1
|
Poikonen H, Tervaniemi M, Trainor L. Cortical oscillations are modified by expertise in dance and music: Evidence from live dance audience. Eur J Neurosci 2024; 60:6000-6014. [PMID: 39279232 DOI: 10.1111/ejn.16525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/31/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024]
Abstract
Over the past decades, the focus of brain research has expanded from using strictly controlled stimuli towards understanding brain functioning in complex naturalistic contexts. Interest has increased in measuring brain processes in natural interaction, including classrooms, theatres, concerts and museums to understand the brain functions in the real world. Here, we examined how watching a live dance performance with music in a real-world dance performance setting engages the brains of the spectators. Expertise in dance or music has been shown to modify brain functions, including when watching dance or listening to music. Therefore, we recorded electroencephalography (EEG) from an audience of dancers, musicians and novices as they watched the live dance performance and analysed their cortical oscillations. We compared intrabrain oscillations when participants watched the performance (with music) or listened to the music alone without the dance. We found that dancers have stronger fronto-central and parieto-occipital theta phase synchrony (4-8 Hz) than novices when watching dance, likely reflecting the effects of dance experience on motor imagery, multisensory and social interaction processes. Also, compared with novices, dancers had stronger delta phase synchrony (0.5-4 Hz) when listening to music, and musicians had stronger delta phase synchrony when watching dance, suggesting expertise in music and dance enhances sensitivity or attention to temporal regularities in movement and sound.
Collapse
Affiliation(s)
- Hanna Poikonen
- Centre of Excellence in Music, Mind, Body and Brain, Faculty of Educational Sciences, University of Helsinki, Helsinki, Finland
- Professorship for Social Brain Sciences, Department of Humanities, Social and Political Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Mari Tervaniemi
- Centre of Excellence in Music, Mind, Body and Brain, Faculty of Educational Sciences, University of Helsinki, Helsinki, Finland
- Cognitive Brain Research Unit, Department of Psychology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Laurel Trainor
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Canada
- McMaster Institute for Music and the Mind, McMaster University, Hamilton, Canada
- Rotman Research Institute, Baycrest Hospital, Toronto, Canada
| |
Collapse
|
2
|
Poikonen H, Tobler S, Trninić D, Formaz C, Gashaj V, Kapur M. Math on cortex-enhanced delta phase synchrony in math experts during long and complex math demonstrations. Cereb Cortex 2024; 34:bhae025. [PMID: 38365270 PMCID: PMC11461154 DOI: 10.1093/cercor/bhae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/18/2024] Open
Abstract
Neural oscillations are important for working memory and reasoning and they are modulated during cognitively challenging tasks, like mathematics. Previous work has examined local cortical synchrony on theta (4-8 Hz) and alpha (8-13 Hz) bands over frontal and parietal electrodes during short mathematical tasks when sitting. However, it is unknown whether processing of long and complex math stimuli evokes inter-regional functional connectivity. We recorded cortical activity with EEG while math experts and novices watched long (13-68 seconds) and complex (bachelor-level) math demonstrations when sitting and standing. Fronto-parietal connectivity over the left hemisphere was stronger in math experts than novices reflected by enhanced delta (0.5-4 Hz) phase synchrony in experts. Processing of complex math tasks when standing extended the difference to right hemisphere, suggesting that other cognitive processes, such as maintenance of body balance when standing, may interfere with novice's internal concentration required during complex math tasks more than in experts. There were no groups differences in phase synchrony over theta or alpha frequencies. These results suggest that low-frequency oscillations modulate inter-regional connectivity during long and complex mathematical cognition and demonstrate one way in which the brain functions of math experts differ from those of novices: through enhanced fronto-parietal functional connectivity.
