1
|
Suffian IFBM, Al-Jamal KT. Bioengineering of virus-like particles as dynamic nanocarriers for in vivo delivery and targeting to solid tumours. Adv Drug Deliv Rev 2022; 180:114030. [PMID: 34736988 DOI: 10.1016/j.addr.2021.114030] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/16/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022]
Abstract
Virus-like particles (VLPs) are known as self-assembled, non-replicative and non-infectious protein particles, which imitate the formation and structure of original wild type viruses, however, lack the viral genome and/or their fragments. The capacity of VLPs to encompass small molecules like nucleic acids and others has made them as novel vessels of nanocarriers for drug delivery applications. In addition, VLPs surface have the capacity to achieve variation of the surface display via several modification strategies including genetic modification, chemical modification, and non-covalent modification. Among the VLPs nanocarriers, Hepatitis B virus core (HBc) particles have been the most encouraging candidate. HBc particles are hollow nanoparticles in the range of 30-34 nm in diameter and 7 nm thick envelopes, consisting of 180 or 240 copies of identical polypeptide monomer. They also employ a distinctive position among the VLPs carriers due to the high-level synthesis, which serves as a strong protective capsid shell and efficient self-assembly properties. This review highlights on the bioengineering of HBc particles as dynamic nanocarriers for in vivo delivery and specific targeting to solid tumours.
Collapse
Affiliation(s)
- Izzat F B M Suffian
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia (Kuantan Campus), Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia.
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
2
|
|
3
|
Li J, Shen M, Shi X. Poly(amidoamine) Dendrimer-Gold Nanohybrids in Cancer Gene Therapy: A Concise Overview. ACS APPLIED BIO MATERIALS 2020; 3:5590-5605. [DOI: 10.1021/acsabm.0c00863] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jin Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
- CQM-Centro de Quimica da Madeira, Universidade da Madeira, Campus da Penteada, Funchal 9020-105, Portugal
| |
Collapse
|
4
|
Exploring the potential of novel pH sensitive lipoplexes for tumor targeted gene delivery with reduced toxicity. Int J Pharm 2020; 573:118889. [DOI: 10.1016/j.ijpharm.2019.118889] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 11/18/2022]
|
5
|
Zhou ZF, Peng F, Li JY, Ye YB. Intratumoral IL-12 Gene Therapy Inhibits Tumor Growth In A HCC-Hu-PBL-NOD/SCID Murine Model. Onco Targets Ther 2019; 12:7773-7784. [PMID: 31571927 PMCID: PMC6760038 DOI: 10.2147/ott.s222097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/11/2019] [Indexed: 12/18/2022] Open
Abstract
Purpose This study aimed to evaluate the efficacy and safety of intratumoral IL-12 gene therapy in an HCC-hu-PBL-NOD/SCID mouse model. Materials and methods The HCC murine model was generated in NOD/SCID mice, and mice with grafted tumors were injected intraperitoneally with 2 × 107 human peripheral blood lymphocytes 14 days after modeling. After 4 days, mice were randomly divided into the 9597/IL-12 group, the 9597/plasmid group and the PBS group. The changes of tumor volume were measured and mouse peripheral blood was sampled post-treatment for ELISA and CBA analyses, and the grafted tumors were collected 28 days post-treatment for immunohistochemistry, ELISA, CBA and detection of cell cycle and apoptosis. Results The tumor volume was smaller in the 9597/IL-12 group than in the 9597/plasmid and PBS groups on days 7, 14, 21, and 28 post-treatment (P < 0.05). Higher IL-12 levels were detected in the peripheral blood and the supernatants of grafted tumor homogenates in the 9597/IL-12 group than in the 9597/plasmid and PBS groups 7, 14, 21 and 28 days post-treatment (P < 0.05). IHC revealed higher counts of CD3+T cells, CD4+T helper cells, IFN-γ Th1 cells+ and S-100 protein positive dentric cells and lower MVD in the 9597/IL-12 group than in the 9597/plasmid and PBS groups (P < 0.05). Flow cytometry showed a significantly higher proportion of HCC cells at the G0/G1 phase and a significantly lower proportion of HCC cells at the S phase in the 9597/IL-12 group than in the PBS group (P < 0.05) and a greater apoptotic rate of HCC cells in the 9597/IL-12 group than in the 9597/plasmid and PBS groups (P < 0.05). Conclusion Intratumoral IL-12 gene therapy may inhibit tumorigenesis with mild adverse effects in a HCC-hu-PBL-NOD/SCID murine model through inhibiting angiogenesis, arresting cells in G0/G1 phase and inducing apoptosis.
Collapse
Affiliation(s)
- Zhi-Feng Zhou
- Laboratory of Immuno-Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou 350014, People's Republic of China.,Fujian Key Laboratory of Translational Cancer Medicine, Fujian Cancer Hospital, Fuzhou 350014, People's Republic of China
| | - Feng Peng
- Laboratory of Immuno-Oncology, Fujian Medical University Cancer Hospital, Fuzhou 350014, People's Republic of China
| | - Jie-Yu Li
- Laboratory of Immuno-Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou 350014, People's Republic of China.,Fujian Key Laboratory of Translational Cancer Medicine, Fujian Cancer Hospital, Fuzhou 350014, People's Republic of China
| | - Yun-Bin Ye
- Laboratory of Immuno-Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou 350014, People's Republic of China.,Fujian Key Laboratory of Translational Cancer Medicine, Fujian Cancer Hospital, Fuzhou 350014, People's Republic of China
| |
Collapse
|
6
|
Chang JH, Mou KY, Mou CY. Sleeping Beauty Transposon-Mediated Asparaginase Gene Delivery by a Nanoparticle Platform. Sci Rep 2019; 9:11457. [PMID: 31391525 PMCID: PMC6686048 DOI: 10.1038/s41598-019-47927-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 07/25/2019] [Indexed: 12/22/2022] Open
Abstract
Transgenic genome integration using non-viral vehicles is a promising approach for gene therapy. Previous studies reported that asparagine is a key regulator of cancer cell amino acid homeostasis, anabolic metabolism and cell proliferation. The depletion of asparagine would inhibit the growth of many cancer cells. In this study, we develop a nanoparticle delivery system to permanently integrate the asparaginase gene into the genome of human lung adenocarcinoma cells. The asparaginase plasmid and the Sleeping Beauty plasmid were co-transfected using amine-functionalized mesoporous nanoparticles into the human lung adenocarcinoma cells. The intracellular asparaginase expression led to the cell cytotoxicity for PC9 and A549 cells. In addition, the combination of the chemotherapy and the asparaginase gene therapy additively enhanced the cell cytotoxicity of PC9 and A549 cells to 69% and 63%, respectively. Finally, we showed that the stable cell clones were successfully made by puromycin selection. The doxycycline-induced expression of asparaginase caused almost complete cell death of PC9 and A549 asparaginase-integrated stable cells. This work demonstrates that silica-based nanoparticles have great potential in gene delivery for therapeutic purposes.
Collapse
Affiliation(s)
- Jen-Hsuan Chang
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Kurt Yun Mou
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan.
| | - Chung-Yuan Mou
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan.
- Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, No. 250, Wu Xinyi Street, Taipei, 11031, Taiwan.
| |
Collapse
|
7
|
Hsu SH, Yu A, Yeh CA, Sun WS, Lin SZ, Fu RH, Hsieh HH, Wu PY, Hung HS. Biocompatible Nanogold Carrier Coated with Hyaluronic Acid for Efficient Delivery of Plasmid or siRNA to Mesenchymal Stem Cells. ACS APPLIED BIO MATERIALS 2019; 2:1017-1030. [PMID: 35021392 DOI: 10.1021/acsabm.8b00540] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Shan-hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan, R.O.C
| | - Alex Yu
- Department of Acute and Critical Care, Chang-Hua Hospital, Ministry of Health and Welfare, Changhua 51341, Taiwan, R.O.C
- School of Medicine, China Medical University Hospital, Taichung 40447, Taiwan, R.O.C
| | - Chun-An Yeh
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Wei-Shen Sun
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Shinn-Zong Lin
- Center for Neuropsychiatry, China Medical University Hospital, Taichung 40447, Taiwan, R.O.C
| | - Ru-Huei Fu
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan, R.O.C
- Translational Medicine Research, China Medical University Hospital, Taichung 40447, Taiwan, R.O.C
| | - Hsien-Hsu Hsieh
- Blood Bank, Taichung Veterans General Hospital, Taichung 40705, Taiwan, R.O.C
| | - Po-Yuan Wu
- Department of Dermatology, China Medical University Hospital, Taichung 40447, Taiwan, R.O.C
| | - Huey-Shan Hung
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan, R.O.C
- Translational Medicine Research, China Medical University Hospital, Taichung 40447, Taiwan, R.O.C
| |
Collapse
|
8
|
Chambers P, McCarthy HO, Dunne NJ. Emerging areas of bone repair materials. BONE REPAIR BIOMATERIALS 2019:411-446. [DOI: 10.1016/b978-0-08-102451-5.00016-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Tzeng SY, McHugh KJ, Behrens AM, Rose S, Sugarman JL, Ferber S, Langer R, Jaklenec A. Stabilized single-injection inactivated polio vaccine elicits a strong neutralizing immune response. Proc Natl Acad Sci U S A 2018; 115:E5269-E5278. [PMID: 29784798 PMCID: PMC6003376 DOI: 10.1073/pnas.1720970115] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Vaccination in the developing world is hampered by limited patient access, which prevents individuals from receiving the multiple injections necessary for protective immunity. Here, we developed an injectable microparticle formulation of the inactivated polio vaccine (IPV) that releases multiple pulses of stable antigen over time. To accomplish this, we established an IPV stabilization strategy using cationic polymers for pH modulation to enhance traditional small-molecule-based stabilization methods. We investigated the mechanism of this strategy and showed that it was broadly applicable to all three antigens in IPV. Our lead formulations released two bursts of IPV 1 month apart, mimicking a typical vaccination schedule in the developing world. One injection of the controlled-release formulations elicited a similar or better neutralizing response in rats, considered the correlate of protection in humans, than multiple injections of liquid vaccine. This single-administration vaccine strategy has the potential to improve vaccine coverage in the developing world.
Collapse
Affiliation(s)
- Stephany Y Tzeng
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Kevin J McHugh
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Adam M Behrens
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Sviatlana Rose
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - James L Sugarman
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Shiran Ferber
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139;
| | - Ana Jaklenec
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139;
| |
Collapse
|
10
|
Hertz D, Leiske MN, Wloka T, Traeger A, Hartlieb M, Kessels MM, Schubert S, Qualmann B, Schubert US. Comparison of random and gradient amino functionalized poly(2-oxazoline)s: Can the transfection efficiency be tuned by the macromolecular structure? ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- David Hertz
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Nonnenplan 2; Jena 07743 Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
| | - Meike N. Leiske
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena, Humboldtstraße 10; Jena 07743 Germany
| | - Thomas Wloka
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena, Humboldtstraße 10; Jena 07743 Germany
| | - Anja Traeger
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena, Humboldtstraße 10; Jena 07743 Germany
| | - Matthias Hartlieb
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena, Humboldtstraße 10; Jena 07743 Germany
| | - Michael M. Kessels
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Nonnenplan 2; Jena 07743 Germany
| | - Stephanie Schubert
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
- Institute of Pharmacy, Pharmaceutical Technology, Friedrich Schiller University Jena, Otto-Schott-Straße 41; Jena 07745 Germany
| | - Britta Qualmann
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Nonnenplan 2; Jena 07743 Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
| | - Ulrich S. Schubert
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena, Humboldtstraße 10; Jena 07743 Germany
| |
Collapse
|
11
|
Xing X, Pan Y, Yobas L. A Low-Backpressure Single-Cell Point Constriction for Cytosolic Delivery Based on Rapid Membrane Deformations. Anal Chem 2018; 90:1836-1844. [PMID: 29308899 DOI: 10.1021/acs.analchem.7b03864] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mechanically deforming biological cells through microfluidic constrictions is a recently introduced technique for the intracellular delivery of macromolecules possibly through transient membrane pores induced in the process. The technique is attractive for research and clinical applications mainly because it is simple, fast, and effective while being free of adverse effects often associated with well-known techniques that rely on field- or vector-based delivery. In this nascent approach, an utmost and crucial role is played by the constriction, often in rectangular profile, and it squeezes cells only in one dimension. The results achieved suggest that the longer the constriction is the higher the delivery performance. Contrary to this view, we demonstrate here a unique constriction profile that is highly localized (point) and yet returns comparably effective delivery. Point constrictions are of a semiround geometry, forcing cells in both dimensions while introducing very little backpressure to the system, which is a silicon-glass platform wherein constrictions are arranged in series along an array of channels. The influence of the constriction size and count as well as treatment pressure on delivery performance is presented on the basis of the flow-cytometric analyses of HCT116 cells treated using dextran as model molecules. Delivery performance is also presented for common mammalian cell lines including NIH 3T3, HEK293, and MDCK. Moreover, the versatility of the platform is demonstrated in gene knockdown experiments using synthetic siRNA as well as on the delivery of proteins. Target proteins in some cells exhibit nondiffusive distribution profile raising the plausibility of mechanisms other than transient membrane pores.
Collapse
Affiliation(s)
- Xiaoxing Xing
- College of Information Science and Technology, Beijing University of Chemical Technology , Beijing 100029, China
| | | | | |
Collapse
|
12
|
Leiske MN, Sobotta FH, Richter F, Hoeppener S, Brendel JC, Traeger A, Schubert US. How To Tune the Gene Delivery and Biocompatibility of Poly(2-(4-aminobutyl)-2-oxazoline) by Self- and Coassembly. Biomacromolecules 2017; 19:748-760. [DOI: 10.1021/acs.biomac.7b01535] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
13
|
Guldris N, Argibay B, Gallo J, Iglesias-Rey R, Carbó-Argibay E, Kolen'ko YV, Campos F, Sobrino T, Salonen LM, Bañobre-López M, Castillo J, Rivas J. Magnetite Nanoparticles for Stem Cell Labeling with High Efficiency and Long-Term in Vivo Tracking. Bioconjug Chem 2016; 28:362-370. [PMID: 27977143 DOI: 10.1021/acs.bioconjchem.6b00522] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIO-PAA), ultrasmall iron oxide nanoparticles (USPIO-PAA), and glucosamine-modified iron oxide nanoparticles (USPIO-PAA-GlcN) were studied as mesenchymal stem cell (MSCs) labels for cell tracking applications by magnetic resonance imaging (MRI). Pronounced differences were found in the labeling performance of the three samples in terms of cellular dose and labeling efficiency. In combination with polylysine, SPIO-PAA showed nonhomogeneous cell internalization, while for USPIO-PAA no uptake was found. On the contrary, USPIO-PAA-GlcN featured high cellular uptake and biocompatibility, and sensitive detection in both in vitro and in vivo experiments was found by MRI, showing that glucosamine functionalization can be an efficient strategy to increase cell uptake of ultrasmall iron oxide nanoparticles by MSCs.
