1
|
Serotonin dependent masking of hippocampal sharp wave ripples. Neuropharmacology 2016; 101:188-203. [DOI: 10.1016/j.neuropharm.2015.09.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/04/2015] [Accepted: 09/21/2015] [Indexed: 11/21/2022]
|
2
|
Dallérac G, Chever O, Rouach N. How do astrocytes shape synaptic transmission? Insights from electrophysiology. Front Cell Neurosci 2013; 7:159. [PMID: 24101894 PMCID: PMC3787198 DOI: 10.3389/fncel.2013.00159] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 09/02/2013] [Indexed: 02/01/2023] Open
Abstract
A major breakthrough in neuroscience has been the realization in the last decades that the dogmatic view of astroglial cells as being merely fostering and buffering elements of the nervous system is simplistic. A wealth of investigations now shows that astrocytes actually participate in the control of synaptic transmission in an active manner. This was first hinted by the intimate contacts glial processes make with neurons, particularly at the synaptic level, and evidenced using electrophysiological and calcium imaging techniques. Calcium imaging has provided critical evidence demonstrating that astrocytic regulation of synaptic efficacy is not a passive phenomenon. However, given that cellular activation is not only represented by calcium signaling, it is also crucial to assess concomitant mechanisms. We and others have used electrophysiological techniques to simultaneously record neuronal and astrocytic activity, thus enabling the study of multiple ionic currents and in depth investigation of neuro-glial dialogues. In the current review, we focus on the input such approach has provided in the understanding of astrocyte-neuron interactions underlying control of synaptic efficacy.
Collapse
Affiliation(s)
- Glenn Dallérac
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, CNRS UMR 7241, INSERM U1050, Collège de France Paris, France
| | | | | |
Collapse
|
3
|
Hertz L, Xu J, Song D, Yan E, Gu L, Peng L. Astrocytic and neuronal accumulation of elevated extracellular K(+) with a 2/3 K(+)/Na(+) flux ratio-consequences for energy metabolism, osmolarity and higher brain function. Front Comput Neurosci 2013; 7:114. [PMID: 23986689 PMCID: PMC3749512 DOI: 10.3389/fncom.2013.00114] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 07/26/2013] [Indexed: 12/22/2022] Open
Abstract
Brain excitation increases neuronal Na+ concentration by 2 major mechanisms: (i) Na+ influx caused by glutamatergic synaptic activity; and (ii) action-potential-mediated depolarization by Na+ influx followed by repolarizating K+ efflux, increasing extracellular K+ concentration. This review deals mainly with the latter and it concludes that clearance of extracellular K+ is initially mainly effectuated by Na+,K+-ATPase-mediated K+ uptake into astrocytes, at K+ concentrations above ~10 mM aided by uptake of Na+,K+ and 2 Cl− by the cotransporter NKCC1. Since operation of the astrocytic Na+,K+-ATPase requires K+-dependent glycogenolysis for stimulation of the intracellular ATPase site, it ceases after normalization of extracellular K+ concentration. This allows K+ release via the inward rectifying K+ channel Kir4.1, perhaps after trans-astrocytic connexin- and/or pannexin-mediated K+ transfer, which would be a key candidate for determination by synchronization-based computational analysis and may have signaling effects. Spatially dispersed K+ release would have little effect on extracellular K+ concentration and allow K+ accumulation by the less powerful neuronal Na+,K+-ATPase, which is not stimulated by increases in extracellular K+. Since the Na+,K+-ATPase exchanges 3 Na+ with 2 K+, it creates extracellular hypertonicity and cell shrinkage. Hypertonicity stimulates NKCC1, which, aided by β-adrenergic stimulation of the Na+,K+-ATPase, causes regulatory volume increase, furosemide-inhibited undershoot in [K+]e and perhaps facilitation of the termination of slow neuronal hyperpolarization (sAHP), with behavioral consequences. The ion transport processes involved minimize ionic disequilibria caused by the asymmetric Na+,K+-ATPase fluxes.
