1
|
Abd-Elhafiz HI, Faried MA, Khodir SA, Moaty AS, Sweed EM. Ezetimibe protects against Gentamycin-induced ototoxicity in rats by antioxidants, anti-inflammatory mechanisms, and BDNF upregulation. Immunopharmacol Immunotoxicol 2024:1-16. [PMID: 39138615 DOI: 10.1080/08923973.2024.2390463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
OBJECTIVE The threat of hearing loss has become a universal reality. Gentamycin (GM) can lead to ototoxicity and may result in permanent hearing loss. This study aimed to elucidate whether the hypolipidemic drug Ezetimibe (EZE) has a possible underlying mechanism for protecting rats from GM-induced ototoxicity. METHODS AND RESULTS 30 male Wister albino rats were separated into three groups, ten in each group: control, GM, and GM + EZE. At the end of the experiment, rats underwent hearing threshold evaluation via auditory brainstem response (ABR), carotid artery blood flow velocity (CBV), and resistance (CVR) measurement, in addition to a biochemical assessment of serum malondialdehyde (MDA), nitric oxide (NO), catalase (CAT), hemeOxygenase-1 (HO-1), and tumor necrosis factor-α (TNF-α). Also, real-time PCR was employed to quantify the levels of brain-derived neurotrophic factor (BDNF). Cochlea was also studied via histological and immunohistochemical methods. GM revealed a significant increase in CVR, MDA, NO, and TNF-α and a significant decrease in ABR, CBV, CAT, HO-1, and cochlear BDNF expression. EZE supplementation revealed a significant rise in ARB in addition to CBV and a decline in CVR and protected cochlear tissues via antioxidant, anti-inflammatory, and antiapoptotic mechanisms via downregulating Caspase-3 immunoreaction, upregulating proliferating cellular nuclear antigen (PCNA) immunoreaction, and upregulating of the cochlear BDNF expression. Correlations were significantly negative between BDNF and MDA, NO, TNF-α, COX 2, and caspase-3 immunoreaction and significantly positive with CAT, HO-1, and PCNA immunoreaction. DISCUSSION EZE can safeguard inner ear tissues from GM via antioxidant, anti-inflammatory, and antiapoptotic mechanisms, as well as upregulation of BDNF mechanisms.
Collapse
Affiliation(s)
- Huda I Abd-Elhafiz
- Clinical Pharmacology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Manar A Faried
- Anatomy and Embryology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Suzan A Khodir
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Asmaa Salah Moaty
- Otolaryngology department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Eman M Sweed
- Clinical Pharmacology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| |
Collapse
|
2
|
Van Hook MJ. Brain-derived neurotrophic factor is a regulator of synaptic transmission in the adult visual thalamus. J Neurophysiol 2022; 128:1267-1277. [PMID: 36224192 PMCID: PMC9662800 DOI: 10.1152/jn.00540.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 11/22/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is an important regulator of circuit development, neuronal survival, and plasticity throughout the nervous system. In the visual system, BDNF is produced by retinal ganglion cells (RGCs) and transported along their axons to central targets. Within the dorsolateral geniculate nucleus (dLGN), a key RGC projection target for conscious vision, the BDNF receptor tropomyosin receptor kinase B (TrkB) is present on RGC axon terminals and postsynaptic thalamocortical (TC) relay neuron dendrites. Based on this, the goal of this study was to determine how BDNF modulates the conveyance of signals through the retinogeniculate (RG) pathway of adult mice. Application of BDNF to dLGN brain slices increased TC neuron spiking evoked by optogenetic stimulation of RGC axons. There was a modest contribution to this effect from a BDNF-dependent enhancement of TC neuron intrinsic excitability including increased input resistance and membrane depolarization. BDNF also increased evoked vesicle release from RGC axon terminals, as evidenced by increased amplitude of evoked excitatory postsynaptic currents (EPSCs), which was blocked by inhibition of TrkB or phospholipase C. High-frequency stimulation revealed that BDNF increased synaptic vesicle pool size, release probability, and replenishment rate. There was no effect of BDNF on EPSC amplitude or short-term plasticity of corticothalamic feedback synapses. Thus, BDNF regulates RG synapses by both presynaptic and postsynaptic mechanisms. These findings suggest that BNDF influences the flow of visual information through the retinogeniculate pathway.NEW & NOTEWORTHY Brain-derived neurotrophic factor (BDNF) is an important regulator of neuronal development and plasticity. In the visual system, BDNF is transported along retinal ganglion cell (RGC) axons to the dorsolateral geniculate nucleus (dLGN), although it is not known how it influences mature dLGN function. Here, BDNF enhanced thalamocortical relay neuron responses to signals arising from RGC axons in the dLGN, pointing toward an important role for BDNF in processing signals en route to the visual cortex.