Collapse
Affiliation(s)
- Hanna Poikonen
- Professorship for Learning Sciences and Higher Education, Department of Humanities, Social and Political Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich 8092, Switzerland
- Centre of Excellence in Music, Mind, Body and Brain, Faculty of Educational Sciences, University of Helsinki, Helsinki 00014, Finland
| | - Samuel Tobler
- Professorship for Learning Sciences and Higher Education, Department of Humanities, Social and Political Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich 8092, Switzerland
| | - Dragan Trninić
- Professorship for Learning Sciences and Higher Education, Department of Humanities, Social and Political Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich 8092, Switzerland
| | - Cléa Formaz
- Professorship for Learning Sciences and Higher Education, Department of Humanities, Social and Political Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich 8092, Switzerland
| | - Venera Gashaj
- Professorship for Learning Sciences and Higher Education, Department of Humanities, Social and Political Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich 8092, Switzerland
- Department of Psychology, University of Tuebingen, Tuebingen 72076, Germany
| | - Manu Kapur
- Professorship for Learning Sciences and Higher Education, Department of Humanities, Social and Political Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich 8092, Switzerland
| |
Collapse
|
3
|
Sho'ouri N. Hard Boundary-Based Neurofeedback Training Procedure: A Modified Fixed Thresholding Method for More Accurate Guidance of Subjects Within Target Areas During Neurofeedback Training. Clin EEG Neurosci 2022; 54:228-237. [PMID: 35686319 DOI: 10.1177/15500594221100159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In nearly all studies within the domain of neurofeedback, a threshold has been defined for each training feature in a way that subjects' status can be evaluated during training according to the given value. In this study, a hard boundary-based neurofeedback training (HBNFT) method based on the determination of decision boundary using support vector machine (SVM) classifier was proposed in which subjects' status were clarified considering a decision boundary and they could also be encouraged once entering a target area. In this method, a scoring index (SI) was similarly defined whose value was determined in accordance with subject performance during training. The results revealed that employing a classifier and determining a decision boundary instead of using a threshold could prove more successful in accurately guiding them towards a target area and also meet no needs to choose a basis for determining a threshold. Moreover, it was likely that the proposed method could be more efficient in controlling features and preventing extreme changes compared to those using variable thresholds.
Collapse
Affiliation(s)
- Nasrin Sho'ouri
- Faculty of Technology and Engineering, 201585Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
4
|
Tichko P, Kim JC, Large E, Loui P. Integrating music-based interventions with Gamma-frequency stimulation: Implications for healthy ageing. Eur J Neurosci 2022; 55:3303-3323. [PMID: 33236353 PMCID: PMC9899516 DOI: 10.1111/ejn.15059] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023]
Abstract
In recent years, music-based interventions (MBIs) have risen in popularity as a non-invasive, sustainable form of care for treating dementia-related disorders, such as Mild Cognitive Impairment (MCI) and Alzheimer's disease (AD). Despite their clinical potential, evidence regarding the efficacy of MBIs on patient outcomes is mixed. Recently, a line of related research has begun to investigate the clinical impact of non-invasive Gamma-frequency (e.g., 40 Hz) sensory stimulation on dementia. Current work, using non-human-animal models of AD, suggests that non-invasive Gamma-frequency stimulation can remediate multiple pathophysiologies of dementia at the molecular, cellular and neural-systems scales, and, importantly, improve cognitive functioning. These findings suggest that the efficacy of MBIs could, in theory, be enhanced by incorporating Gamma-frequency stimulation into current MBI protocols. In the current review, we propose a novel clinical framework for non-invasively treating dementia-related disorders that combines previous MBIs with current approaches employing Gamma-frequency sensory stimulation. We theorize that combining MBIs with Gamma-frequency stimulation could increase the therapeutic power of MBIs by simultaneously targeting multiple biomarkers of dementia, restoring neural activity that underlies learning and memory (e.g., Gamma-frequency neural activity, Theta-Gamma coupling), and actively engaging auditory and reward networks in the brain to promote behavioural change.
Collapse
Affiliation(s)
- Parker Tichko
- Department of Music, Northeastern University, Boston, MA, USA
| | - Ji Chul Kim
- Perception, Action, Cognition (PAC) Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Edward Large
- Perception, Action, Cognition (PAC) Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA,Center for the Ecological Study of Perception & Action (CESPA), Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA,Department of Physics, University of Connecticut, Storrs, CT, USA
| | - Psyche Loui
- Department of Music, Northeastern University, Boston, MA, USA
| |
Collapse
|
5
|
Sho'ouri N. A new neurofeedback training method based on feature space clustering to control EEG features within target clusters. J Neurosci Methods 2021; 362:109304. [PMID: 34363925 DOI: 10.1016/j.jneumeth.2021.109304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Within the most commonly used neurofeedback training methods, a threshold has been defined for each EEG feature wherein subjects' status during training can be assessed according to the given value. In the present study, a neurofeedback training method based on feature-space clustering was proposed in order to assess subjects' status more accurately. NEW METHOD Neural gas algorithm was employed for feature space clustering. Then, the clusters were labeled as initial clusters (where the EEG features were placed prior to training) and target (where the EEG features should be shifted towards during training) ones. A scoring index was defined whose value was determined according to subjects' brain activity. This method was simulated in two versions: soft-boundary and hard-boundary based methods. RESULTS The results of the present simulation showed that the proposed hard-boundary based version could guide the subjects towards the boundaries of the target clusters and even their status would be stabilized in case of too many changes in subjects' EEG features. In the proposed soft-boundary based version, in case of too many changes in training features, the subjects would not be encouraged and they could be guided towards the target boundaries. CONCLUSION The proposed hard-boundary based version could be effective in guiding a subject towards being placed within the boundaries of target clusters and even beyond them if no specific limits exited for EEG features. As well, the soft-boundary based version could be useful when controlling EEG features within a limit.