Collapse
Affiliation(s)
- Leif Hertz
- Department of Clinical Pharmacology, China Medical University Shenyang, China
| | | | | | | | | | | |
Collapse
|
4
|
Kim JE, Yeo SI, Ryu HJ, Chung CK, Kim MJ, Kang TC. Changes in TWIK-related Acid Sensitive K+-1 and -3 Channel Expressions from Neurons to Glia in the Hippocampus of Temporal Lobe Epilepsy Patients and Experimental Animal Model. Neurochem Res 2011; 36:2155-68. [DOI: 10.1007/s11064-011-0540-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2011] [Indexed: 10/18/2022]
|
5
|
Strohschein S, Hüttmann K, Gabriel S, Binder DK, Heinemann U, Steinhäuser C. Impact of aquaporin-4 channels on K+ buffering and gap junction coupling in the hippocampus. Glia 2011; 59:973-80. [PMID: 21446052 DOI: 10.1002/glia.21169] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 02/23/2011] [Indexed: 11/08/2022]
Abstract
Aquaporin-4 (AQP4) is the main water channel in the brain and primarily localized to astrocytes where the channels are thought to contribute to water and K(+) homeostasis. The close apposition of AQP4 and inward rectifier K(+) channels (Kir4.1) led to the hypothesis of direct functional interactions between both channels. We investigated the impact of AQP4 on stimulus-induced alterations of the extracellular K(+) concentration ([K(+)](o)) in murine hippocampal slices. Recordings with K(+)-selective microelectrodes combined with field potential analyses were compared in wild type (wt) and AQP4 knockout (AQP4(-/-)) mice. Astrocyte gap junction coupling was assessed with tracer filling during patch clamp recording. Antidromic fiber stimulation in the alveus evoked smaller increases and slower recovery of [K(+)](o) in the stratum pyramidale of AQP4(-/-) mice indicating reduced glial swelling and a larger extracellular space when compared with control tissue. Moreover, the data hint at an impairment of the glial Na(+)/K(+) ATPase in AQP4-deficient astrocytes. In a next step, we investigated the laminar profile of [K(+)](o) by moving the recording electrode from the stratum pyramidale toward the hippocampal fissure. At distances beyond 300 μm from the pyramidal layer, the stimulation-induced, normalized increases of [K(+)](o) in AQP4(-/-) mice exceeded the corresponding values of wt mice, indicating facilitated spatial buffering. Astrocytes in AQP4(-/-) mice also displayed enhanced tracer coupling, which might underlie the improved spatial re- distribution of [K(+)](o) in the hippocampus. These findings highlight the role of AQP4 channels in the regulation of K(+) homeostasis.
Collapse
Affiliation(s)
- Susan Strohschein
- Institute of Cellular Neurosciences, University of Bonn, Bonn, Germany.
| | | | | | | | | | | |
Collapse
|
6
|
Ryu HJ, Kim JE, Yeo SI, Kim DS, Kwon OS, Choi SY, Kang TC. Potential roles of D-serine and serine racemase in experimental temporal lobe epilepsy. J Neurosci Res 2010; 88:2469-82. [PMID: 20623543 DOI: 10.1002/jnr.22415] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To confirm the roles of D-serinergic gliotransmission in epilepsy, we investigated the relationship between spatiotemporally specific glial responses and the D-serine/serine racemase system in mesial temporal structures following status epilepticus (SE). In control animals, D-serine and serine racemase immunoreactivities were detected mainly in astrocytes. After SE, D-serine and serine racemase immunoreactivities were increased in astrocytes. Double-immunofluorescence study revealed that up-regulation of serine racemase immunoreactivity was relevant not to D-serine immunoreactivity but to nestin or vimentin immunoreactivity. Neither D-serine nor serine racemase was found in naïve or reactive microglia. In addition, phosphorylated N-methyl-D-aspartate (NMDA) receptor subunit 1 (pNR1-Ser896) immunoreactivity in the hippocampus was increased compared with controls. Increased D-serine immunoreactivity showed direct correlation with the phosphorylation of Ser896 of NR1. Given the findings of our previous study, these findings suggest that D-serine and serine racemase in astrocytes may play roles in neuronal hyperexcitability via a cooperative activation of NMDA receptors. Furthermore, serine racemase may be involved in migration and differentiation of immature astrocytes, which is relevant to reactive astrogliosis.