Collapse
Affiliation(s)
- Matthew J Van Hook
- Truhlsen Eye Institute, Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
3
|
Bazzari AH, Bazzari FH. BDNF Therapeutic Mechanisms in Neuropsychiatric Disorders. Int J Mol Sci 2022; 23:ijms23158417. [PMID: 35955546 PMCID: PMC9368938 DOI: 10.3390/ijms23158417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is the most abundant neurotrophin in the adult brain and functions as both a primary neurotrophic signal and a neuromodulator. It serves essential roles in neuronal development, maintenance, transmission, and plasticity, thereby influencing aging, cognition, and behavior. Accumulating evidence associates reduced central and peripheral BDNF levels with various neuropsychiatric disorders, supporting its potential utilization as a biomarker of central pathologies. Subsequently, extensive research has been conducted to evaluate restoring, or otherwise augmenting, BDNF transmission as a potential therapeutic approach. Promising results were indeed observed for genetic BDNF upregulation or exogenous administration using a multitude of murine models of neurological and psychiatric diseases. However, varying mechanisms have been proposed to underlie the observed therapeutic effects, and many findings indicate the engagement of disease-specific and other non-specific mechanisms. This is because BDNF essentially affects all aspects of neuronal cellular function through tropomyosin receptor kinase B (TrkB) receptor signaling, the disruptions of which vary between brain regions across different pathologies leading to diversified consequences on cognition and behavior. Herein, we review the neurophysiology of BDNF transmission and signaling and classify the converging and diverging molecular mechanisms underlying its therapeutic potentials in neuropsychiatric disorders. These include neuroprotection, synaptic maintenance, immunomodulation, plasticity facilitation, secondary neuromodulation, and preservation of neurovascular unit integrity and cellular viability. Lastly, we discuss several findings suggesting BDNF as a common mediator of the therapeutic actions of centrally acting pharmacological agents used in the treatment of neurological and psychiatric illness.
Collapse
Affiliation(s)
- Amjad H. Bazzari
- Faculty of Medicine, Arab American University, 13 Zababdeh, Jenin 240, Palestine
- Correspondence:
| | - Firas H. Bazzari
- Faculty of Pharmacy, Arab American University, 13 Zababdeh, Jenin 240, Palestine;
| |
Collapse
|
4
|
Abstract
Significance: Unique to the branched-chain aminotransferase (BCAT) proteins is their redox-active CXXC motif. Subjected to post-translational modification by reactive oxygen species and reactive nitrogen species, these proteins have the potential to adopt numerous cellular roles, which may be fundamental to their role in oncogenesis and neurodegenerative diseases. An understanding of the interplay of the redox regulation of BCAT with important cell signaling mechanisms will identify new targets for future therapeutics. Recent Advances: The BCAT proteins have been assigned novel thiol oxidoreductase activity that can accelerate the refolding of proteins, in particular when S-glutathionylated, supporting a chaperone role for BCAT in protein folding. Other metabolic proteins were also shown to have peroxide-mediated redox associations with BCAT, indicating that the cellular function of BCAT is more diverse. Critical Issues: While the role of branched-chain amino acid metabolism and its metabolites has dominated aspects of cancer research, less is known about the role of BCAT. The importance of the CXXC motif in regulating the BCAT activity under hypoxic conditions, a characteristic of tumors, has not been addressed. Understanding how these proteins operate under various cellular redox conditions will become important, in particular with respect to their moonlighting roles. Future Directions: Advances in the quantification of thiols, their measurement, and the manipulation of metabolons that rely on redox-based interactions should accelerate the investigation of the cellular role of moonlighting proteins such as BCAT. Given the importance of cross talk between signaling pathways, research should focus more on these "housekeeping" proteins paying attention to their wider application. Antioxid. Redox Signal. 34, 1048-1067.