Collapse
Affiliation(s)
- Noelia Guldris
- International Iberian Nanotechnology Laboratory , Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | | | - Juan Gallo
- International Iberian Nanotechnology Laboratory , Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | | | - Enrique Carbó-Argibay
- International Iberian Nanotechnology Laboratory , Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Yury V Kolen'ko
- International Iberian Nanotechnology Laboratory , Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | | | | | - Laura M Salonen
- International Iberian Nanotechnology Laboratory , Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Manuel Bañobre-López
- International Iberian Nanotechnology Laboratory , Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | | | - José Rivas
- International Iberian Nanotechnology Laboratory , Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| |
Collapse
|
14
|
Tsuchiya M, Ogawa H, Koujin T, Kobayashi S, Mori C, Hiraoka Y, Haraguchi T. Depletion of autophagy receptor p62/SQSTM1 enhances the efficiency of gene delivery in mammalian cells. FEBS Lett 2016; 590:2671-80. [PMID: 27317902 DOI: 10.1002/1873-3468.12262] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 05/26/2016] [Accepted: 06/14/2016] [Indexed: 12/29/2022]
Abstract
Novel methods that increase the efficiency of gene delivery to cells will have many useful applications. Here, we report a simple approach involving depletion of p62/SQSTM1 to enhance the efficiency of gene delivery. The efficiency of reporter gene delivery was remarkably higher in p62-knockout murine embryonic fibroblast (MEF) cells compared with normal MEF cells. This higher efficiency was partially attenuated by ectopic expression of p62. Furthermore, siRNA-mediated knockdown of p62 clearly increased the efficiency of transfection of murine embryonic stem (mES) cells and human HeLa cells. These data indicate that p62 acts as a key regulator of gene delivery.
Collapse
Affiliation(s)
- Megumi Tsuchiya
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Hidesato Ogawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.,Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Takako Koujin
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Shouhei Kobayashi
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Chie Mori
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.,Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.,Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| |
Collapse
|
15
|
Lee YH, Park HI, Choi JS. Novel glycol chitosan-based polymeric gene carrier synthesized by a Michael addition reaction with low molecular weight polyethylenimine. Carbohydr Polym 2016; 137:669-677. [DOI: 10.1016/j.carbpol.2015.10.089] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/25/2015] [Accepted: 10/28/2015] [Indexed: 12/27/2022]
|
16
|
Kurtz SL, Ravindranathan S, Zaharoff DA. Current status of autologous breast tumor cell-based vaccines. Expert Rev Vaccines 2014; 13:1439-45. [PMID: 25308888 DOI: 10.1586/14760584.2014.969714] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Approximately nine out of ten breast cancer-related deaths are attributable to metastasis. Yet, less than 4% of breast cancer patients are initially diagnosed with metastatic cancer. Therefore, the majority of breast cancer-related deaths are due to recurrence and progression of non-metastatic disease. There is tremendous clinical opportunity for novel adjuvant strategies, such as immunotherapies, that have the potential to prevent progressive recurrences. In particular, autologous tumor cell-based vaccines (ATCVs) can train a patient's immune system to recognize and eliminate occult disease. ATCVs have several advantages including safety, multivalency and patient specificity. Furthermore, because lumpectomy or mastectomy is indicated for the vast majority of breast cancer patients, resected tumors offer a readily available, patient-specific source of tumor antigen. Disadvantages of ATCVs include poor immunogenicity and production inconsistencies. This review summarizes recent progress in the development of autologous breast tumor vaccines and offers insight for overcoming existing limitations.
Collapse
Affiliation(s)
- Samantha L Kurtz
- Department of Biomedical Engineering, University of Arkansas, 120 John A White, Jr. Engineering Hall, Fayetteville, AR 72701, USA
| | | | | |
Collapse
|
17
|
Novel serum-tolerant lipoplexes target the folate receptor efficiently. Eur J Pharm Sci 2014; 59:83-93. [PMID: 24769039 DOI: 10.1016/j.ejps.2014.04.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 04/12/2014] [Accepted: 04/15/2014] [Indexed: 12/18/2022]
Abstract
Gene transfer using non-viral vectors is a promising approach for the safe delivery of nucleic acid therapeutics. In this study, we investigate a lipid-based system for targeted gene delivery to malignant cells overexpressing the folate receptor (FR). Cationic liposomes were formulated with and without the targeting ligand folate conjugated to distearoylphosphatidyl ethanolamine polyethylene glycol 2000 (DSPE-PEG2000), the novel cytofectin 3β[N(N(1),N(1)-dimethlaminopropylsuccinamidoethane)-carbamoyl]cholesterol (SGO4), which contains a 13atom, 15Å spacer element, and the helper lipid, dioleoylphosphatidylethanolamine (DOPE). Physicochemical parameters of the liposomes and lipoplexes were obtained by zeta sizing, zeta potential measurement and cryo-TEM. DNA-binding and protection capabilities of liposomes were confirmed by gel retardation assays, EtBr intercalation and nuclease protection assays. The complexes were assessed in an in vitro system for their effect on cell viability using the MTT assay, and gene transfection activity using the luciferase assay in three cell lines; HEK293 (FR-negative), HeLa (FR(+)-positive), KB (FR(++)-positive). Low cytotoxicities were observed in all cell lines, while transgene activity promoted by folate-tagged lipoplexes in FR-positive lines was tenfold greater than that by untargeted constructs and cell entry by folate complexes was demonstrably by FR mediation. These liposome formulations have the design capacity for in vivo application and may therefore be promising candidates for further development.
Collapse
|
18
|
Yang PW, Lin TL, Hu Y, Jeng US. Formation of divalent ion mediated anionic disc bicelle-DNA complexes. SOFT MATTER 2014; 10:2313-2319. [PMID: 24795965 DOI: 10.1039/c3sm52775a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Disc-shaped bicelles are formed by mixing long-chain lipids with short-chain lipids at suitable molar ratios and they have a relatively uniform size, typically around a few tens of nanometers in diameter. Different from the typically formulated cationic or anionic liposome–DNA complexes, which are used as nonviral vectors for improving the transfection efficiency of gene therapy, a novel way of packing the DNA can be developed by using the much smaller disc-like bicelles. We demonstrate that anionic lipid bicelle-ion–DNA (AB–DNA) complexes can be formed with the help of divalent ions. Multi-stacked AB–DNA complexes can be formed with diameters of around 50–100 nm and lengths of around 50–150 nm as revealed by TEM. Using the anionic lipid–DNA complexes has the advantage of lower cytotoxicity than using cationic lipids. The interaction of DNA with anionic bicelles was investigated by SAXS. It was found that the anionic bicelle could not form stable complexes with DNA at low calcium ion concentrations, such as 1 mM. The AB–DNA complexes can be formed in the investigated range of 10 mM to 100 mM calcium ion concentrations. However, for an equal anionic lipid charge and DNA charge system, an ion-membrane phase (multilamellar vesicles) would gradually appear as the calcium ion concentration is increased above a critical concentration. It indicates that DNA could be packed closer at above the critical divalent ion concentration. If more DNA is added to such a two-phase coexistence system (originally with the total anionic lipid charge equal to that of DNA), the ion-membrane phase could be transformed into the AB–DNA complexes. As a result, more DNA can be packed in the form of AB–DNA complexes at above the critical calcium ion concentration.