Collapse
Affiliation(s)
- Nasrin Sho'ouri
- Faculty of Technology and Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
6
|
Sho’ouri N. Predicting the success rate of healthy participants in beta neurofeedback: Determining the factors affecting the success rate of individuals. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
da Silva KS, Luvizutto GJ, Bruno ACM, de Oliveira SF, Costa SC, da Silva GM, Andrade MJC, Pereira JM, Andrade AO, de Souza LAPS. Gamma-Band Frequency Analysis and Motor Development in Music-Trained Children: A Cross-Sectional Study. J Mot Behav 2021; 54:203-211. [PMID: 34233603 DOI: 10.1080/00222895.2021.1940820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Background: The aim of this study was to analyze the gamma-band frequency and motor performance of children with and without music training.Methods: This cross-sectional study included 31 right-handed children, 6-11 years old, who were allocated to two groups: 1) the music group (MG), including children who attended preschool and musical training (n = 16), and 2) the no-music group (NMG), including children who attended preschool but received no additional music training (n = 15). The outcomes were gamma-band frequency measured by electroencephalography, manual dexterity, aim-and-catch, and static and dynamic balance abilities measured by the Movement Assessment Battery for Children, and fine motor skills, overall motor skills, balance, corporal body scheme, spatial organization, temporal orientation, and general motor quotient (GMQ) by a Brazilian scale for motor development.Results: There 1was a significant difference between groups in the peak frequency (p = 0.0195) and median frequency (p = 0.0070) in the F3-F4 regions. Static and dynamic balance (p = 0.03), temporal orientation (p < 0.01), and GMQ (p < 0.03) were higher in MG than in NMG.Conclusion: The musically trained children had increased gamma-peak frequency in the frontal region and greater temporal orientation, balance, and the overall motor quotient.
Collapse
Affiliation(s)
- Kemily Souza da Silva
- Department of Applied Physical Therapy, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Gustavo José Luvizutto
- Department of Applied Physical Therapy, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | | | | | - Samila Carolina Costa
- Centre for Innovation and Technology Assessment in Health, Faculty of Electrical Engineering, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Gustavo Moreira da Silva
- Centre for Innovation and Technology Assessment in Health, Faculty of Electrical Engineering, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | | | - Janser Moura Pereira
- Statistical Department, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Adriano Oliveira Andrade
- Centre for Innovation and Technology Assessment in Health, Faculty of Electrical Engineering, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | | |
Collapse
|
8
|
Wenhart T, Bethlehem RAI, Baron-Cohen S, Altenmüller E. Autistic traits, resting-state connectivity, and absolute pitch in professional musicians: shared and distinct neural features. Mol Autism 2019; 10:20. [PMID: 31073395 PMCID: PMC6498518 DOI: 10.1186/s13229-019-0272-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 04/12/2019] [Indexed: 12/22/2022] Open
Abstract
Background Recent studies indicate increased autistic traits in musicians with absolute pitch and a higher proportion of absolute pitch in people with autism. Theoretical accounts connect both of these with shared neural principles of local hyper- and global hypoconnectivity, enhanced perceptual functioning, and a detail-focused cognitive style. This is the first study to investigate absolute pitch proficiency, autistic traits, and brain correlates in the same study. Sample and methods Graph theoretical analysis was conducted on resting-state (eyes closed and eyes open) EEG connectivity (wPLI, weighted phase lag index) matrices obtained from 31 absolute pitch (AP) and 33 relative pitch (RP) professional musicians. Small-worldness, global clustering coefficient, and average path length were related to autistic traits, passive (tone identification) and active (pitch adjustment) absolute pitch proficiency, and onset of musical training using Welch two-sample tests, correlations, and general linear models. Results Analyses revealed increased path length (delta 2–4 Hz), reduced clustering (beta 13–18 Hz), reduced small-worldness (gamma 30–60 Hz), and increased autistic traits for AP compared to RP. Only clustering values (beta 13–18 Hz) were predicted by both AP proficiency and autistic traits. Post hoc single connection permutation tests among raw wPLI matrices in the beta band (13–18 Hz) revealed widely reduced interhemispheric connectivity between bilateral auditory-related electrode positions along with higher connectivity between F7–F8 and F8–P9 for AP. Pitch-naming ability and pitch adjustment ability were predicted by path length, clustering, autistic traits, and onset of musical training (for pitch adjustment) explaining 44% and 38% of variance, respectively. Conclusions Results show both shared and distinct neural features between AP and autistic traits. Differences in the beta range were associated with higher autistic traits in the same population. In general, AP musicians exhibit a widely underconnected brain with reduced functional integration and reduced small-world property during resting state. This might be partly related to autism-specific brain connectivity, while differences in path length and small-worldness reflect other ability-specific influences. This is further evidenced for different pathways in the acquisition and development of absolute pitch, likely influenced by both genetic and environmental factors and their interaction.