Collapse
Affiliation(s)
- H J Ryu
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chunchon, Kangwon-Do, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
7
|
Down-regulation of delayed rectifier K+ channels in the hippocampus of seizure sensitive gerbils. Brain Res Bull 2009; 80:433-42. [PMID: 19665528 DOI: 10.1016/j.brainresbull.2009.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 06/22/2009] [Accepted: 07/29/2009] [Indexed: 01/23/2023]
|
8
|
Kim JE, Kwak SE, Choi SY, Kang TC. Region-specific alterations in astroglial TWIK-related acid-sensitive K+-1 channel immunoreactivity in the rat hippocampal complex following pilocarpine-induced status epilepticus. J Comp Neurol 2008; 510:463-74. [PMID: 18671295 DOI: 10.1002/cne.21767] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the present study, we performed an analysis of tandem of P domains in a weak inwardly rectifying K+ channel (TWIK)-related acid-sensitive K+ (TASK)-1 channel immunoreactivity in the rat hippocampal complex following pilocarpine-induced status epilepticus (SE). In control animals, TASK-1 immunoreactivity was strongly detected in astrocytes in the hippocampal complex. One day after SE, TASK-1 immunoreactivity in astrocytes was markedly reduced only in the molecular layer of the dentate gyrus. One week after SE, loss of astrocytes was observed in the molecular layer of the dentate gyrus. At this time point, TASK-1 immunoreactive cells were detected mainly in the subgranular region. These cells had bipolar, elongated cell bodies with fusiform-shaped nuclei and showed vimentin immunoreactivity. Four weeks after SE (when spontaneous seizure developed), typical reactive astrogliosis was observed in the dentate gyrus and the CA1 region. Almost no astrocytes in the molecular layer showed TASK-1 immunoreactivity, whereas astrocytes in the CA1 region showed strong TASK-1 immunoreactivity. These findings indicate that, after SE, TASK-1 immunoreactivity was differentially altered in astrocytes located in different regions of the hippocampal complex, and these changes were caused by astroglial degeneration/regeneration. Therefore, alteration in TASK-1 immunoreactivity may contribute to acquisition of the properties of the epileptic hippocampal complex.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chunchon 200-702, South Korea
| | | | | | | |
Collapse
|
9
|
Wallraff A, Köhling R, Heinemann U, Theis M, Willecke K, Steinhäuser C. The impact of astrocytic gap junctional coupling on potassium buffering in the hippocampus. J Neurosci 2006; 26:5438-47. [PMID: 16707796 PMCID: PMC6675300 DOI: 10.1523/jneurosci.0037-06.2006] [Citation(s) in RCA: 430] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Astrocytic gap junctions have been suggested to contribute to spatial buffering of potassium in the brain. Direct evidence has been difficult to gather because of the lack of astrocyte-specific gap junction blockers. We obtained mice with coupling-deficient astrocytes by crossing conditional connexin43-deficient mice with connexin30(-/-) mice. Similar to wild-type astrocytes, genetically uncoupled hippocampal astrocytes displayed negative resting membrane potentials, time- and voltage-independent whole-cell currents, and typical astrocyte morphologies. Astrocyte densities were also unchanged. Using potassium-selective microelectrodes, we assessed changes in potassium buffering in hippocampal slices of mice with coupling-deficient astrocytes. We demonstrate that astrocytic gap junctions accelerate potassium clearance, limit potassium accumulation during synchronized neuronal firing, and aid in radial potassium relocation in the stratum lacunosum moleculare. Furthermore, slices of mice with coupling-deficient astrocytes displayed a reduced threshold for the generation of epileptiform events. However, it was evident that radial relocation of potassium in the stratum radiatum was not dependent on gap junctional coupling. We suggest that the perpendicular array of individual astrocytes in the stratum radiatum makes these cells ideally suited for spatial buffering of potassium released by pyramidal cells, independent of gap junctions. In general, a surprisingly large capacity for K+ clearance was conserved in mice with coupling-deficient astrocytes, indicating that gap junction-dependent processes only partially account for K+ buffering in the hippocampus.