Collapse
|
19
|
Christensen CL, Zandi R, Gjetting T, Cramer F, Poulsen HS. Specifically targeted gene therapy for small-cell lung cancer. Expert Rev Anticancer Ther 2014; 9:437-52. [DOI: 10.1586/era.09.10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
20
|
Gu J, Chen X, Xin H, Fang X, Sha X. Serum-resistant complex nanoparticles functionalized with imidazole-rich polypeptide for gene delivery to pulmonary metastatic melanoma. Int J Pharm 2013; 461:559-69. [PMID: 24370843 DOI: 10.1016/j.ijpharm.2013.12.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/24/2013] [Accepted: 12/15/2013] [Indexed: 01/05/2023]
Abstract
To enhance serum-resistance and overcome the lysosomal barrier are effective and feasible strategies to increase the transfection efficiency of non-viral gene delivery system. For the systemic delivery of therapeutic gene, we previously developed self-assemble carboxymethyl poly(l-histidine) (CM-PLH)/poly(β-amino ester) (PbAE)/pDNA ternary complex nanoparticles based on electrostatic coating as an effective pDNA carrier. Recharging cationic PbAE/pDNA polyplexes with CM-PLH was a promising method to reduce the cytotoxicity and enhance the stability in vivo of positive charged polyplexes. In the present study, the transfection activities of ternary complex nanoparticles were further evaluated in vitro and in vivo. The transfection efficiency of ternary complex nanoparticles showed significant serum-resistance (CM-PLH-containing (51.9±4.35)% in 50% FBS>CM-PLH-free (14.7±5.66)% in 50% FBS), cell line dependent (HEK293>MCF-7>COS7>B16F10>A549>Hela>SPC-A1>CHO>SKOV3) and incubation period dependent (24 h, 20 h, 16 h>12 h>8 h>4 h>2 h>1 h>0.5 h). After transfected with ternary complex nanoparticles loading pGV240-MDA-7/IL-24, the B16F10 cells exhibited significant apoptosis and proliferation inhibition due to the expression of IL-24. Moreover, in the pulmonary metastatic melanoma model, ternary complex nanoparticles loading pGV240-MDA-7/IL-24 showed significant antitumor therapeutic efficacy in vivo. These results suggested that CM-PLH/PbAE/pDNA ternary complex nanoparticles were promising and challenging gene vector for practical application.
Collapse
Affiliation(s)
- Jijin Gu
- Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China; Laboratory for Drug Delivery and Biomaterials, Faculty of Pharmacy, University of Manitoba, 750 McDermot Avenue, Winnipeg, Manitoba R3E 0T5, Canada
| | - Xinyi Chen
- Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Hongliang Xin
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, 818 Tianyuan Road, Nanjing 210029, China
| | - Xiaoling Fang
- Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Xianyi Sha
- Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China.
| |
Collapse
|
21
|
Gene therapy and DNA delivery systems. Int J Pharm 2013; 459:70-83. [PMID: 24286924 DOI: 10.1016/j.ijpharm.2013.11.041] [Citation(s) in RCA: 305] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/31/2013] [Accepted: 11/19/2013] [Indexed: 12/29/2022]
Abstract
Gene therapy is a promising new technique for treating many serious incurable diseases, such as cancer and genetic disorders. The main problem limiting the application of this strategy in vivo is the difficulty of transporting large, fragile and negatively charged molecules like DNA into the nucleus of the cell without degradation. The key to success of gene therapy is to create safe and efficient gene delivery vehicles. Ideally, the vehicle must be able to remain in the bloodstream for a long time and avoid uptake by the mononuclear phagocyte system, in order to ensure its arrival at the desired targets. Moreover, this carrier must also be able to transport the DNA efficiently into the cell cytoplasm, avoiding lysosomal degradation. Viral vehicles are the most commonly used carriers for delivering DNA and have long been used for their high efficiency. However, these vehicles can trigger dangerous immunological responses. Scientists need to find safer and cheaper alternatives. Consequently, the non-viral carriers are being prepared and developed until techniques for encapsulating DNA can be found. This review highlights gene therapy as a new promising technique used to treat many incurable diseases and the different strategies used to transfer DNA, taking into account that introducing DNA into the cell nucleus without degradation is essential for the success of this therapeutic technique.
Collapse
|
22
|
Barar J, Omidi Y. Intrinsic bio-signature of gene delivery nanocarriers may impair gene therapy goals. BIOIMPACTS : BI 2013; 3:105-9. [PMID: 24163801 DOI: 10.5681/bi.2013.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 09/13/2013] [Accepted: 09/14/2013] [Indexed: 01/27/2023]
Abstract
Non-viral lipid/polymeric vectors have widely been used as nanocarriers (NCs) for gene delivery. They possess large surface area to volume ratio and are able to interact with biomolecules through functional moieties, resulting in inadvertent biological impacts, in particular at genomic level. Thus, their genomic bio-signature needs to be investigated prior to use in vivo. Using high-throughput microarray and qPCR gene expression profiling techniques, we have reported the genomic impacts of lipid/polymeric NCs. Given the fact that the ultimate objectives of gene therapy may inevitably be impaired by nonspecific intrinsic genomic impacts of these NCs, here, we highlight their nonspecific genomic bio-signature. We envision that better understanding on the genotoxicity of gene delivery NCs, as guiding premise, will help us to develop much safer NCs and also to accelerate their translation into clinical use and to provide pivotal information on safety liabilities early in discovery and developments process prior to its inevitable consequences in vivo.
Collapse
Affiliation(s)
- Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
23
|
Teasdale I, Brüggemann O. Polyphosphazenes: Multifunctional, Biodegradable Vehicles for Drug and Gene Delivery. Polymers (Basel) 2013; 5:161-187. [PMID: 24729871 PMCID: PMC3982046 DOI: 10.3390/polym5010161] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Poly[(organo)phosphazenes] are a unique class of extremely versatile polymers with a range of applications including tissue engineering and drug delivery, as hydrogels, shape memory polymers and as stimuli responsive materials. This review aims to divulge the basic principles of designing polyphosphazenes for drug and gene delivery and portray the huge potential of these extremely versatile materials for such applications. Polyphosphazenes offer a number of distinct advantages as carriers for bioconjugates; alongside their completely degradable backbone, to non-toxic degradation products, they possess an inherently and uniquely high functionality and, thanks to recent advances in their polymer chemistry, can be prepared with controlled molecular weights and narrow polydispersities, as well as self-assembled supra-molecular structures. Importantly, the rate of degradation/hydrolysis of the polymers can be carefully tuned to suit the desired application. In this review we detail the recent developments in the chemistry of polyphosphazenes, relevant to drug and gene delivery and describe recent investigations into their application in this field.
Collapse
Affiliation(s)
- Ian Teasdale
- Institute of Polymer Chemistry, Johannes Kepler University, 4060, Leonding, Austria;
| | - Oliver Brüggemann
- Institute of Polymer Chemistry, Johannes Kepler University, 4060, Leonding, Austria;
| |
Collapse
|
24
|
Liu Y, Kong M, Cheng XJ, Wang QQ, Jiang LM, Chen XG. Self-assembled nanoparticles based on amphiphilic chitosan derivative and hyaluronic acid for gene delivery. Carbohydr Polym 2013; 94:309-16. [PMID: 23544543 DOI: 10.1016/j.carbpol.2012.12.058] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 12/18/2012] [Accepted: 12/21/2012] [Indexed: 01/17/2023]
Abstract
The present work described nanoparticles (NPs) made of oleoyl-carboxymethy-chitosan (OCMCS)/hyaluronic acid (HA) using coacervation process as novel potential carriers for gene delivery. An N/P ratio of 5 and OCMCS/HA weight ratio of 4 were the optimal conditions leading to the smallest (164.94 nm), positive charged (+14.2 mV) and monodispersed NPs. OCMCS-HA/DNA (OHD) NPs showed higher in vitro DNA release rates and increased cellular uptake by Caco-2 cells due to the HA involved in NPs. The MTT survival assay indicated no significant cytotoxicity. The transfection efficiency of OHD NPs was 5-fold higher than OCMCS/DNA (OD) NPs; however, it decreased significantly in the presence of excess free HA. The results indicated that OHD NPs internalized in Caco-2 cells were mediated by the hyaluronan receptor CD44. The data obtained in the present research gave evidence of the potential of OHD NPs for the targeting and further transfer of genes to the epithelial cells.