Collapse
Affiliation(s)
- Myra Elizabeth Conway
- Department of Applied Science, University of the West of England, Bristol, United Kingdom
| |
Collapse
|
5
|
Li B, Zou Y, Yin X, Tang X, Fan H. Expression of brain-derived neurotrophic factor in the lateral geniculate body of monocular form deprivation amblyopic kittens. Eur J Ophthalmol 2020; 31:2724-2730. [PMID: 32873060 DOI: 10.1177/1120672120953341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The present study compared the expression of brain-derived neurotrophic factor (BDNF) in the lateral geniculate body between form deprivation amblyopia kittens and normal kittens to examine the significance of BDNF in the lateral geniculate body in the pathogenesis of amblyopia. METHODS Twenty kittens were divided into control group (n = 10) and deprivation group (n = 10). A black opaque eye mask was placed to cover the right eye of the deprivation group. Pattern visual-evoked potentials (PVEPs) were detected weekly in all kittens .After the kittens in the deprivation group developed monocular amblyopia, the lateral geniculate bodies of all kittens were removed. The expression of BDNF in the lateral geniculate body of the two groups was compared by immunohistochemistry and Western blotting. RESULTS The latency of the P100 wave in the right eye of the deprivation group was longer than that of the left eye and that of the right eye of the control group (p < 0.05), and the amplitude decreased (p < 0.05). The number and average optical density of BDNF-positive cells in the deprivation group were lower than those in the control group (p < 0.05), and the expression of BDNF in the deprivation group was lower than that in the control group (p < 0.05). CONCLUSIONS The expression of BDNF in the lateral geniculate body of the amblyopic kittens decreased, and the decrease in BDNF promoted the development of amblyopia. These results demonstrate that BDNF in the lateral geniculate body plays an important role in visual development.
Collapse
Affiliation(s)
- Bo Li
- Department of Ophthalmology, Suining Central Hospital, Suining, China.,Department of Ophthalmology, affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Department of Optometry, North Sichuan Medical College, Nanchong, China
| | - Yunchun Zou
- Department of Ophthalmology, affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Department of Optometry, North Sichuan Medical College, Nanchong, China
| | - Ximin Yin
- Department of Ophthalmology, affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Department of Optometry, North Sichuan Medical College, Nanchong, China
| | - Xiuping Tang
- Department of Ophthalmology, affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Department of Optometry, North Sichuan Medical College, Nanchong, China
| | - Haobo Fan
- Department of Ophthalmology, affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Department of Optometry, North Sichuan Medical College, Nanchong, China
| |
Collapse
|
6
|
Conway ME. Alzheimer's disease: targeting the glutamatergic system. Biogerontology 2020; 21:257-274. [PMID: 32048098 PMCID: PMC7196085 DOI: 10.1007/s10522-020-09860-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/29/2020] [Indexed: 12/21/2022]
Abstract
Alzheimer’s disease (AD) is a debilitating neurodegenerative disease that causes a progressive decline in memory, language and problem solving. For decades mechanism-based therapies have primarily focused on amyloid β (Aβ) processing and pathways that govern neurofibrillary tangle generation. With the potential exception to Aducanumab, a monotherapy to target Aβ, clinical trials in these areas have been challenging and have failed to demonstrate efficacy. Currently, the prescribed therapies for AD are those that target the cholinesterase and glutamatergic systems that can moderately reduce cognitive decline, dependent on the individual. In the brain, over 40% of neuronal synapses are glutamatergic, where the glutamate level is tightly regulated through metabolite exchange in neuronal, astrocytic and endothelial cells. In AD brain, Aβ can interrupt effective glutamate uptake by astrocytes, which evokes a cascade of events that leads to neuronal swelling, destruction of membrane integrity and ultimately cell death. Much work has focussed on the post-synaptic response with little insight into how glutamate is regulated more broadly in the brain and the influence of anaplerotic pathways that finely tune these mechanisms. The role of blood branched chain amino acids (BCAA) in regulating neurotransmitter profiles under disease conditions also warrant discussion. Here, we review the importance of the branched chain aminotransferase proteins in regulating brain glutamate and the potential consequence of dysregulated metabolism in the context of BCAA or glutamate accumulation. We explore how the reported benefits of BCAA supplementation or restriction in improving cognitive function in other neurological diseases may have potential application in AD. Given that memantine, the glutamate receptor agonist, shows clinical relevance it is now timely to research related pathways, an understanding of which could identify novel approaches to treatment of AD.