Collapse
|
10
|
Steinhäuser C, Seifert G. Glial membrane channels and receptors in epilepsy: impact for generation and spread of seizure activity. Eur J Pharmacol 2002; 447:227-37. [PMID: 12151014 DOI: 10.1016/s0014-2999(02)01846-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Epilepsy is a condition in the brain characterized by repetitively occurring seizures. While various changes in neuronal properties have been reported to accompany or induce seizure activity in human or experimental epilepsy, other studies suggested that glial cells might be involved in epileptogenesis. Recent findings demonstrate that in the course of the disease, glial cells not only undergo structural alterations but also display distinct functional properties. Several studies identified reduced inwardly rectifying K(+) currents in astrocytes of epileptic tissue, which probably results in disturbances of the K(+) homeostasis. Other data hinted at an abnormal increase in [Ca(2+)](i) in astrocytes through enhanced activity of glial glutamate receptors. This review summarizes current knowledge of alterations of plasma membrane channels and receptors of macroglial cells in epilepsy and discusses the putative importance of these changes for the generation and spread of seizure activity.
Collapse
Affiliation(s)
- Christian Steinhäuser
- Experimental Neurobiology, Department of Neurosurgery, University of Bonn, Sigmund-Freud-Str. 25, 53125 Bonn, Germany.
| | | |
Collapse
|
11
|
Jauch R, Windmüller O, Lehmann TN, Heinemann U, Gabriel S. Effects of barium, furosemide, ouabaine and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) on ionophoretically-induced changes in extracellular potassium concentration in hippocampal slices from rats and from patients with epilepsy. Brain Res 2002; 925:18-27. [PMID: 11755897 DOI: 10.1016/s0006-8993(01)03254-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Glial cells limit local K(+)-accumulation by K(+)-uptake through different mechanisms, sensitive to Ba(2+), ouabaine, furosemide, or DIDS. Since the relative contribution of these mechanisms has not yet been determined, we studied the effects of bath-applied barium (2 mM), ouabaine (9 microM), furosemide (2 mM), and DIDS (1 mM) on ionophoretically-induced rises in [K(+)](o) in the pyramidal layer of area CA1 from normal rat slices, in the presence of glutamate receptor (Glu-R) antagonists. We also investigated the effect of barium on ionophoretically-induced tetrapropylammonium (TPA(+))-signals in order to test for barium-induced changes of the extracellular space. Finally, we repeated the barium experiment on slices from human non-sclerotic and sclerotic hippocampal specimens to assess a reduced glial capability for barium-sensitive K(+)-uptake in sclerotic tissue from epilepsy patients. In normal rat slices barium augmented ionophoretically-induced rises in [K(+)](o) by approximately 120%, also in the presence of tetrodotoxin (TTX) (by approximately 150%), but did not significantly affect the TPA(+)-signal. Ouabaine also augmented the K(+)-signal, but only by 27%. Furosemide and DIDS had negligible effects. In slices from sclerotic human hippocampus an augmentation of the K(+)-signal by barium was absent. Thus barium augments ionophoretically-induced K(+)-signals to a similar extent as previously shown for stimulus-induced signals. We suggest that glial barium-sensitive K(+)-buffer mechanisms reduce fast local rises of [K(+)](o) by at least 50%. This capability of glial cells is extremely reduced in area CA1 of slices from human sclerotic hippocampal specimens.
Collapse
Affiliation(s)
- Regina Jauch
- Johannes-Müller-Institut für Physiologie, Humboldt Universität, Berlin, Germany
| | | | | | | | | |
Collapse
|
12
|
Bikson M, Lian J, Hahn PJ, Stacey WC, Sciortino C, Durand DM. Suppression of epileptiform activity by high frequency sinusoidal fields in rat hippocampal slices. J Physiol 2001; 531:181-91. [PMID: 11179402 PMCID: PMC2278457 DOI: 10.1111/j.1469-7793.2001.0181j.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
1. Sinusoidal high frequency (20-50 Hz) electric fields induced across rat hippocampal slices were found to suppress zero-Ca2+, low-Ca2+, picrotoxin, and high-K+ epileptiform activity for the duration of the stimulus and for up to several minutes following the stimulus. 2. Suppression of spontaneous activity by high frequency stimulation was found to be frequency (< 500 Hz) but not orientation or waveform dependent. 3. Potassium-sensitive microelectrodes showed that block of epileptiform activity was always coincident with a stimulus-induced rise in extracellular potassium concentration during stimulation. Post-stimulus inhibition was always associated with a decrease in extracellular potassium activity below baseline levels. 4. Intracellular recordings and optical imaging with voltage-sensitive dyes showed that during suppression neurons were depolarized yet did not fire action potentials. 5. Direct injection of sinusoidal current into individual pyramidal cells did not result in a tonic depolarization. Injection of large direct current (DC) depolarized neurons and suppressed action potential generation. 6. These findings suggest that high frequency stimulation suppresses epileptiform activity by inducing potassium efflux and depolarization block.