Collapse
Affiliation(s)
- Ya Liu
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China
| | | | | | | | | | | |
Collapse
|
25
|
Briane D, Slimani H, Tagounits A, Naejus R, Haddad O, Coudert R, Charnaux N, Cao A. Inhibition of VEGF expression in A431 and MDA-MB-231 tumour cells by cationic lipid-mediated siRNA delivery. J Drug Target 2012; 20:347-54. [PMID: 22475204 DOI: 10.3109/1061186x.2012.656645] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In order to promote siRNA transfer in tumour cells, we used an original cationic lipid, synthesized in our laboratory, dimethyl-hydroxyethyl-aminopropane-carbamoyl-cholesterol (DMHAPC-Chol). Liposomes were prepared from this lipid and dioleoylphosphatidylethanolamine (DOPE) in equimolar proportion. Its transfecting capacity was evaluated using ELISA, cell cytometry, and RT-PCR in estimating the silencing effect of VEGF siRNA. This liposome efficiently delivered VEGF siRNA in two human cancer cell lines abundantly secreting VEGF, A431 and MDA-MB-231. Results showed that 50 nM of VEGF siRNA carried by DMHAPC-Chol/DOPE liposomes already silenced more than 90% of VEGF in these cells. A comparative study with two commercial carriers indicated that the inhibition induced by VEGF siRNA transported by cationic DMHAPC-Chol/DOPE liposomes was comparable to that induced by INTERFERin and better than lipofectamine 2000. Moreover, a transfection by a GFP plasmid followed by a GFP siRNA showed that DMHAPC-Chol/DOPE liposomes compared to lipofectamine were less efficient for plasmid but better for siRNA transport. Following one of our previous works concerning cell delivery of plasmid ( Percot et al., 2004 ), the main interest of results presented here resides in the double potential of DMHAPC-Chol/DOPE liposomes to deliver little-sized siRNA as well as large nucleic acids in cells.
Collapse
Affiliation(s)
- Dominique Briane
- Groupe Vectorisation, UFR de Médecine, Université Paris 13, 74 rue Marcel Cachin, F93017 Bobigny Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Mahor S, Dash BC, O’Connor S, Pandit A. Mannosylated Polyethyleneimine–Hyaluronan Nanohybrids for Targeted Gene Delivery to Macrophage-Like Cell Lines. Bioconjug Chem 2012; 23:1138-48. [DOI: 10.1021/bc200599k] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sunil Mahor
- Network of Excellence
for Functional Biomaterials, National University of Ireland, IDA Business Park,
Galway, Ireland
| | - Biraja C. Dash
- Network of Excellence
for Functional Biomaterials, National University of Ireland, IDA Business Park,
Galway, Ireland
| | - Stephen O’Connor
- Network of Excellence
for Functional Biomaterials, National University of Ireland, IDA Business Park,
Galway, Ireland
| | - Abhay Pandit
- Network of Excellence
for Functional Biomaterials, National University of Ireland, IDA Business Park,
Galway, Ireland
| |
Collapse
|
27
|
A new tool for the transfection of corneal endothelial cells: calcium phosphate nanoparticles. Acta Biomater 2012; 8:1156-63. [PMID: 21982848 DOI: 10.1016/j.actbio.2011.09.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 09/05/2011] [Accepted: 09/12/2011] [Indexed: 12/25/2022]
Abstract
Calcium phosphate nanoparticles (CaP-NP) are ideal tools for transfection due to their high biocompatibility and easy biodegradability. After transfection these particles dissociate into calcium and phosphate ions, i.e. physiological components found in every cell, and it has been shown that the small increase in intracellular calcium level does not affect cell viability. CaP-NP functionalized with pcDNA3-EGFP (CaP/DNA/CaP/DNA) and stabilized using different amounts of poly(ethylenimine) (PEI) were prepared. Polyfect®-pcDNA3-EGFP polyplexes served as a positive control. The transfection of human and murine corneal endothelial cells (suspensions and donor tissue) was optimized by varying the concentration of CaP-NP and the duration of transfection. The transfection efficiency was determined as EGFP expression detected by flow cytometry and fluorescence microscopy. To evaluate the toxicity of the system the cell viability was detected by TUNEL staining. Coating with PEI significantly increased the transfection efficiency of CaP-NP but decreased cell viability, due to the cytotoxic nature of PEI. The aim of this study was to develop CaP-NP with the highest possible transfection efficiency accompanied by the least apoptosis in corneal endothelial cells. EGFP expression in the tissues remained stable as corneal endothelial cells exhibit minimal proliferative capacity and very low apoptosis after transfection with CaP-NP. In summary, CaP-NP are suitable tools for the transfection of corneal endothelial cells. As CaP-NP induce little apoptosis these nanoparticles offer a safe alternative to viral transfection agents.
Collapse
|
28
|
Lee JH, Lee MJ. Liposome-Mediated Cancer Gene Therapy: Clinical Trials and their Lessons to Stem Cell Therapy. B KOREAN CHEM SOC 2012. [DOI: 10.5012/bkcs.2012.33.2.433] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
|
30
|
Wilkinson AE, McCormick AM, Leipzig ND. Central Nervous System Tissue Engineering: Current Considerations and Strategies. ACTA ACUST UNITED AC 2011. [DOI: 10.2200/s00390ed1v01y201111tis008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
31
|
Weissig V. From Serendipity to Mitochondria-Targeted Nanocarriers. Pharm Res 2011; 28:2657-68. [DOI: 10.1007/s11095-011-0556-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Accepted: 08/02/2011] [Indexed: 12/13/2022]
|
32
|
Niculescu-Duvaz D, Negoita-Giras G, Niculescu-Duvaz I, Hedley D, Springer CJ. Directed Enzyme Prodrug Therapies. PRODRUGS AND TARGETED DELIVERY 2011. [DOI: 10.1002/9783527633166.ch12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
33
|
Zhang X, Luo K, Wang G, Nie Y, He B, Wu Y, Gu Z. Synthesis and inhibition study on tripeptide inhibitor modified poly(l-lysine) dendrimers. J Biomater Appl 2010; 27:17-26. [DOI: 10.1177/0885328210386821] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Peptide dendrimers are attractive nonviral gene vectors. But a biological barrier for their application in gene delivery is the fast degradation catalyzed by proteasomes. Proteasome inhibitors are efficient at prohibiting the degradation of peptide nonviral vectors, thus enhancing gene transfection efficiency. In this study, Nα-Boc-protected leucine vinyl ester proteasome inhibitor Boc-Leu-Leu-Leu-ve was synthesized by the liquid-phase method and was then immobilized onto poly(l-lysine) dendrimers. Suc-Leu-Leu-Val-Tyr-AMC was used as fluorimetric substrate and the inhibition capacity of Boc-Leu-Leu-Leu-ve immobilized onto G3 and G6 poly(l-lysine) dendrimers for the chymotrypsin-like activity of ACHN cell proteasome was tested. The results indicated that both Boc-Leu-Leu-Leu-ve peptide and the peptide immobilized on G3 dendrimer showed low inhibition capacity when the concentration was below 0.2 μM. When the inhibitor concentrations were increased to 5.0 μM, however, the percentage inhibition of Boc-Leu-Leu-Leu-ve peptide and the peptide immobilized on G3 dendrimer became about 50% and 25%, and that of peptide immobilized on the G6 dendrimer was 7.5% only. These results indicated that dendritic structure and linker length could be the main factors affecting proteasome inhibition capacity. The cytotoxicity of the dendritic inhibitors was found to be low. Thus, whilst the synthetic production of poly(l-lysine) dendrimers immobilized with peptide inhibitors was successful and these modified dendrimers could work to inhibit proteasome activity, further studies will need to be carried out to improve inhibition capacity.