Collapse
Affiliation(s)
- T Wenhart
- Institute of Music Physiology and Musicians' Medicine, University for Music, Drama and Media, Hannover, Germany.,2Center for Systems Neuroscience, Hannover, Germany
| | - R A I Bethlehem
- 3Autism Research Center, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - S Baron-Cohen
- 3Autism Research Center, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - E Altenmüller
- Institute of Music Physiology and Musicians' Medicine, University for Music, Drama and Media, Hannover, Germany.,2Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
9
|
Abstract
Most studies examining the neural underpinnings of music listening have no specific instruction on how to process the presented musical pieces. In this study, we explicitly manipulated the participants' focus of attention while they listened to the musical pieces. We used an ecologically valid experimental setting by presenting the musical stimuli simultaneously with naturalistic film sequences. In one condition, the participants were instructed to focus their attention on the musical piece (attentive listening), whereas in the second condition, the participants directed their attention to the film sequence (passive listening). We used two instrumental musical pieces: an electronic pop song, which was a major hit at the time of testing, and a classical musical piece. During music presentation, we measured electroencephalographic oscillations and responses from the autonomic nervous system (heart rate and high-frequency heart rate variability). During passive listening to the pop song, we found strong event-related synchronizations in all analyzed frequency bands (theta, lower alpha, upper alpha, lower beta, and upper beta). The neurophysiological responses during attentive listening to the pop song were similar to those of the classical musical piece during both listening conditions. Thus, the focus of attention had a strong influence on the neurophysiological responses to the pop song, but not on the responses to the classical musical piece. The electroencephalographic responses during passive listening to the pop song are interpreted as a neurophysiological and psychological state typically observed when the participants are 'drawn into the music'.
Collapse
|
10
|
Sho'ouri N, Firoozabadi M, Badie K. Neurofeedback training protocols based on selecting distinctive features and identifying appropriate channels to enhance performance in novice visual artists. Biomed Signal Process Control 2019. [DOI: 10.1016/j.bspc.2018.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Poikonen H, Toiviainen P, Tervaniemi M. Naturalistic music and dance: Cortical phase synchrony in musicians and dancers. PLoS One 2018; 13:e0196065. [PMID: 29672597 PMCID: PMC5908167 DOI: 10.1371/journal.pone.0196065] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 04/05/2018] [Indexed: 11/18/2022] Open
Abstract
Expertise in music has been investigated for decades and the results have been applied not only in composition, performance and music education, but also in understanding brain plasticity in a larger context. Several studies have revealed a strong connection between auditory and motor processes and listening to and performing music, and music imagination. Recently, as a logical next step in music and movement, the cognitive and affective neurosciences have been directed towards expertise in dance. To understand the versatile and overlapping processes during artistic stimuli, such as music and dance, it is necessary to study them with continuous naturalistic stimuli. Thus, we used long excerpts from the contemporary dance piece Carmen presented with and without music to professional dancers, musicians, and laymen in an EEG laboratory. We were interested in the cortical phase synchrony within each participant group over several frequency bands during uni- and multimodal processing. Dancers had strengthened theta and gamma synchrony during music relative to silence and silent dance, whereas the presence of music decreased systematically the alpha and beta synchrony in musicians. Laymen were the only group of participants with significant results related to dance. Future studies are required to understand whether these results are related to some other factor (such as familiarity to the stimuli), or if our results reveal a new point of view to dance observation and expertise.