Collapse
Affiliation(s)
- M Bikson
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | |
Collapse
|
13
|
Heinemann U, Gabriel S, Jauch R, Schulze K, Kivi A, Eilers A, Kovacs R, Lehmann TN. Alterations of glial cell function in temporal lobe epilepsy. Epilepsia 2000; 41 Suppl 6:S185-9. [PMID: 10999542 DOI: 10.1111/j.1528-1157.2000.tb01579.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE Comparison of extracellular K+ regulation in sclerotic and nonsclerotic epileptic hippocampus. METHODS Measurements of K+ signals with double-barreled K+-selective reference microelectrodes in area CAI of slices from human and rat hippocampus, induction of increases in extracellular potassium concentration by repetitive alvear stimulation or iontophoresis. and block of inward-rectifying and background K+ channels in astrocytes by barium. RESULTS In the CA1 pyramidal layer from normal rat hippocampus, barium augmented extracellular K+ accumulation induced by iontophoresis or antidromic stimulation in a dose-dependent manner. Similarly, barium augmented stimulus-induced K+ signals from nonsclerotic hippocampi (human mesial temporal lobe epilepsy). In contrast, barium failed to do so in sclerotic hippocampi (human mesial temporal lobe epilepsy, rat pilocarpine model). CONCLUSIONS Our findings suggest that in areas of reduced neuronal density (hippocampal sclerosis), glial cells adapt to permit rather large increases in extracellular potassium accumulation. Such increases might be involved in the transmission of activity through the sclerotic area.
Collapse
Affiliation(s)
- U Heinemann
- Johannes Müller Institute of Physiology, Charité, Humboldt University of Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Kivi A, Lehmann TN, Kovács R, Eilers A, Jauch R, Meencke HJ, von Deimling A, Heinemann U, Gabriel S. Effects of barium on stimulus-induced rises of [K+]o in human epileptic non-sclerotic and sclerotic hippocampal area CA1. Eur J Neurosci 2000; 12:2039-48. [PMID: 10886343 DOI: 10.1046/j.1460-9568.2000.00103.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the hippocampus of patients with therapy-refractory temporal lobe epilepsy, glial cells of area CA1 might be less able to take up potassium ions via barium-sensitive inwardly rectifying and voltage-independent potassium channels. Using ion-selective microelectrodes we investigated the effects of barium on rises in [K+]o induced by repetitive alvear stimulation in slices from surgically removed hippocampi with and without Ammon's horn sclerosis (AHS and non-AHS). In non-AHS tissue, barium augmented rises in [K+]o by 147% and prolonged the half time of recovery by 90%. The barium effect was reversible, concentration dependent, and persisted in the presence of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), N-methyl-D-aspartate (NMDA) and gamma-aminobutyric acid [GABA(A)] receptor antagonists. In AHS tissue, barium caused a decrease in the baseline level of [K+]o. In contrast to non-AHS slices, in AHS slices with intact synaptic transmission, barium had no effect on the stimulus-induced rises of [K+]o, and the half time of recovery from the rise was less prolonged (by 57%). Under conditions of blocked synaptic transmission, barium augmented stimulus-induced rises in [K+]o, but only by 40%. In both tissues, barium significantly reduced negative slow-field potentials following repetitive stimulation but did not alter the mean population spike amplitude. The findings suggest a significant contribution of glial barium-sensitive K+-channels to K+-buffering in non-AHS tissue and an impairment of glial barium-sensitive K+-uptake in AHS tissue.
Collapse
Affiliation(s)
- A Kivi
- Johannes Müller Institut für Physiologie, Universitätsklinikum Charité, Humboldt-Universität, zu Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|