Collapse
Affiliation(s)
- Myra E Conway
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK. .,Faculty of Health and Life Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK.
| |
Collapse
|
7
|
Kletkiewicz H, Maliszewska J, Jaworski K, Jermacz Ł, Smoliński DJ, Rogalska J. Thermal conditions during neonatal anoxia affect the endogenous level of brain-derived neurotrophic factor. J Neurosci Res 2019; 97:1266-1277. [PMID: 31257630 DOI: 10.1002/jnr.24486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022]
Abstract
Anoxia during delivery is a complication that can disturb infant brain development leading to various types of neurological disorders. Our studies have shown that increased body temperature of newborn rats of both sexes intensifies the postanoxic oxidative stress and prevents triggering the endogenous adaptive response such as HIF-1α activation. Currently, brain-derived neurotrophic factor-BDNF is considered to be a modulator of neuronal plasticity. In the developing brain, mature BDNF and its precursor exhibit prosurvival action through the TrkB receptor and proapoptotic functions binding to p75NTR , respectively. The aim of our experiments was to check the effects of body temperature on the postanoxic level of BDNF and on the expression of its receptors as well as on the marker of apoptosis-caspase-3 in the rat brain. Two-day-old Wistar Han rats (male/female ratio, 1:1) were exposed to anoxia in 100% nitrogen atmosphere for 10 min in different thermal conditions, which allowed them to regulate their rectal temperature at the following levels: normothermic-33°C; hyperthermic-37°C; and extremely hyperthermic-39°C. Thermal conditions during neonatal anoxia affected the level of proBDNF, BDNF as well as their receptors and caspase-3 in the forebrain. The increased BDNF protein level followed by decreased caspase-3 protein level was probably dependent on body temperature under anoxic conditions and was observed only in rats maintaining decreased body temperature. The positive effect of BDNF was not observed under hyperthermic conditions. Moreover, BDNF level changes correlated with body temperature probably affected the learning and spatial memory in juvenile rats.