Collapse
Affiliation(s)
- Hanna Poikonen
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- * E-mail:
| | - Petri Toiviainen
- Department of Music, Art and Culture Studies, University of Jyväskylä, Jyväskylä, Finland
| | - Mari Tervaniemi
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Cicero Learning, Faculty of Educational Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Kalaganis F, Adamos D, Laskaris N. Musical NeuroPicks: A consumer-grade BCI for on-demand music streaming services. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2017.08.073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Poikonen H, Toiviainen P, Tervaniemi M. Dance on cortex: enhanced theta synchrony in experts when watching a dance piece. Eur J Neurosci 2018; 47:433-445. [PMID: 29359365 DOI: 10.1111/ejn.13838] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 01/08/2018] [Accepted: 01/15/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Hanna Poikonen
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, FI-00014, Helsinki, Finland
| | - Petri Toiviainen
- Department of Music, Art and Culture Studies, University of Jyväskylä, Jyväskylä, Finland
| | - Mari Tervaniemi
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, FI-00014, Helsinki, Finland.,Cicero Learning, Faculty of Educational Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Abstract
Abstract
The mini-review provides an overview on the differences between the right and left hemispheres of the brain. Recent studies highlight the contribution of the two hemispheres to the physical and mental control, and the interaction language-music. We focused the attention on the behaviour of the right and left hemispheres about the music and on what happens when music areas are damaged.
Collapse
Affiliation(s)
- Giulia Gizzi
- Department of Psychology, University of Torino, Torino , Italy
| | - Elisabetta Albi
- Department of Pharmaceutical Science, University of Perugia, Perugia , Italy
| |
Collapse
|
15
|
Ioannou CI, Pereda E, Lindsen JP, Bhattacharya J. Electrical Brain Responses to an Auditory Illusion and the Impact of Musical Expertise. PLoS One 2015; 10:e0129486. [PMID: 26065708 PMCID: PMC4466486 DOI: 10.1371/journal.pone.0129486] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 05/08/2015] [Indexed: 12/30/2022] Open
Abstract
The presentation of two sinusoidal tones, one to each ear, with a slight frequency mismatch yields an auditory illusion of a beating frequency equal to the frequency difference between the two tones; this is known as binaural beat (BB). The effect of brief BB stimulation on scalp EEG is not conclusively demonstrated. Further, no studies have examined the impact of musical training associated with BB stimulation, yet musicians' brains are often associated with enhanced auditory processing. In this study, we analysed EEG brain responses from two groups, musicians and non-musicians, when stimulated by short presentation (1 min) of binaural beats with beat frequency varying from 1 Hz to 48 Hz. We focused our analysis on alpha and gamma band EEG signals, and they were analysed in terms of spectral power, and functional connectivity as measured by two phase synchrony based measures, phase locking value and phase lag index. Finally, these measures were used to characterize the degree of centrality, segregation and integration of the functional brain network. We found that beat frequencies belonging to alpha band produced the most significant steady-state responses across groups. Further, processing of low frequency (delta, theta, alpha) binaural beats had significant impact on cortical network patterns in the alpha band oscillations. Altogether these results provide a neurophysiological account of cortical responses to BB stimulation at varying frequencies, and demonstrate a modulation of cortico-cortical connectivity in musicians' brains, and further suggest a kind of neuronal entrainment of a linear and nonlinear relationship to the beating frequencies.
Collapse
Affiliation(s)
- Christos I Ioannou
- Department of Psychology, Goldsmiths, University of London, London, United Kingdom; Institute of Music Physiology and Musicians' Medicine, Hannover University of Music, Drama and Media, Hanover, Germany
| | - Ernesto Pereda
- Electrical Engineering and Bioengineering Group, Department of Industrial Engineering, University of La Laguna, Tenerife, Spain; Institute of Biomedical Technology (CIBICAN), University of La Laguna, Tenerife, Spain
| | - Job P Lindsen
- Department of Psychology, Goldsmiths, University of London, London, United Kingdom
| | - Joydeep Bhattacharya
- Department of Psychology, Goldsmiths, University of London, London, United Kingdom
| |
Collapse
|
16
|
Ho MC, Huang CF, Chou CY, Lin YT, Shih CS, Wu MT, Hung CM, Liu CJ. Task-related brain oscillations in normal aging. Health (London) 2012. [DOI: 10.4236/health.2012.429118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Stankov L, Danthiir V, Williams LM, Pallier G, Roberts RD, Gordon E. Intelligence and the tuning-in of brain networks. LEARNING AND INDIVIDUAL DIFFERENCES 2006. [DOI: 10.1016/j.lindif.2004.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Pereda E, Quiroga RQ, Bhattacharya J. Nonlinear multivariate analysis of neurophysiological signals. Prog Neurobiol 2005; 77:1-37. [PMID: 16289760 DOI: 10.1016/j.pneurobio.2005.10.003] [Citation(s) in RCA: 614] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 10/06/2005] [Accepted: 10/07/2005] [Indexed: 02/08/2023]
Abstract
Multivariate time series analysis is extensively used in neurophysiology with the aim of studying the relationship between simultaneously recorded signals. Recently, advances on information theory and nonlinear dynamical systems theory have allowed the study of various types of synchronization from time series. In this work, we first describe the multivariate linear methods most commonly used in neurophysiology and show that they can be extended to assess the existence of nonlinear interdependence between signals. We then review the concepts of entropy and mutual information followed by a detailed description of nonlinear methods based on the concepts of phase synchronization, generalized synchronization and event synchronization. In all cases, we show how to apply these methods to study different kinds of neurophysiological data. Finally, we illustrate the use of multivariate surrogate data test for the assessment of the strength (strong or weak) and the type (linear or nonlinear) of interdependence between neurophysiological signals.