Collapse
Affiliation(s)
- Xiaowei Zhang
- Department of Chemistry, Sichuan University, Chengdu 610064, China
| | - Kui Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Gang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yu Nie
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yao Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Zhongwei Gu
- Department of Chemistry, Sichuan University, Chengdu 610064, China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
34
|
Jang SH, Choi SJ, Oh JH, Chae SW, Nam K, Park JS, Lee HJ. Nonviral gene delivery to human ovarian cancer cells using arginine-grafted PAMAM dendrimer. Drug Dev Ind Pharm 2010; 37:41-6. [PMID: 20950058 DOI: 10.3109/03639045.2010.489563] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND A specific and effective strategy is in demand to treat ovarian cancer successfully. Epidermal growth factor receptor (EGFR) is highly expressed in ovarian cancer, and thus EGFR antisense gene therapy can be a potential therapeutic strategy. METHOD L-Arginine-grafted-polyamidoamine dendrimer (PAMAM-Arg) has been reported to be a novel nonviral gene delivery carrier. Therefore, the ability of PAMAM-Arg in transferring a luciferase gene to ovarian carcinoma SK-OV3 cells has been examined, and the cytotoxicity of the cationic polymer has been investigated. In addition, the suppression of cell proliferation has been evaluated by transferring an EGFR antisense gene to SK-OV3 cells using PAMAM-Arg. Polyethyleneimine (PEI) 25K was used as a positive control. RESULTS As a result, in vitro gene transfection efficiency of PAMAM-Arg was enhanced with increasing transfection time and N/P ratios. PAMAM-Arg transferred the luciferase gene into cells more efficiently than PEI. In addition, PAMAM-Arg was minimally toxic to the cells whereas PEI 25K was highly toxic. The polyplexes formed by the EGFR antisense gene and PAMAM-Arg significantly reduced thymidine incorporation into the cells suggesting the suppression of cancer cell proliferation. CONCLUSION These results suggest that a PAMAM-Arg/EGFR antisense gene complex can be used as a safe and efficient therapeutic agent for cancer gene therapy.
Collapse
Affiliation(s)
- Soo Hyun Jang
- Division of Life and Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
35
|
Gene transfer into the lung by nanoparticle dextran-spermine/plasmid DNA complexes. J Biomed Biotechnol 2010; 2010:284840. [PMID: 20617146 PMCID: PMC2896664 DOI: 10.1155/2010/284840] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 04/21/2010] [Accepted: 05/05/2010] [Indexed: 11/17/2022] Open
Abstract
A novel cationic polymer, dextran-spermine (D-SPM), has been found to mediate gene expression in a wide variety of cell lines and in vivo through systemic delivery. Here, we extended the observations by determining the optimal conditions for gene expression of D-SPM/plasmid DNA (D-SPM/pDNA) in cell lines and in the lungs of BALB/c mice via instillation delivery. In vitro studies showed that D-SPM could partially protect pDNA from degradation by nuclease and exhibited optimal gene transfer efficiency at D-SPM to pDNA weight-mixing ratio of 12. In the lungs of mice, the levels of gene expression generated by D-SPM/pDNA are highly dependent on the weight-mixing ratio of D-SPM to pDNA, amount of pDNA in the complex, and the assay time postdelivery. Readministration of the complex at day 1 following the first dosing showed no significant effect on the retention and duration of gene expression. The study also showed that there was a clear trend of increasing size of the complexes as the amount of pDNA was increased, where the sizes of the D-SPM/pDNA complexes were within the nanometer range.
Collapse
|
36
|
Verissimo LM, Agnez Lima LF, Monte Egito LC, de Oliveira AG, do Egito EST. Pharmaceutical emulsions: a new approach for gene therapy. J Drug Target 2009; 18:333-42. [DOI: 10.3109/10611860903434019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
37
|
Shcharbin DG, Klajnert B, Bryszewska M. Dendrimers in gene transfection. BIOCHEMISTRY (MOSCOW) 2009; 74:1070-9. [DOI: 10.1134/s0006297909100022] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
38
|
Bauhuber S, Hozsa C, Breunig M, Göpferich A. Delivery of nucleic acids via disulfide-based carrier systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2009; 21:3286-3306. [PMID: 20882498 DOI: 10.1002/adma.200802453] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Nucleic acids are not only expected to assume a pivotal position as "drugs" in the treatment of genetic and acquired diseases, but could also act as molecular cues to control the microenvironment during tissue regeneration. Despite this promise, the efficient delivery of nucleic acids to their side of action is still the major hurdle. One among many prerequisites for a successful carrier system for nucleic acids is high stability in the extracellular environment, accompanied by an efficient release of the cargo in the intracellular compartment. A promising strategy to create such an interactive delivery system is to exploit the redox gradient between the extra- and intracellular compartments. In this review, emphasis is placed on the biological rationale for the synthesis of redox sensitive, disulfide-based carrier systems, as well as the extra- and intracellular processing of macromolecules containing disulfide bonds. Moreover, the basic synthetic approaches for introducing disulfide bonds into carrier molecules, together with examples that demonstrate the benefit of disulfides at the individual stages of nucleic acid delivery, will be presented.
Collapse
|
39
|
Polycationic graft copolymers of poly(N-vinylpyrrolidone) as non-viral vectors for gene transfection. OPEN CHEM 2009. [DOI: 10.2478/s11532-009-0045-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractNovel graft copolymers of 2-(dimethylamino)ethyl methacrylate (DMAEMA) with N-vinylpyrrolidone (NVP) were designed and synthesized by the free radical copolymerization of DMAEMA with precursor polymers of vinyl-functionalized poly(N-vinylpyrrolidone) (PVP). The ability of the PVP- grafted copolymers to bind and condense DNA was confirmed by ethidium bromide displacement assay, agarose gel electrophoresis and transmission electron microscopy. The presence of PVP in the copolymers had a favorable effect on the biophysical properties of polymer/DNA complexes. Colloidal stable complexes obtained from the copolymer systems, were shown to be separate, uniformly spherical nanoparticles by transmission electron microscopy. The approximate diameter of the complexes was 150–200 nm, as determined by dynamic light scattering studies. These results confirm an important role played by the PVP grafts in producing compact stable DNA complexes. The ζ-potential measurements revealed that the incorporation of the PVP grafts reduced the positive surface charge of polymer/DNA complexes. The cytotoxicity of the copolymers decreased with an increasing fraction of PVP. Furthermore, in vitro transfection experiments with these copolymers showed improved ability of transfection in cell culture, demonstrating an important role for PVP grafts in enhancement of the transfection efficiency.
