1
|
Mottaghi S, Abbaszadeh H. Natural Lignans Honokiol and Magnolol as Potential Anticarcinogenic and Anticancer Agents. A Comprehensive Mechanistic Review. Nutr Cancer 2021; 74:761-778. [PMID: 34047218 DOI: 10.1080/01635581.2021.1931364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Plant lignans constitute an important group of polyphenols, which have been demonstrated to significantly induce cancer cell death and suppress cancer cell proliferation with minimal toxicity against non-transformed cells. Numerous epidemiological studies have shown that the intake of lignans is associated with lower risk of several cancers. These natural compounds have the potential to inhibit carcinogenesis, tumor growth, and metastasis by targeting various signaling molecules and pathways. Growing evidence indicates that honokiol and magnolol as natural lignans possess potent anticancer activities against various types of human cancer. The aim of present review is to provide the reader with the newest findings in understanding the cellular and molecular mechanisms mediating anticancer effects of honokiol and magnolol. This review comprehensively elucidates the effects of honokiol and magnolol on the molecular targets and signal transduction pathways implicated in cancer cell proliferation and metastasis. The findings of current review indicate that honokiol and magnolol can be considered as promising carcinopreventive and anticancer agents.
Collapse
Affiliation(s)
- Sayeh Mottaghi
- Department of Pediatrics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hassan Abbaszadeh
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
2
|
Magnolol: A Neolignan from the Magnolia Family for the Prevention and Treatment of Cancer. Int J Mol Sci 2018; 19:ijms19082362. [PMID: 30103472 PMCID: PMC6121321 DOI: 10.3390/ijms19082362] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 12/15/2022] Open
Abstract
The past few decades have witnessed widespread research to challenge carcinogenesis; however, it remains one of the most important health concerns with the worst prognosis and diagnosis. Increasing lines of evidence clearly show that the rate of cancer incidence will increase in future and will create global havoc, designating it as an epidemic. Conventional chemotherapeutics and treatment with synthetic disciplines are often associated with adverse side effects and development of chemoresistance. Thus, discovering novel economic and patient friendly drugs that are safe and efficacious is warranted. Several natural compounds have proved their potential against this dreadful disease so far. Magnolol is a hydroxylated biphenyl isolated from the root and stem bark of Magnolia tree. Magnolol can efficiently prevent or inhibit the growth of various cancers originating from different organs such as brain, breast, cervical, colon, liver, lung, prostate, skin, etc. Considering these perspectives, the current review primarily focuses on the fascinating role of magnolol against various types of cancers, and the source and chemistry of magnolol and the molecular mechanism underlying the targets of magnolol are discussed. This review proposes magnolol as a suitable candidate that can be appropriately designed and established into a potent anti-cancer drug.
Collapse
|
3
|
Tang H, Zhang Y, Li D, Fu S, Tang M, Wan L, Chen K, Liu Z, Xue L, Peng A, Ye H, Chen L. Discovery and synthesis of novel magnolol derivatives with potent anticancer activity in non-small cell lung cancer. Eur J Med Chem 2018; 156:190-205. [PMID: 30006164 DOI: 10.1016/j.ejmech.2018.06.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/15/2018] [Accepted: 06/21/2018] [Indexed: 02/05/2023]
Abstract
EGFR T790 M accounts for 50% to 60% of cases of non-small-cell lung carcinoma (NSCLC) resistance to the first-generation EGFR tyrosine kinase inhibitors (TKIs). Hence, identifying novel compounds with activity against TKIs resistant is of great value. In this study, twenty honokiol and magnolol derivatives were isolated from the EtOH extract of Magnolia officinalis and the antiproliferative activity was evaluated on HCC827 (19del EGFR mutation), H1975 (L858 R/T790 M EGFR mutation), and H460 (KRAS mutation) cell lines. Among the isolated compounds, piperitylmagnolol (a 3-substituted magnolol derivative) showed the best antiproliferative activity against those three cell lines with the IC50 values of 15.85, 15.60 and 18.60 μM, respectively, which provided a direction for the structural modification of magnolol. Further structural modification led to the synthesis of thirty-one magnolol derivatives, and compounds A13, C1, and C2 exhibited significant and broad-spectrum antiproliferative activity with the IC50 values ranging from 4.81 to 13.54 μM, which were approximately 4- and 8-fold more potent than those of honokiol and magnolol, respectively. Moreover, their aqueous solubility was remarkably improved with 12-, 400- and 105 fold greater than those of honokiol and magnolol. Anti-tumor mechanism research revealed that these three compounds were able to induce cell cycle arrest at G0/G1 phase, cause efficient apoptosis in H1975 cells, and also prevent the migration of HUVECs in a dose-dependent manner through Cdk2, Cdk4, Cyclin E, and Cyclin D1 inhibition as well as up-regulation of cleaved-PARP and cleaved-caspase 3 levels. In in vivo antitumor activity, C2 (10, 30 and 100 mg/kg, po) dose-dependently inhibited the tumor growth in H1975 xenograft model with the tumor inhibition rate of 46.3%, 59.3% and 61.2% respectively, suggesting that C2 is a potential oral anticancer agent deserving further investigation.