Collapse
Affiliation(s)
- Ernesto Pereda
- Department of Basic Physics, College of Physics and Mathematics, University of La Laguna, Avda. Astrofísico Fco. Sánchez s/n, 38205 La Laguna, Tenerife, Spain.
| | | | | |
Collapse
|
19
|
Vogt S, Magnussen S. Hemispheric specialization and recognition memory for abstract and realistic pictures: A comparison of painters and laymen. Brain Cogn 2005; 58:324-33. [PMID: 15963383 DOI: 10.1016/j.bandc.2005.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 03/16/2005] [Accepted: 03/16/2005] [Indexed: 10/25/2022]
Abstract
Recognition memory and hemispheric specialization were assessed for abstract colour/black and white pictures of sport situations in painters and visually naïve subjects using a forced choice yes/no tachistoscopic procedure. Reaction times showed a significant three-way interaction of picture type, expertise, and visual field, indicating that painters processed the abstract pictures in the right hemisphere and sport pictures leftwards relative to the novices. The novices showed an overall LVF/RH advantage, strongest for sport pictures. The opposing gradients in the painters indicate a preferential change of processing strategy by which descriptive systems appear to have developed for figurative, but not abstract pictures.
Collapse
Affiliation(s)
- Stine Vogt
- Department of Psychology, University of Oslo, Norway.
| | | |
Collapse
|
20
|
Helmbold N, Rammsayer T, Altenmüller E. Differences in Primary Mental Abilities Between Musicians and Nonmusicians. JOURNAL OF INDIVIDUAL DIFFERENCES 2005. [DOI: 10.1027/1614-0001.26.2.74] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract. In the present study, psychometric performance on different aspects of primary mental abilities (verbal comprehension, word fluency, space, flexibility of closure, perceptual speed, reasoning, number, and memory) was compared in 70 adult musicians and 70 nonmusicians matched for age, sex, and level of education. No significant differences could be confirmed for either mean full-scale scores or for specific aspects of mental abilities, except Flexibility of Closure and Perceptual Speed. In both these subtests, musicians performed reliably better than nonmusicians. Musicians' superior performance may reflect nonaural aspects of musical ability or the result of long-term musical training. Eventually, a similar factor structure of intelligence does not support the notion of qualitative differences in the conception of intelligence between musicians and nonmusicians.
Collapse
|
21
|
Schmithorst VJ, Holland SK. The effect of musical training on music processing: a functional magnetic resonance imaging study in humans. Neurosci Lett 2003; 348:65-8. [PMID: 12902019 DOI: 10.1016/s0304-3940(03)00714-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Previous studies have demonstrated changes in neuronal activity in trained musicians relative to controls while performing various music processing tasks. In this study the neural correlates of the effect of music training on two aspects of music processing, melody and harmony, are investigated using functional magnetic resonance imaging (fMRI). Fifteen subjects, seven with continuous musical training from early childhood to adulthood and eight without, underwent a passive fMRI listening paradigm designed to test the effects of melodic and harmonic processing. Melodic processing activated the most anterior part of the superior temporal gyrus for both musicians and non-musicians, while harmonic processing activated different visual association areas for musicians relative to non-musicians. The inferior parietal lobules were recruited only by musicians for both tasks. We conclude that musical training results in the recruitment of different neural networks for these aspects of music processing.
