau aggregation in these diseases. Herein, we demonstrated that adenosine triphosphate (ATP), a highly charged anionic molecule found abundantly in the cytosol of cells, catalyzes fibrillation of tau as well as human islet amyloid polypeptide, a representative of basic intrinsically disordered proteins. Our results showed that ATP attracts multiple lysine residues of the four-repeat domain of tau (K18) via supramolecular complexation, thereby forming dimers that are converted to nuclei and accelerate fibril elongation. However, ATP was not directly incorporated into the K18 fibrils, suggesting that ATP plays the role of a catalyst, rather than a reactant, during K18 fibrillation. We also characterized the correlation between ATP dyshomeostasis and tau aggregation in the cellular environment. Our multiple biophysical approaches, including native mass spectrometry (MS), small-angle X-ray scattering (SAXS), and molecular dynamics (MD) simulation, provided insights into the molecular-level influence of ATP on the structural changes and fibrillation of tau.
Collapse
Affiliation(s)
- Chae Eun Heo
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center for Proteogenomics Research, Korea University, Seoul 02841, Republic of Korea
| | - Jong Yoon Han
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center for Proteogenomics Research, Korea University, Seoul 02841, Republic of Korea
| | - Sungsu Lim
- Brain Science Institute, Center for Neuromedicine, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jeeyoung Lee
- Department of Biomedical Sciences, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Dongjoon Im
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center for Proteogenomics Research, Korea University, Seoul 02841, Republic of Korea
| | - Min Jae Lee
- Department of Biomedical Sciences, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Yun Kyung Kim
- Brain Science Institute, Center for Neuromedicine, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Biological Chemistry, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Hugh I. Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center for Proteogenomics Research, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
5
|
Esparza JL, Gómez M, Domingo JL. Role of Melatonin in Aluminum-Related Neurodegenerative Disorders: a Review. Biol Trace Elem Res 2019; 188:60-67. [PMID: 29732485 DOI: 10.1007/s12011-018-1372-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/30/2018] [Indexed: 01/23/2023]
Abstract
Aluminum (Al), a potentially neurotoxic element, provokes various adverse effects on human health such as dialysis dementia, osteomalacia, and microcytic anemia. It has been also associated with serious neurodegenerative diseases such as Alzheimer's disease (AD), amyotrophic lateral sclerosis, and Parkinsonism dementia of Guam. The "aluminum hypothesis" of AD assumes that the metal complexes can potentiate the rate of aggregation of amyloid-β (Aβ), enhancing the toxicity of this peptide, and being able of contributing to the pathogenesis of AD. It has been supported by a number of analytical, epidemiological, and neurotoxicological studies. On the other hand, melatonin (Mel) is a potent direct free radical scavenger and indirect antioxidant, which acts increasing the activity of important related antioxidant enzymes, and preventing oxidative stress and cell death of neurons exposed to Aβ-induced neurotoxicity. Therefore, Mel might be useful in the treatment of AD by reducing the Aβ generation and by inhibiting mitochondrial cell death pathways. The present review on the role of Mel in Al-related neurodegenerative disorders concludes that the protective effects of this hormone, together with its low toxicity, support the administration of Mel as a potential supplement in the treatment of neurological disorders, in which oxidative stress is involved.
Collapse
Affiliation(s)
- José L Esparza
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - Mercedes Gómez
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain.