Collapse
|
40
|
Deng R, Yue Y, Jin F, Chen Y, Kung HF, Lin MCM, Wu C. Revisit the complexation of PEI and DNA - how to make low cytotoxic and highly efficient PEI gene transfection non-viral vectors with a controllable chain length and structure? J Control Release 2009; 140:40-6. [PMID: 19625007 DOI: 10.1016/j.jconrel.2009.07.009] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 06/16/2009] [Accepted: 07/09/2009] [Indexed: 11/19/2022]
Abstract
The commercially available branched polyethyleneimine (PEI) with a molar mass of 25 kD (PEI-25K) is an effective in vitro vector to transfer genes, but its cytotoxicity limits its applications in bio-related research. To solve such an efficiency-versus-cytotoxicity catch-22 problem, the disulfide bond has been previously used to link less toxic short PEI chains (2 kD), but previous literature results are controversial. Recently, we found that it is vitally important to remove both carbon dioxide and water in the linking reaction as well as to control the structure of the resultant chains linked by dithiobis(succinimidyl propionate) (DSP). Under a programmable mixing of PEI and DSP, we can use laser light scattering (LLS) to in-situ monitor the linking reaction kinetics in DMSO in terms of the change of the average molar mass (M(w)). Therefore, we were able to withdraw a series of linked PEI chains with different molar masses from one reaction mixture. Two such linked PEI samples (M(w) approximately 7 kD, PEI-7K-L and approximately 400 kD, PEI-400K-L) were used to illustrate the effect of the sample preparation and the chain structure on the in vitro gene transfection and cytotoxicity. Our results reveal that PEI-7K-L is less cytotoxic and more effective in the gene transfection than both PEI-25K and Lipofectamine 2000 in the in vitro gene transfection. However, PEI-400K-L has no gene transfection efficiency even though it is non-toxic.
Collapse
Affiliation(s)
- Rui Deng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong.
| | | | | | | | | | | | | |
Collapse
|
41
|
Quaak SGL, van den Berg JH, Oosterhuis K, Beijnen JH, Haanen JBAG, Nuijen B. DNA tattoo vaccination: effect on plasmid purity and transfection efficiency of different topoisoforms. J Control Release 2009; 139:153-9. [PMID: 19580829 DOI: 10.1016/j.jconrel.2009.06.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 06/24/2009] [Accepted: 06/29/2009] [Indexed: 02/06/2023]
Abstract
Recently, DNA tattooing was introduced as novel intradermal administration technique for plasmid DNA (pDNA) vaccines. The aim of this study was to determine if tattooing affects the integrity of pDNA (reduction in supercoiled (SC) content) and whether a change in pDNA topology would affect antigen expression and immune response. We show that 1.) in vitro tattooing of pDNA solutions results in minor damage to pDNA (<or=3% SC pDNA reduction) and only open circular (OC) pDNA formation, 2.) antigen expression and T-cell responses upon tattoo administration of SC and OC pDNA are equal in a murine model, 3.) SC pDNA gives a significantly higher antigen expression than OC and linear pDNA in ex vivo human skin, 4.) pDNA topology does not influence antigen expression when formulated as PEGylated polyplexes. We conclude that a 3% reduction in SC purity most likely will have little or no effect on clinical antigen expression and T-cell responses. For intradermal tattoo administration the ex vivo skin model might be more suitable than the standard murine model for distinguishing subtle alterations in antigen expression of clinical pDNA formulations. The results from this study enable justification of release and shelf-life specifications of pDNA products applied by this specific route of administration, as requested by the regulatory authorities (>or=80% SC).
Collapse
Affiliation(s)
- S G L Quaak
- Department of Pharmacy & Pharmacology, Slotervaart Hospital/The Netherlands Cancer Institute, Louwesweg 6, 1066 EC Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
42
|
Incani V, Lin X, Lavasanifar A, Uludağ H. Relationship between the extent of lipid substitution on poly(L-lysine) and the DNA delivery efficiency. ACS APPLIED MATERIALS & INTERFACES 2009; 1:841-848. [PMID: 20356010 DOI: 10.1021/am8002445] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Poly(L-lysine) (PLL) is a commonly used polymer for nonviral gene delivery. However, the polymer exhibits significant toxicity and is not very effective for transgene expression. To enhance the gene delivery efficiency of the polymer, we imparted an amphiphilic property to PLL by substituting approximately 10% of epsilon-NH2 with several endogenous lipids of variable chain lengths (lipid carbon chain ranging from 8 to 18). Lipid-modified PLL with high molecular weight (approximately 25 vs 4 kDa) was found to be more effective in delivering plasmid DNA intracellularly in clinically relevant bone marrow stromal cells (BMSC). For lipid-substituted 25 kDa PLL, a correlation between the extent of lipid substitution and the plasmid DNA delivery efficiency was obtained. Additionally, transgene expression by BMSC significantly increased (20-25%) when amphiphilic PLLs were used for plasmid delivery as compared to native PLL and the commercial transfection agent Lipofectamine-2000. The transfection efficiency of the polymers was positively correlated with the extent of lipid substitution. The amphiphilic polymers were able to modify the cells up to 7 days after transfection, after which the expression was decreased to background levels within 1 week. We conclude that lipid-substituted PLL can be used effectively as a nonviral carrier for DNA, and the extent of lipid substitution was an important determinant of gene delivery.
Collapse
Affiliation(s)
- Vanessa Incani
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G2N8
| | | | | | | |
Collapse
|
43
|
Liang CH, Chou TH. Effect of chain length on physicochemical properties and cytotoxicity of cationic vesicles composed of phosphatidylcholines and dialkyldimethylammonium bromides. Chem Phys Lipids 2009; 158:81-90. [PMID: 19428352 DOI: 10.1016/j.chemphyslip.2009.01.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 01/08/2009] [Accepted: 01/09/2009] [Indexed: 12/01/2022]
Abstract
This study investigated the physicochemical characteristics of cationic vesicles that were prepared from two phosphatidylcholines and three dialkyldimethylammonium bromides (DXDAB) with differing in dialkyl chain lengths, ranging from 2-C(14) to 2-C(18), by measuring particle size and zeta potential. The dependence of particle size, zeta potential and short-storage stability of mixed phosphatidylcholine/DXDAB vesicles on the chain length and composition were also elucidated. Transmission electron microscopy analysis verified that vesicles were formed as a phosphatidylcholine film to which DXDAB was added in a phosphate buffer saline (PBS, pH 7.4). Furthermore, the toxicity to the human keratinocytes (HaCaT) and squamous cell carcinomas (SCC25) cells that were incubated with these vesicles, evaluated by a cell viability assay, increased with the percentage of DXDAB that was incorporated and was inversely proportional to the chain length of DXDAB. The morphological features (round shape, chromatin condensation and apoptosis bodies) and results of flow cytometry analysis (increased sub-G(1) fraction) confirmed the induction of apoptosis in HaCaT and SCC25 cells by cationic vesicles. Apoptosis caused by cationic vesicles without the addition of any drugs was observed for the first time in HaCaT and SCC25 cells. The results of this investigation suggest that cytotoxicity is related to the zeta potential of the cationic vesicles.