Collapse
Affiliation(s)
- Hanna Kletkiewicz
- Department of Animal Physiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Justyna Maliszewska
- Department of Animal Physiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Krzysztof Jaworski
- Chair of Plant Physiology and Biotechnology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Łukasz Jermacz
- Department of Hydrobiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Dariusz J Smoliński
- Department of Cellular and Molecular Biology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland.,Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Justyna Rogalska
- Department of Animal Physiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
8
|
Lv Y, Qian Y, Ou-Yang A, Fu L. Hydroxysafflor Yellow A Attenuates Neuron Damage by Suppressing the Lipopolysaccharide-Induced TLR4 Pathway in Activated Microglial Cells. Cell Mol Neurobiol 2016; 36:1241-1256. [PMID: 26754542 DOI: 10.1007/s10571-015-0322-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/22/2015] [Indexed: 10/22/2022]
Abstract
Microglia activation initiates a neurological deficit cascade that contributes to substantial neuronal damage and impairment following ischemia stroke. Toll-like receptor 4 (TLR4) has been demonstrated to play a critical role in this cascade. In the current study, we tested the hypothesis that hydroxysafflor yellow A (HSYA), an active ingredient extracted from Flos Carthami tinctorii, alleviated inflammatory damage, and mediated neurotrophic effects in neurons by inducing the TLR4 pathway in microglia. A non-contact Transwell co-culture system comprised microglia and neurons was treated with HSYA followed by a 1 mg/mL lipopolysaccharide (LPS) stimulation. The microglia were activated prior to neuronal apoptosis, which were induced by increasing TLR4 expression in the activated microglia. However, HSYA suppressed TLR4 expression in the activated microglia, resulting in less neuronal damage at the early stage of LPS stimulation. Western blot analysis and immunofluorescence indicated that dose-dependently HSYA down-regulated TLR4-induced downstream effectors myeloid differentiation factor 88 (MyD88), nuclear factor kappa b (NF-κB), and the mitogen-activated protein kinases (MAPK)-regulated proteins c-Jun NH2-terminal protein kinase (JNK), protein kinase (ERK) 1/2 (ERK1/2), p38 MAPK (p38), as well as the LPS-induced inflammatory cytokine release. However, HSYA up-regulated brain-derived neurotrophic factor (BDNF) expression. Our data suggest that HSYA could exert neurotrophic and anti-inflammatory functions in response to LPS stimulation by inhibiting TLR4 pathway-mediated signaling.
Collapse
Affiliation(s)
- Yanni Lv
- Pharmacy Department, The First Affiliated Hospital of Nanchang University, Yongwai Street 17, Nanchang, 330006, China.
| | - Yisong Qian
- Institute of Translational Medicine, Nanchang University, Nanchang, 330001, China
| | - Aijun Ou-Yang
- Pharmacy Department, The First Affiliated Hospital of Nanchang University, Yongwai Street 17, Nanchang, 330006, China
| | - Longsheng Fu
- Pharmacy Department, The First Affiliated Hospital of Nanchang University, Yongwai Street 17, Nanchang, 330006, China
| |
Collapse
|
9
|
MENSHANOV PN, LANSHAKOV DA, DYGALO NN. proBDNF Is a Major Product of bdnf Gene Expressed in the Perinatal Rat Cortex. Physiol Res 2015; 64:925-34. [DOI: 10.33549/physiolres.932996] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In the developing brain, mature brain derived neurotrophic factor (mBDNF) and its precursor (proBDNF) exhibit prosurvival and proapoptotic functions, respectively. However, it is still unknown whether mBDNF or proBDNF is a major form of neurotrophin expressed in the immature brain, as well as if the level of active caspase-3 correlates with the levels of BDNF forms during normal brain development. Here we found that both proBDNF and mBDNF were expressed abundantly in the rat brainstem, hippocampus and cerebellum between embryonic day 20 and postnatal day 8. The levels of mature neurotrophin as well as mBDNF to proBDNF ratios negatively correlated with the expression of active caspase-3 across brain regions. The immature cortex was the only structure, in which proBDNF was the major product of bdnf gene, especially in the cortical layers 2-3. And only in the cortex, the expression of BDNF precursor positively correlated with the levels of active caspase-3. These findings suggest that proBDNF alone may play an important role in the regulation of naturally occurring cell death during cortical development.