Collapse
Affiliation(s)
- Vincent J Schmithorst
- Imaging Research Center, Children's Hospital Medical Center, Mail Location 5031, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| | | |
Collapse
|
22
|
Affiliation(s)
- Paulo Estévão Andrade
- Department of Pedagogical Studies, School of Elementary and Secondary Education Colégio Criativo, São Paulo, Brazil
| | | |
Collapse
|
23
|
Affiliation(s)
| | - Joydeep Bhattacharya
- Division of Biology, California Institute of Technology, Pasadena, CA 91125,
USA, Commission for Scientific Visualization, Austrian Academy of Sciences,
Tech-Gate Vienna, Vienna A-1220, Austria
| |
Collapse
|
24
|
Bhattacharya J, Pereda E, Petsche H. Effective detection of coupling in short and noisy bivariate data. ACTA ACUST UNITED AC 2003; 33:85-95. [DOI: 10.1109/tsmcb.2003.808175] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
25
|
Lee KH, Williams LM, Breakspear M, Gordon E. Synchronous gamma activity: a review and contribution to an integrative neuroscience model of schizophrenia. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2003; 41:57-78. [PMID: 12505648 DOI: 10.1016/s0165-0173(02)00220-5] [Citation(s) in RCA: 368] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Synchronous high frequency (Gamma band) activity has been proposed as a candidate mechanism for the integration or 'binding' of distributed brain activities. Since the first descriptions of schizophrenia, attempts to characterize this disorder have focused on disturbances in such integrative processing. Here, we review both micro- and macroscopic neuroscience research into Gamma synchrony, and its application to understanding schizophrenia. The review encompasses evidence from both animal and human studies for the functional significance of Gamma activity, the association between Gamma dysfunction and information processing disturbances, and the relevance of specific Gamma dysfunctions to the integration and extension of previous disconnection models of schizophrenia. Attention is given to the relationship between Gamma activity and the heterogeneous symptoms of schizophrenia. Existing studies show that measures of Gamma activity have the potential to explain far more of the variance in schizophrenia performance than previous neurophysiological measures. It is concluded that measures of Gamma synchrony offer a valuable window into the core integrative disturbance in schizophrenia cognition.
Collapse
Affiliation(s)
- Kwang-Hyuk Lee
- Cognitive Neuroscience Unit, Department of Psychology, University of Sydney, and The Brain Dynamics Centre, Westmead Hospital, 2145, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
26
|
Bhattacharya J, Petsche H. Shadows of artistry: cortical synchrony during perception and imagery of visual art. BRAIN RESEARCH. COGNITIVE BRAIN RESEARCH 2002; 13:179-86. [PMID: 11958960 DOI: 10.1016/s0926-6410(01)00110-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Functional and topographical differences between two groups, artists and non-artists, during the performances of visual perception and imagery of paintings were presented by means of EEG phase synchrony analysis. In artists as compared with non-artists, significantly higher phase synchrony was found in the high frequency beta and gamma bands during the perception of the paintings; in the low frequency bands (primarily delta), phase synchrony was mostly enhanced during imagery. Strong decreases in phase synchrony of alpha were found primarily in artists for both tasks. The right hemisphere was found to present higher synchrony than the left in artists, whereas hemispheric asymmetry was less significant in non-artists. In the artists, enhanced synchrony in the high frequency band is most likely due to their enhanced binding capabilities of numerous visual attributes, and enhanced synchrony in the low frequency band seems to be due to the higher involvement of long-term visual memory mostly in imagery. Thus, the analysis of phase synchrony from EEG signals yields new information about the dynamical co-operation between neuronal assemblies during the cognition of visual art.
Collapse
Affiliation(s)
- Joydeep Bhattacharya
- Commission for Scientific Visualization, Austrian Academy of Sciences, Sonnenfelsgasse 19/2, A-1010, Vienna, Austria.
| | | |
Collapse
|
27
|
Abstract
The human brain, which is one of the most complex organic systems, involves billions of interacting physiological and chemical processes that give rise to experimentally observed neuroelectrical activity, which is called an electroencephalogram (EEG). The presence of non-stationarity and intermittency render standard available methods unsuitable for detecting hidden dynamical patterns in the EEG. In this paper, a method that is suitable for non-stationary signals and preserving the phase characteristics and that combines wavelet and Hilbert transforms was applied to multivariate EEG signals from human subjects at rest as well as in different cognitive states: listening to music, listening to text and performing spatial imagination. It was found that, if suitably rescaled, the gamma band EEG over distributed brain areas while listening to music can be described by a universal and homogeneous scaling, whereas this homogeneity in scale is reduced at resting conditions and also during listening to text and performing spatial imagination. The degree of universality is characterized by a Kullback-Leibler divergence measure. By statistical surrogate analysis, nonlinear phase interaction was found to play an important role in exhibiting universality among multiple cortical regions.