| |
Collapse
|
6
|
Cao L, Cao X, Zhou Y, Nagpure BV, Wu ZY, Hu LF, Yang Y, Sethi G, Moore PK, Bian JS. Hydrogen sulfide inhibits ATP-induced neuroinflammation and Aβ 1-42 synthesis by suppressing the activation of STAT3 and cathepsin S. Brain Behav Immun 2018; 73:603-614. [PMID: 29981830 DOI: 10.1016/j.bbi.2018.07.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/24/2018] [Accepted: 07/04/2018] [Indexed: 02/02/2023] Open
Abstract
Neuroinflammation and excessive β-amyloid1-42 (Aβ1-42) generation contribute to the pathogenesis of Alzheimer's disease (AD). Emerging evidence has demonstrated that hydrogen sulfide (H2S), an endogenous gasotransmitter, produces therapeutic effects in AD; however, the underlying mechanisms remain largely elusive. In the present study, we investigated the effects of H2S on exogenous ATP-induced inflammation and Aβ1-42 production in both BV-2 and primary cultured microglial cells and analyzed the potential mechanism(s) mediating these effects. Our results showed that NaHS, an H2S donor, inhibited exogenous ATP-stimulated inflammatory responses as manifested by the reduction of pro-inflammatory cytokines, ROS and activation of nuclear factor-κB (NF-κB) pathway. Furthermore, NaHS also suppressed the enhanced production of Aβ1-42 induced by exogenous ATP, which is probably due to its inhibitory effect on exogenous ATP-boosted expression of amyloid precursor protein (APP) and activation of β- and γ-secretase enzymes. Thereafter, we found that exogenous ATP-induced inflammation and Aβ1-42 production requires the activation of signal transducer and activator of transcription 3 (STAT3) and cathepsin S (Cat S) as inhibition of the activity of either proteins attenuated the effect of exogenous ATP. Intriguingly, NaHS suppressed exogenous ATP-induced phosphorylation of STAT3 and the activation of Cat S. In addition, we observed that NaHS led to the persulfidation of Cat S at cysteine-25. Importantly, mutation of cysteine-25 into serine attenuated the activity of Cat S stimulated by exogenous ATP and subsequent inflammation and Aβ1-42 production, indicating its involvement in H2S-mediated effect. Taken together, our data provide a novel understanding of H2S-mediated effect on neuroinflammation and Aβ1-42 production by suppressing the activation of STAT3 and Cat S.
Collapse
Affiliation(s)
- Lei Cao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Xu Cao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yebo Zhou
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Bhushan Vijay Nagpure
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Zhi-Yuan Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Life Science Institute, National University of Singapore, Singapore
| | - Li Fang Hu
- Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Yong Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Philp K Moore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Life Science Institute, National University of Singapore, Singapore
| | - Jin-Song Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
7
|
Bondy SC. Low levels of aluminum can lead to behavioral and morphological changes associated with Alzheimer's disease and age-related neurodegeneration. Neurotoxicology 2015; 52:222-9. [PMID: 26687397 DOI: 10.1016/j.neuro.2015.12.002] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/01/2015] [Accepted: 12/01/2015] [Indexed: 12/25/2022]
Abstract
Aluminum (Al) is a very common component of the earth's mineral composition. It is not essential element for life and is a constituent of rather inert minerals. Therefore, it has often been regarded as not presenting a significant health hazard. As a result, aluminum-containing agents been used in the preparation of many foodstuffs processing steps and also in elimination of particulate organic matter from water. More recently, the reduced pH of bodies of water resulting from acid rain has led to mobilization of aluminum-containing minerals into a more soluble form, and these have thus entered residential drinking water resources. By this means, the body burden of aluminum in humans has increased. Epidemiological and experimental findings indicate that aluminum is not as harmless as was previously thought, and that aluminum may contribute to the inception and advancement of Alzheimer's disease. Epidemiological data is reinforced by indications that aluminum exposure can result in excess inflammatory activity within the brain. Activation of the immune system not initiated by an infectious agent, typifies the aging brain and is even more augmented in several neurodegenerative diseases. The origin of most age-related neurological disorders is generally not known but as they are largely not of genetic derivation, their development is likely triggered by unknown environmental factors. There is a growing and consistent body of evidence that points to aluminum as being one such significant influence. Evidence is presented that reinforces the likelihood that aluminum is a factor speeding the rate of brain aging. Such acceleration would inevitably enlarge the incidence of age-related neurological diseases.
Collapse
Affiliation(s)
- Stephen C Bondy
- Environmental Toxicology Program, Center for Occupational and Environmental Health, Department of Medicine, University of California, Irvine, CA 92697-1830, USA.
| |
Collapse
|
8
|
Bondy SC. Prolonged exposure to low levels of aluminum leads to changes associated with brain aging and neurodegeneration. Toxicology 2013; 315:1-7. [PMID: 24189189 DOI: 10.1016/j.tox.2013.10.008] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/21/2013] [Accepted: 10/25/2013] [Indexed: 11/19/2022]
Abstract
Aluminum is one of the most common metal elements in the earth's crust. It is not an essential element for life and has commonly been thought of as a rather inert and insoluble mineral. Therefore, it has often been regarded as not posing a significant health hazard. In consequence, aluminum-containing agents been used in many food processing steps and also in removal by flocculation of particulate organic matter from water. In recent years, acid rain has tended to mobilize aluminum-containing minerals into a more soluble form, ionic Al(3+), which has found their way into many reservoirs that constitute residential drinking water resources. As a result, the human body burden of aluminum has increased. Epidemiological studies suggest that aluminum may not be as innocuous as was previously thought and that aluminum may actively promote the onset and progression of Alzheimer's disease. Epidemiological data is strengthened by experimental evidence of aluminum exposure leading to excess inflammatory activity within the brain. Such apparently irrelevant immune activity unprovoked by an exogenous infectious agent characterizes the aging brain and is even more pronounced in several neurodegenerative diseases. The causation of most of these age-related neurological disorders is not understood but since they are generally not genetic, one must assume that their development is underlain by unknown environmental factors. There is an increasing and coherent body of evidence that implicates aluminum as being one such significant factor. Evidence is outlined supporting the concept of aluminum's involvement in hastening brain aging. This acceleration would then inevitably lead to increased incidence of specific age-related neurological diseases.