Collapse
Affiliation(s)
- P. N. MENSHANOV
- Functional Neurogenomics Laboratory, Institute of Cytology and Genetics Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
| | | | | |
Collapse
|
10
|
Gouarné C, Giraudon-Paoli M, Seimandi M, Biscarrat C, Tardif G, Pruss RM, Bordet T. Olesoxime protects embryonic cortical neurons from camptothecin intoxication by a mechanism distinct from BDNF. Br J Pharmacol 2015; 168:1975-88. [PMID: 23278424 DOI: 10.1111/bph.12094] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 11/28/2012] [Accepted: 12/10/2012] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Olesoxime is a small cholesterol-oxime promoting rat embryonic motor neurons survival in the absence of trophic factors. Because olesoxime can substitute for neurotrophic factors in many situations, and to gain further understanding of its mechanism of action, we wondered if it could prevent neuronal death induced by camptothecin (CPT) and compared its effects with those of brain-derived neurotrophic factor (BDNF). EXPERIMENTAL APPROACH E17 rat embryonic cortical neurons were treated with olesoxime, BDNF or vehicle and intoxicated with CPT. Caspase-dependent and caspase-independent death pathways along with pro-survival pathways activation were explored. KEY RESULTS As previously reported for BDNF, olesoxime dose-dependently delayed CPT-induced cell death. Both compounds acted downstream of p53 activation preventing cytochrome c release and caspases activation. When caspase activation was blocked, both olesoxime and BDNF provided additional neuroprotective effect, potentially through the prevention of apoptosis-inducing factor release from mitochondria. While BDNF activates both the PI3K/Akt and the ERK pathway, olesoxime induced only a late activation of the ERK pathways, which did not seem to play a major role in its neuroprotection against CPT. Rather, our results favour preserved mitochondrial membrane integrity by olesoxime. CONCLUSIONS AND IMPLICATIONS Albeit different, olesoxime and BDNF mechanisms for neuroprotection converge to preserve mitochondrial function. These findings emphasize the importance of targeting the mitochondria in the process of neurodegeneration. Importantly olesoxime, by mimicking neurotrophin pro-survival activities without impacting PI3K/Akt and ERK signalling, may have greater therapeutic potential in many diseases where neurotrophins were considered as a therapeutic solution.
Collapse
|
11
|
Hull J, Patel VB, Hutson SM, Conway ME. New insights into the role of the branched-chain aminotransferase proteins in the human brain. J Neurosci Res 2015; 93:987-98. [PMID: 25639459 DOI: 10.1002/jnr.23558] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/26/2014] [Accepted: 12/21/2014] [Indexed: 11/10/2022]
Abstract
The human cytosolic branched-chain aminotransferase (hBCATc) enzyme is strategically located in glutamatergic neurons, where it is thought to provide approximately 30% of de novo nitrogen for brain glutamate synthesis. In health, glutamate plays a dominant role in facilitating learning and memory. However, in patients with Alzheimer's disease (AD), synaptic levels of glutamate become toxic, resulting in a direct increase in postsynaptic neuronal calcium, causing a cascade of events that contributes to the destruction of neuronal integrity and cell death, pathological features of AD. Our group is the first to map the hBCAT proteins to the human brain, where cell-specific compartmentation indicates key roles for these proteins in regulating glutamate homeostasis. Moreover, increased expression of hBCAT was observed in the brains of patients with AD relative to matched controls. We reflect on the importance of the redox-active CXXC motif, which confers novel roles for the hBCAT proteins, particularly with respect to substrate channeling and protein folding. This implies that, in addition to their role in glutamate metabolism, these proteins have additional functional roles that might impact redox cell signaling. This review discusses how these proteins behave as potential neuroprotectors during periods of oxidative stress. These findings are particularly important because an increase in misfolded proteins, linked to increased oxidative stress, occurs in several neurodegenerative conditions. Together, these studies give an overview of the diverse role that these proteins play in brain metabolism, in which a dysregulation of their expression may contribute to neurodegenerative conditions such as AD.