Collapse
Affiliation(s)
- Huan Tang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Yongguang Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Dan Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Suhong Fu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Minghai Tang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Li Wan
- School of Pharmacy, Chengdu University of TCM, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, PR China
| | - Kai Chen
- School of Chemical Engineering, Sichuan University, Chengdu, 610041, PR China
| | - Zhuowei Liu
- Guang dong Zhongsheng Pharmaceutical Co., Ltd, Dongguan, Guangdong, 523325, PR China
| | - Linlin Xue
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Aihua Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Haoyu Ye
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China.
| | - Lijuan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China; School of Pharmacy, Chengdu University of TCM, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, PR China.
| |
Collapse
|
4
|
Kaufmann D, Kaur Dogra A, Tahrani A, Herrmann F, Wink M. Extracts from Traditional Chinese Medicinal Plants Inhibit Acetylcholinesterase, a Known Alzheimer's Disease Target. Molecules 2016; 21:molecules21091161. [PMID: 27589716 PMCID: PMC6273583 DOI: 10.3390/molecules21091161] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 08/24/2016] [Accepted: 08/27/2016] [Indexed: 12/20/2022] Open
Abstract
Inhibition of acetylcholinesterase (AChE) is a common treatment for early stages of the most general form of dementia, Alzheimer's Disease (AD). In this study, methanol, dichloromethane and aqueous crude extracts from 80 Traditional Chinese Medical (TCM) plants were tested for their in vitro anti-acetylcholinesterase activity based on Ellman's colorimetric assay. All three extracts of Berberis bealei (formerly Mahonia bealei), Coptis chinensis and Phellodendron chinense, which contain numerous isoquinoline alkaloids, substantially inhibited AChE. The methanol and aqueous extracts of Coptis chinensis showed IC50 values of 0.031 µg/mL and 2.5 µg/mL, therefore having an up to 100-fold stronger AChE inhibitory activity than the already known AChE inhibitor galantamine (IC50 = 4.33 µg/mL). Combinations of individual alkaloids berberine, coptisine and palmatine resulted in a synergistic enhancement of ACh inhibition. Therefore, the mode of AChE inhibition of crude extracts of Coptis chinensis, Berberis bealei and Phellodendron chinense is probably due to of this synergism of isoquinoline alkaloids. All extracts were also tested for their cytotoxicity in COS7 cells and none of the most active extracts was cytotoxic at the concentrations which inhibit AChE. Based on these results it can be stated that some TCM plants inhibit AChE via synergistic interaction of their secondary metabolites. The possibility to isolate pure lead compounds from the crude extracts or to administer these as nutraceuticals or as cheap alternative to drugs in third world countries make TCM plants a versatile source of natural inhibitors of AChE.
Collapse
Affiliation(s)
- Dorothea Kaufmann
- Institute of Pharmacy and Molecular Biotechnology, Department of Biology, Ruprecht Karls University Heidelberg, Heidelberg 69120, Germany.
| | - Anudeep Kaur Dogra
- Centre for Pharmacognosy and Phytotherapy, The School of Pharmacy, University of London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Ahmad Tahrani
- Institute of Pharmacy and Molecular Biotechnology, Department of Biology, Ruprecht Karls University Heidelberg, Heidelberg 69120, Germany.
| | - Florian Herrmann
- Institute of Pharmacy and Molecular Biotechnology, Department of Biology, Ruprecht Karls University Heidelberg, Heidelberg 69120, Germany.