Collapse
Affiliation(s)
- Stephen C Bondy
- Environmental Toxicology Program, Center for Occupational and Environmental Health, Department of Medicine, University of California, Irvine, CA 92697-1825, USA.
| |
Collapse
|
9
|
Liu H, Yin P, He S, Sun Z, Tao Y, Huang Y, Zhuang H, Zhang G, Wei S. ATP-induced noncooperative thermal unfolding of hen lysozyme. Biochem Biophys Res Commun 2010; 397:598-602. [PMID: 20595053 DOI: 10.1016/j.bbrc.2010.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 06/01/2010] [Indexed: 10/19/2022]
Abstract
To understand the role of ATP underlying the enhanced amyloidosis of hen egg white lysozyme (HEWL), the synchrotron radiation circular dichroism, combined with tryptophan fluorescence, dynamic light-scattering, and differential scanning calorimetry, is used to examine the alterations of the conformation and thermal unfolding pathway of the HEWL in the presence of ATP, Mg(2+)-ATP, ADP, AMP, etc. It is revealed that the binding of ATP to HEWL through strong electrostatic interaction changes the secondary structures of HEWL and makes the exposed residue W62 move into hydrophobic environments. This alteration of W62 decreases the beta-domain stability of HEWL, induces a noncooperative unfolding of the secondary structures, and produces a partially unfolded intermediate. This intermediate containing relatively rich alpha-helix and less beta-sheet structures has a great tendency to aggregate. The results imply that the ease of aggregating of HEWL is related to the extent of denaturation of the amyloidogenic region, rather than the electrostatic neutralizing effect or monomeric beta-sheet enriched intermediate.
Collapse
Affiliation(s)
- Honglin Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Bondy SC. The neurotoxicity of environmental aluminum is still an issue. Neurotoxicology 2010; 31:575-81. [PMID: 20553758 DOI: 10.1016/j.neuro.2010.05.009] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 03/24/2010] [Accepted: 05/10/2010] [Indexed: 10/19/2022]
Abstract
Evidence for the neurotoxicity of extended exposure to low levels of aluminum salts is described using an animal model treated with aluminum at low levels reflecting those found in some water supplies. Emphasis is given to the potential role of aluminum in acceleration and promotion of some indices characteristic of brain aging. These hallmarks include the appearance of excess levels of inflammation in specific brain areas. Aluminum salts can increase levels of glial activation, inflammatory cytokines and amyloid precursor protein within the brain. Both normal brain aging and to a greater extent, Alzheimer's disease are associated with elevated basal levels of markers for inflammation. These are not attributable to obvious exogenous stimuli and may reflect the lifespan history of the organism's immune responses. It is possible that aluminum salts can act as a subtle promoter of such apparently unprovoked responses.
Collapse
Affiliation(s)
- Stephen C Bondy
- Program in Environmental Toxicology, Division Occupational and Environmental Health, Department of Medicine, University of California, Irvine, CA 92697-1825, USA.
| |
Collapse
|
11
|
Ahmad A. DnaK/DnaJ/GrpE of Hsp70 system have differing effects on alpha-synuclein fibrillation involved in Parkinson's disease. Int J Biol Macromol 2010; 46:275-9. [PMID: 20060408 DOI: 10.1016/j.ijbiomac.2009.12.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 12/30/2009] [Accepted: 12/30/2009] [Indexed: 11/17/2022]
Abstract
Chaperones assist in maintenance of functional proteome in vivo. However, they seem to be either ineffective or overwhelmed in the case of protein misfolding diseases like Parkinson's, Huntington's or Alzheimer's. Studies involving one or two chaperones from Hsp70 system cannot provide comprehensive information about the involvement of whole system. We present for the first time, in vitro characterization of the effect of each component of Hsp70 system on alpha-synuclein (involved in Parkinson's) using SEC and ThT assay. Our results show while some components enhance the aggregation others seem to stabilize alpha-synuclein against aggregation. Keeping whole Hsp70 system intact, the factor responsible for triggering aggregation seemed to be initial alpha-synuclein conformation.