Collapse
Affiliation(s)
- Jonathon Hull
- Department of Applied Science, University of the West of England, Bristol, United Kingdom
| | - Vinood B Patel
- Department of Applied Science, University of Westminster, London, United Kingdom
| | - Susan M Hutson
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia, 24061
| | - Myra E Conway
- Department of Applied Science, University of the West of England, Bristol, United Kingdom
| |
Collapse
|
12
|
Rich NJ, Van Landingham JW, Figueiroa S, Seth R, Corniola RS, Levenson CW. Chronic caloric restriction reduces tissue damage and improves spatial memory in a rat model of traumatic brain injury. J Neurosci Res 2010; 88:2933-9. [PMID: 20544832 DOI: 10.1002/jnr.22443] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although it has been known for some time that chronic caloric or dietary restriction reduces the risk of neurodegenerative disorders and injury following ischemia, the possible role of chronic restriction in improving outcomes after traumatic brain injury (TBI) has not been previously studied. Therefore, 2-month-old male Sprague-Dawley rats were divided into two dietary groups, an ad libitum fed group (AL) and a caloric-restriction group (CR) that was provided with 70% of the food intake of AL rats (n = 10/group). After 4 months, a weight-drop device (300 g) was used to produce a 2-mm bilateral medial frontal cortex contusion following craniotomy. Additional animals in each dietary group (n = 10) were used as sham-operated controls. The CR diet resulted in body weights that were reduced by 30% compared with AL controls. Not only did CR decrease the size of the cortical lesion after injury, there were marked improvements in spatial memory as measured by Morris water maze that included an increase in the number of animals successfully finding the platform as well as significantly reduced time to finding the hidden platform. Western analysis, used to examine the expression of proteins that play a role in neuronal survival, revealed significant increases in brain-derived neurotrophic factor (BDNF) in the cortical region around the site of injury and in the hippocampus in CR rats after injury. These findings suggest that molecular mechanisms involved in cell survival may play a role in reducing tissue damage and improving cognition after TBI and that these mechanisms can be regulated by dietary interventions.
Collapse
Affiliation(s)
- Nicholas J Rich
- Program in Neuroscience and Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306-4300, USA
| | | | | | | | | | | |
Collapse
|
13
|
Zhang B, Patel J, Croyle M, Diamond MS, Klein RS. TNF-alpha-dependent regulation of CXCR3 expression modulates neuronal survival during West Nile virus encephalitis. J Neuroimmunol 2010; 224:28-38. [PMID: 20579746 DOI: 10.1016/j.jneuroim.2010.05.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 05/04/2010] [Indexed: 12/17/2022]
Abstract
The chemokine CXCL10 exerts antiviral effects within the central nervous system (CNS) through the recruitment of virus-specific T cells. However, elevated levels of CXCL10 may induce neuronal apoptosis given its receptor, CXCR3, is expressed by neurons. Using a murine model of West Nile virus (WNV) encephalitis, we determined that WNV-infected neurons express TNF-alpha, which down-regulates neuronal CXCR3 expression via signaling through TNFR1. Down-regulation of neuronal CXCR3 decreased CXCL10-mediated calcium transients and delayed Caspase 3 activation. Loss of CXCR3 activation, via CXCR3-deficiency or pretreatment with TNF-alpha prevented neuronal apoptosis during in vitro WNV infection. These results suggest that neuronal TNF-alpha expression during WNV encephalitis may be an adaptive response to diminish CXCL10-induced death.
Collapse
Affiliation(s)
- Bo Zhang
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
14
|
Andresen JH, Løberg EM, Wright M, Goverud IL, Stray-Pedersen B, Saugstad OD. Nicotine affects the expression of brain-derived neurotrophic factor mRNA and protein in the hippocampus of hypoxic newborn piglets. J Perinat Med 2010; 37:553-60. [PMID: 19492919 DOI: 10.1515/jpm.2009.081] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is highly expressed in the developing brain. It has anti-apoptotic abilities, and protects the neonatal brain. In experimental settings in adult animals, pre-treatment with nicotine has shown increased BDNF levels, indicating a possible contribution to nicotine's anti-apoptotic effect. Apoptosis contributes to the development of brain damage in perinatal asphyxia. We examined the effects of nicotine on apoptosis-inducing factor (AIF), caspase-3 and BDNF in the hippocampus of a neonatal piglet model of global hypoxia. Forty-one anesthetized newborn piglets were randomized to one of four groups receiving different infusions after hypoxia (1) nicotine 130 microg/kg/h, 2) 260 microg/kg/h, 3) adrenaline, and 4) saline, all 2.6 mL/kg/h. Four hours after hypoxia they were euthanized. The left hemisphere/hippocampus was examined by histopathology and immunohistochemistry; the right hippocampus was analyzed using real time PCR. There was a significantly higher expression of BDNF mRNA and protein in the animals treated with nicotine 130 microg/kg/h vs. the saline treated group (mRNA P=0.038; protein P=0.009). There were no differences regarding AIF or caspase-3. We conclude that nicotine (130 microg/kg/h), infused over 1 h after global hypoxia in neonatal piglets, increases levels of both BDNF mRNA and protein in the hippocampus. This might imply neuroprotective effects of nicotine in asphyxiated neonates.