Collapse
Affiliation(s)
- J Bhattacharya
- Commission for Scientific Visualization, Austrian Academy of Sciences, Sonnenfelsgasse 19/2, A-1010 Vienna, Austria.
| | | |
Collapse
|
28
|
Bhattacharya J, Petsche H, Pereda E. Interdependencies in the spontaneous EEG while listening to music. Int J Psychophysiol 2001; 42:287-301. [PMID: 11812395 DOI: 10.1016/s0167-8760(01)00153-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We studied the patterns of interdependency between different brain regions during the performance of higher cognitive functions. Our goal was to check the existence in these patterns of both task-related differences (e.g. listening to music vs. rest) and training-related differences (musicians vs. non-musicians). For this purpose, a non-linear measure, called similarity index (S.I.), was used to detect asymmetric interdependencies between different brain regions by means of EEG signals. Relatively active and passive regions of the brain were found where the degree of activity was represented by excited degrees of freedom. The S.I. obtained during listening to different kinds of music was compared statistically with the S.I. with eyes closed, and significant changes (P< or = 0.05) were entered into schematic brain maps. A topographical representation of the S.I. yielded differences in the interdependency while performing different cognitive tasks. The results demonstrate the occurrence of task-related differences in both groups of subjects. Furthermore, subjects with musical training possessed significantly higher degrees of interdependencies than such without musical training while listening to music but not to text. We conclude that the new measure can be successfully applied for studying the dynamical co-operation between cortical areas during higher cognitive functioning.
Collapse
Affiliation(s)
- J Bhattacharya
- Commission for Scientific Visualization, Austrian Academy of Sciences, Sonnenfelsgasse 19/2, A-1010 Vienna, Austria.
| | | | | |
Collapse
|
29
|
Abstract
Synchronization seems to be a central mechanism for neuronal information processing within and between multiple brain areas. Furthermore, synchronization in the gamma band has been shown to play an important role in higher cognitive functions, especially by binding the necessary spatial and temporal information in different cortical areas to build a coherent perception. Specific task-induced (evoked) gamma oscillations have often been taken as an indication of synchrony, but the presence of long-range synchrony cannot be inferred from spectral power in the gamma range. We studied the usefulness of a relatively new measure, called similarity index to detect asymmetric interdependency between two brain regions. Spontaneous EEG from two groups-musicians and non-musicians-were recorded during several states: listening to music, listening to text, and at rest (eyes closed and eyes open). While listening to music, degrees of the gamma band synchrony over distributed cortical areas were found to be significantly higher in musicians than non-musicians. Yet no differences between these two groups were found at resting conditions and while listening to a neutral text. In contrast to the degree of long-range synchrony, spectral power in the gamma band was higher in non-musicians. The degree of spatial synchrony, a measure of signal complexity based on eigen-decomposition method, was also significantly increased in musicians while listening to music. As compared with non-musicians, the finding of increased long-range synchrony in musicians independent of spectral power is interpreted as a manifestation of a more advanced musical memory of musicians in binding together several features of the intrinsic complexity of music in a dynamical way.
Collapse
|
30
|
Bhattacharya J, Petsche H. Enhanced phase synchrony in the electroencephalograph gamma band for musicians while listening to music. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2001; 64:012902. [PMID: 11461312 DOI: 10.1103/physreve.64.012902] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2000] [Revised: 02/27/2001] [Indexed: 05/23/2023]
Abstract
Multichannel electroencephalograph signals from two broad groups, 10 musicians and 10 nonmusicians, recorded in different states (in resting states or no task condition, with eyes opened and eyes closed, and with two musical tasks, listening to two different pieces of music) were studied. Degrees of phase synchrony in various frequency bands were assessed. No differences in the degree of synchronization in any frequency band were found between the two groups in resting conditions. Yet, while listening to music, significant increases of synchronization were found only in the gamma-frequency range (>30 Hz) over large cortical areas for the group of musicians. This high degree of synchronization elicited by music in the group of musicians might be due to their ability to host long-term memory representations of music and mediate access to these stored representations.
Collapse
Affiliation(s)
- J Bhattacharya
- Commission for Scientific Visualization, Austrian Academy of Sciences, Vienna A-1010 Austria.
| | | |
Collapse
|