Collapse
Affiliation(s)
- Atta Ahmad
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA.
| |
Collapse
|
12
|
Calamai M, Kumita JR, Mifsud J, Parrini C, Ramazzotti M, Ramponi G, Taddei N, Chiti F, Dobson CM. Nature and Significance of the Interactions between Amyloid Fibrils and Biological Polyelectrolytes†. Biochemistry 2006; 45:12806-15. [PMID: 17042499 DOI: 10.1021/bi0610653] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Charged polyelectrolytes such as glycosaminoglycans and nucleic acids have frequently been found associated with the proteinaceous deposits in the tissues of patients with amyloid diseases. We have investigated the nature and generality of this phenomenon by studying the ability of different polyanions, including DNA, ATP, heparin, and heparan sulfate, to promote the aggregation of amyloidogenic proteins and to bind to the resulting aggregates. Preformed amyloid fibrils of human muscle acylphosphatase and human lysozyme, proteins with a net positive charge at physiological pH values, were found to bind tightly to the negatively charged DNA or ATP. The effects of the polyelectrolytes on the kinetics of aggregation were studied for acylphosphatase, and the presence of ATP, DNA, or heparin was found to increase its aggregation rate dramatically, with a degree dependent on the net charge and size of the polyanion. Magnesium or calcium ions were found to attenuate, and ultimately to suppress, these interactions, suggesting that they are electrostatic in nature. Moreover, heparin was found to stabilize the aggregated state of acylphosphatase through compensation of electrostatic repulsion. Noteworthy, differences in affinity between native and aggregated acylphosphatase with heparin suggest that amyloid fibrils can themselves behave as polyelectrolytes, interacting very strongly with other polyelectrolytes bearing the opposite charge. Within an in vivo context, the strengthening of the electrostatic interactions with other biological polyelectrolytes, as a consequence of protein misfolding and aggregation, could therefore result in depletion of essential molecular components and contribute to the known cytotoxicity of amyloid fibrils and their precursors.
Collapse
Affiliation(s)
- Martino Calamai
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Aluminium (Al) is found associated with beta-amyloid (Abeta) in the brain in Alzheimer's disease. Al precipitates Abeta in vitro as distinct fibrillar structures composed of beta-pleated sheets of peptide. The aetiology of their association in vivo is not known. Al is known to increase the brain Abeta burden in experimental animals and this might be due to a direct influence upon Abeta anabolism or direct or indirect affects upon Abeta catabolism. It is difficult to rationalise from an evolutionary perspective the precipitation and persistence of Abeta in vivo. However, Al has not been subject to the same evolutionary pressures as Abeta, it is a recent addition to the biotic environment, and its precipitation of Abeta may have only been subjected to natural selection in the recent past. Whether AD is also part of this ongoing selection process remains to be elucidated
Collapse
Affiliation(s)
- Christopher Exley
- Birchall Centre for Inorganic Chemistry and Materials Science, Keele University, Staffordshire, UK
| |
Collapse
|
14
|
Antzutkin ON. Amyloidosis of Alzheimer's Abeta peptides: solid-state nuclear magnetic resonance, electron paramagnetic resonance, transmission electron microscopy, scanning transmission electron microscopy and atomic force microscopy studies. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2004; 42:231-246. [PMID: 14745804 DOI: 10.1002/mrc.1341] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Aggregation cascade for Alzheimer's amyloid-beta peptides, its relevance to neurotoxicity in the course of Alzheimer's disease and experimental methods useful for these studies are discussed. Details of the solid-phase peptide synthesis and sample preparation procedures for Alzheimer's beta-amyloid fibrils are given. Recent progress in obtaining structural constraints on Abeta-fibrils from solid-state NMR and scanning transmission electron microscopy (STEM) data is discussed. Polymorphism of amyloid fibrils and oligomers of the 'Arctic' mutant of Abeta(1-40) was studied by (1)H,(13)C solid-state NMR, transmission electron microscopy (TEM) and atomic force microscopy (AFM), and a real-time aggregation of different polymorphs of the peptide was observed with the aid of in situ AFM. Recent results on binding of Cu(II) ions and Al-citrate and Al-ATP complexes to amyloid fibrils, as studied by electron paramagnetic resonance (EPR) and solid-state (27)Al NMR techniques, are also presented.