Collapse
Affiliation(s)
- Chia-Hua Liang
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | | |
Collapse
|
44
|
Yoksan R, Akashi M. Low molecular weight chitosan-g-l-phenylalanine: Preparation, characterization, and complex formation with DNA. Carbohydr Polym 2009. [DOI: 10.1016/j.carbpol.2008.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
45
|
Lin C, Zhong Z, Lok M, de Wolf HK, Hennink W, Feijen J, Engbersen J. Bioreducible poly(amido amine)s for gene delivery to ovarian cancer cells. J Control Release 2008. [DOI: 10.1016/j.jconrel.2008.09.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Slimani H, Guenin E, Briane D, Coudert R, Charnaux N, Starzec A, Vassy R, Lecouvey M, Perret YG, Cao A. Lipopeptide-based liposomes for DNA delivery into cells expressing neuropilin-1. J Drug Target 2008; 14:694-706. [PMID: 17162739 DOI: 10.1080/10611860600947607] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In this paper, liposomes containing a lipopeptide bearing a ligand specifically recognized by neuropilin-1 (NRP-1) have been used to target a human breast cancer cell line overexpressing this receptor. The synthesis of this lipopeptide, C16-A7R, formed by the sequence of 7 amino acids ATWLPPR, linked to a palmitoyl fatty chain by an amide bond was described. After the characterisation of cationic liposomes formulated with the lipopeptide, the results obtained using various techniques showed that the lipopeptide-based liposomes were well accumulated in cells of the human breast cancer line MDA-MB-231 overexpressing NRP-1. Delivery of reporter genes expressing either beta-galactosidase (beta-gal) or green fluorescent protein (GFP) was selectively enhanced in these cells when compared with NRP-1-negative cells. In MDA-MB-231 cells, an increase by 250% in beta-gal activity was observed when delivered by lipopeptide-based liposomes compared to cationic liposomes alone.
Collapse
Affiliation(s)
- Hocine Slimani
- Laboratoire de Biophysique Moléculaire Cellulaire et Tissulaire, CNRS UMR 7033, UFR de Médecine, Université Paris 13, 74 rue Marcel Cachin, F93017, Bobigny Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Morille M, Passirani C, Vonarbourg A, Clavreul A, Benoit JP. Progress in developing cationic vectors for non-viral systemic gene therapy against cancer. Biomaterials 2008; 29:3477-96. [PMID: 18499247 DOI: 10.1016/j.biomaterials.2008.04.036] [Citation(s) in RCA: 589] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 04/23/2008] [Indexed: 02/06/2023]
Abstract
Initially, gene therapy was viewed as an approach for treating hereditary diseases, but its potential role in the treatment of acquired diseases such as cancer is now widely recognized. The understanding of the molecular mechanisms involved in cancer and the development of nucleic acid delivery systems are two concepts that have led to this development. Systemic gene delivery systems are needed for therapeutic application to cells inaccessible by percutaneous injection and for multi-located tumor sites, i.e. metastases. Non-viral vectors based on the use of cationic lipids or polymers appear to have promising potential, given the problems of safety encountered with viral vectors. Using these non-viral vectors, the current challenge is to obtain a similarly effective transfection to viral ones. Based on the advantages and disadvantages of existing vectors and on the hurdles encountered with these carriers, the aim of this review is to describe the "perfect vector" for systemic gene therapy against cancer.
Collapse
Affiliation(s)
- Marie Morille
- Inserm U646, Ingénierie de la Vectorisation Particulaire, Université d'Angers, 10, rue André Boquel, 49100 Angers, France
| | | | | | | | | |
Collapse
|
48
|
Cai X, Zhou J, Chang Y, Sun X, Li P, Lin J. Targeting gene therapy for hepatocarcinoma cells with the E. coli purine nucleoside phosphorylase suicide gene system directed by a chimeric alpha-fetoprotein promoter. Cancer Lett 2008; 264:71-82. [PMID: 18407409 DOI: 10.1016/j.canlet.2008.01.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 01/04/2008] [Accepted: 01/08/2008] [Indexed: 11/29/2022]
Abstract
For hepatocarcinoma (HCC) gene therapy, the tumoricidal efficacy and selective expression of therapeutic gene remain two major challenges. The Escherichia coli (E. coli) purine nucleoside phosphorylase (PNP)/9-(2-deoxy-beta-dribofuranosyl)-6-methylpurine (MeP-dR) suicide gene system exhibits excellent anti-tumor effects, indicating this system directed by a HCC-specific promoter would offer a possibility of targeting gene therapy for HCC. To test this hypothesis, here, we prepared a plasmid (p[HRE]AF/PNP) containing the E. coli PNP/MeP-dR system and a chimeric human alpha-fetoprotein (AFP) promoter, [HRE]AF. We introduced this plasmid into AFP-positive and low-AFP-generating human HCC cells, and evaluated its therapeutic effects on both human HCC cell lines. In the presence of hypoxia, the E. coli PNP gene directed by the [HRE]AF promoter were HCC-specifically expressed in two human HCC cell lines and, moreover, the [HRE]AF-PNP/MeP-dR therapy would yield significant and selective cytotoxicity in both AFP-positive and low-AFP-generating HCC cells. Our findings suggest the [HRE]AF-PNP/MeP-dR therapy has worthy potentialities as an effective strategy for targeting therapy of AFP-positive, and especially AFP-negative or low-AFP-generating HCC.
Collapse
Affiliation(s)
- Xiaokun Cai
- Institute for Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | |
Collapse
|
49
|
de Wolf HK, Johansson N, Thong AT, Snel CJ, Mastrobattista E, Hennink WE, Storm G. Plasmid CpG depletion improves degree and duration of tumor gene expression after intravenous administration of polyplexes. Pharm Res 2008; 25:1654-62. [PMID: 18317886 PMCID: PMC2440937 DOI: 10.1007/s11095-008-9558-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 02/11/2008] [Indexed: 11/11/2022]
Abstract
Purpose Tumor gene expression after the intravenous (i.v.) administration of current polymer-based gene delivery systems is generally low and short-lived. Immune stimulatory CpG dinucleotides, present within the plasmid DNA of the polyplexes are likely to contribute to this. The effect of CpG replacement on the levels of transgene expression was studied, after the i.v. administration of polyethylenimine (PEI) polyplexes. Methods Tumor transfection and immune stimulation of PEI polyplexes containing plasmid DNA encoding for luciferase and rich in CpG motifs was monitored and compared to polyplexes containing the same gene but devoid of CpG motifs. Lipoplexes based on 1,2-dioleyl-3-trimethylammonium-propane/dioleoylphosphatidylethanolamine liposomes were included as a control. Results The replacement of CpGrich DNA by CpGfree DNA did neither affect the physical properties of the DNA complexes nor did it affect their in vitro transfection activity or cytotoxicity. The immune stimulation (interleukin-12) after i.v. administration of the PEI DNA complexes was low and unaffected by the presence of CpG motifs. The absence of CpG motifs within the different DNA complexes improved the degree and the duration of organ and tumor gene expression. Conclusion The depletion of CpG dinucleotides within the plasmid DNA of polyplexes enhances the degree and duration of in vivo transgene expression.
Collapse
Affiliation(s)
- Holger K de Wolf
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
50
|
Sokolova V, Epple M. Inorganic nanoparticles as carriers of nucleic acids into cells. Angew Chem Int Ed Engl 2008; 47:1382-95. [PMID: 18098258 DOI: 10.1002/anie.200703039] [Citation(s) in RCA: 396] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The transfer of nucleic acids (DNA or RNA) into living cells, that is, transfection, is a major technique in current biochemistry and molecular biology. This process permits the selective introduction of genetic material for protein synthesis as well as the selective inhibition of protein synthesis (antisense or gene silencing). As nucleic acids alone are not able to penetrate the cell wall, efficient carriers are needed. Besides viral, polymeric, and liposomal agents, inorganic nanoparticles are especially suitable for this purpose because they can be prepared and surface-functionalized in many different ways. Herein, the current state of the art is discussed from a chemical viewpoint. Advantages and disadvantages of the available methods are compared.
Collapse
Affiliation(s)
- Viktoriya Sokolova
- Institut für Anorganische Chemie, Universität Duisburg-Essen, Universitätsstrasse 5-7, 45117 Essen, Germany
| | | |
Collapse
|