Collapse
Affiliation(s)
- Jannicke Hanne Andresen
- Department of Pediatric Research, Institute of Surgical Research, Medical Faculty, University of Oslo, Rikshospitalet University Hospital, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
15
|
Gardiner J, Barton D, Overall R, Marc J. Neurotrophic support and oxidative stress: converging effects in the normal and diseased nervous system. Neuroscientist 2009; 15:47-61. [PMID: 19218230 DOI: 10.1177/1073858408325269] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Oxidative stress and loss of neurotrophic support play major roles in the development of various diseases of the central and peripheral nervous systems. In disorders of the central nervous system such as Alzheimer's, Parkinson's, and Huntington's diseases, oxidative stress appears inextricably linked to the loss of neurotrophic support. A similar situation is seen in the peripheral nervous system in diseases of olfaction, hearing, and vision. Neurotrophic factors act to up-regulate antioxidant enzymes and promote the expression of antioxidant proteins. On the other hand, oxidative stress can cause down-regulation of neurotrophic factors. We propose that normal functioning of the nervous systems involves a positive feedback loop between antioxidant processes and neurotrophic support. Breakdown of this feedback loop in disease states leads to increased oxidative stress and reduced neurotrophic support.
Collapse
Affiliation(s)
- John Gardiner
- School of Biological Sciences, University of Sydney, Camperdown, Australia.
| | | | | | | |
Collapse
|
16
|
|
17
|
Castellano S, Macchi F, Scali M, Huang JZ, Bozzi Y. Cytosolic branched chain aminotransferase (BCATc) mRNA is up-regulated in restricted brain areas of BDNF transgenic mice. Brain Res 2006; 1108:12-8. [PMID: 16828066 DOI: 10.1016/j.brainres.2006.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 06/05/2006] [Accepted: 06/05/2006] [Indexed: 11/25/2022]
Abstract
Branched chain aminotransferase (BCAT) catalyzes the transamination of the essential branched chain amino acids (leucine, isoleucine and valine) with alpha-ketoglutarate. BCAT exists in two isoforms: one cytosolic (BCATc), mainly expressed in the nervous system, and the other mitochondrial (BCATm), present in a greater number of tissues. We previously showed that BCATc mRNA and protein expression in the dorsal lateral geniculate nucleus of the thalamus is up-regulated by exogenous administration of brain-derived neurotrophic factor (BDNF) following lesion of the visual cortex in newborn rats. Here, we analyzed the expression of BCATc mRNA in the brain of transgenic mice overexpressing the rat BDNF cDNA under the control of the alpha-calcium/calmodulin-dependent kinase II (alphaCaMKII) promoter. In these animals, BDNF is overexpressed in the telencephalon starting from the second postnatal week. RT-PCR and in situ hybridization experiments showed that BCATc mRNA is overexpressed in restricted regions of the cerebral cortex (parietal area) and hippocampus (hilus and CA3 pyramidal cell layer) of adult BDNF transgenic mice respect to wild-type animals. These differences between wt and BDNF mice were not detected in animals of 1 week of age. These results demonstrate that the expression of the BCATc gene in the brain is specifically regulated by BDNF in a time- and region-dependent fashion.
Collapse
|