Collapse
Affiliation(s)
- Oleg N Antzutkin
- Division of Chemistry, Luleå University of Technology, S-971 87 Luleå, Sweden.
| |
Collapse
|
15
|
Kawahara M. Aluminum-Induced Conformational Changes of .BETA.-Amyloid Protein and the Pathogenesis of Alzheimer's Disease. ACTA ACUST UNITED AC 2003. [DOI: 10.1248/jhs.49.341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Masahiro Kawahara
- Department of Analytical Chemistry, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare
| |
Collapse
|
16
|
Exley C, Korchazhkina OV. Promotion of formation of amyloid fibrils by aluminium adenosine triphosphate (AlATP). J Inorg Biochem 2001; 84:215-24. [PMID: 11374584 DOI: 10.1016/s0162-0134(01)00171-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The formation of amyloid fibrils is considered to be an important step in the aetiology of Alzheimer's disease and other amyloidoses. Fibril formation in vitro has been shown to depend on many different factors including modifications to the amino acid profile of fibrillogenic peptides and interactions with both large and small molecules of physiological significance. How these factors might contribute to amyloid fibril formation in vivo is not clear as very little is known about the promotion of fibril formation in undersaturated solutions of amyloidogenic peptides. We have used thioflavin T fluorescence and reverse phase high performance liquid chromatography to show that ATP, and in particular AlATP, promoted the formation of thioflavin T-reactive fibrils of beta amyloid and, an unrelated amyloidogenic peptide, amylin. Evidence is presented that induction of fibril formation followed the complexation of AIATP by one or more monomers of the respective peptide. However, the complex formed could not be identified directly and it is suggested that AlATP might be acting as a chaperone in the assembly of amyloid fibrils. The effect of AlATP was not mimicked by either AlADP or AlAMP. However, it was blocked by suramin, a P2 ATP receptor antagonist, and this has prompted us to speculate that the precursor proteins to beta amyloid and amylin may be substrates or receptors for ATP in vivo.
Collapse
Affiliation(s)
- C Exley
- Birchall Centre for Inorganic Chemistry and Materials Science, School of Chemistry and Physics, Keele University, Staffordshire, UK.
| | | |
Collapse
|
17
|
Abstract
An abundance of research has continued to link aluminium (Al) with Alzheimer's disease (AD) (Strong et al., J. Toxicol. Environ. Health 48 (1996) 599; Savory et al., J. Toxicol. Environ. Health 48 (1996) 615). Animals loaded with Al develop both symptoms and brain lesions that are similar to those found in AD. However, these animal models of Al intoxication are not representative of human exposure to Al. They have not addressed the significance of a truly chronic exposure to Al. If Al is a cause of AD it is effective at the level of our everyday exposure to the metal and AD will be one possible outcome of the life-long presence of a low, though burgeoning, brain Al burden. Individual susceptibility to AD will be as much to do with differences in brain physiology as with changes in our everyday exposure to the metal. There will be a chemical response and indeed biochemical/physiological response in the brain to Al. The question is whether brain Al homeostasis could impact upon brain function. In reviewing the recent literature covering the neurotoxicity of Al and, in particular, of the known and probable mechanisms involved in brain Al homeostasis I have identified a mechanism through which a truly chronic exposure to Al would bring about subtle and persistent changes in neurotransmission which, in time, could instigate the cascade of events known collectively as AD. This mechanism involves the potentiation of the activities of neurotransmitters by the action of Al-ATP at adenosine 5'-triphosphate (ATP) receptors in the brain.
Collapse
Affiliation(s)
- C Exley
- Birchall Centre for Inorganic Chemistry and Materials Science, Department of Chemistry, Keele University, Staffordshire, UK.
| |
Collapse
|
18
|
Abstract
The formation of the beta pleated configuration of the amyloid peptide fragment 25-35 in aqueous solution, has been studied using thioflavin-T fluorescence as an indicator of such folding. Both phosphate and adenosine triphosphate (ATP) enhance the formation of aggregated beta-sheets. This phosphate-induced aggregation is greater in the presence of aluminum sulfate in a dose dependent manner. In the absence of ATP or phosphate, aluminum salts do not promote aggregation. It is proposed that a particulate aluminum phosphate complex may form critical nuclei upon whose surface the amyloid peptide can change its configuration. This capacity for seeding may be a relevant factor in the formation of insoluble proteinaceous materials such as amyloid plaques and neurofibrillary tangles found in Alzheimer's disease.
Collapse
Affiliation(s)
- S C Bondy
- Department of Community & Environmental Medicine, Center for Occupational and Environmental Health, University of California, Irvine 92697-1820, USA
| | | |
Collapse
|