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Department of Biology, Ruprecht Karls University Heidelberg, Heidelberg 69120, Germany.
| |
Collapse
|
5
|
Hu X, Sui X, Wang Y, Wang W, Wu H, Zhang F, Tan Y, Zhang F. Sesquiterpene-neolignans from Manglietia hookeri. Nat Prod Res 2015; 30:1477-83. [DOI: 10.1080/14786419.2015.1110703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Xiaoqing Hu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, P.R. China
| | - Xianjin Sui
- College of Life and Environmental Sciences, Minzu University of China, Beijing, P.R. China
| | - Yijing Wang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, P.R. China
| | - Wenshu Wang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, P.R. China
- Beijing Engineering Research Center of Food Environment and Health, Minzu University of China, Beijing, P.R. China
| | - Haibo Wu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, P.R. China
- Beijing Engineering Research Center of Food Environment and Health, Minzu University of China, Beijing, P.R. China
| | - Feiran Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, P.R. China
| | - Yuna Tan
- College of Life and Environmental Sciences, Minzu University of China, Beijing, P.R. China
| | - Feng Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, P.R. China
| |
Collapse
|
6
|
Chen LC, Lee WS. P27/Kip1 is responsible for magnolol-induced U373 apoptosis in vitro and in vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:2811-2819. [PMID: 23448150 DOI: 10.1021/jf400542m] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Previously, we demonstrated that magnolol, a hydroxylated biphenyl compound isolated from the bark of Magnolia officinalis, at low concentrations (3-10 μM) exerted an antiproliferation effect in colon cancer, hepatoma, and glioblastoma (U373) cell lines through upregulation of the p21/Cip1 protein. Magnolol at a higher concentration of 100 μM, however, induced apoptosis and upregulated p27/Kip1 expression in U373. In the present study, we further studied whether the increased p27/Kip1 expression contributes to the magnolol-induced apoptosis in U373. Our data show that knock-down of p27/Kip1 expression significantly suppressed the magnolol-induced apoptosis, suggesting that p27/Kip1 might play an important role in the regulation of magnolol-induced apoptosis. This notion was further supported by demonstrating that magnolol induced an increase of the caspase activity in U373 in vitro and in vivo, and these effects were abolished by pretransfection of the cell with p27/Kip1 siRNA. To delineate the possible signaling pathways involved in the magnolol-induced increases of p27/Kip1 expression and apoptosis, we found that magnolol (100 μM) increased the levels of phosphorylated cSrc (p-cSrc), p-ERK, p-p38 MAP kinase (p-p38 MAPK), and p-AKT but not p-JNK in U373. Moreover, pretreatment of U373 with a cSrc inhibitor (PP2), a PI3K inhibitor (LY294002), an ERK inhibitor (PD98059), or a p38 MAPK inhibitor (SB203580) but not a JNK inhibitor (SP600125) significantly reduced the magnolol-induced increases of p27/Kip1 protein levels and apoptosis. Taken together, our data suggest that magnolol at a higher concentration of 100 μM induced apopotosis in U373 cells through cSrc-mediated upregulation of p27/Kip1.
Collapse
Affiliation(s)
- Li-Ching Chen
- Graduate Institutes of Medical Sciences, College of Medicine, ‡Department of Physiology, School of Medicine, College of Medicine, and §Cancer Research Center, Taipei Medical University , Taipei 110, Taiwan
| | | |
Collapse
|
7
|
Kang YJ, Park HJ, Chung HJ, Min HY, Park EJ, Lee MA, Shin Y, Lee SK. Wnt/β-catenin signaling mediates the antitumor activity of magnolol in colorectal cancer cells. Mol Pharmacol 2012; 82:168-77. [PMID: 22550094 DOI: 10.1124/mol.112.078535] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abnormal activation of the canonical Wnt/β-catenin pathway and up-regulation of the β-catenin/T-cell factor (TCF) response to transcriptional signaling play a critical role early in colorectal carcinogenesis. Therefore, Wnt/β-catenin signaling is considered an attractive target for cancer chemotherapeutic or chemopreventive agents. Small molecules derived from the natural products were used in our cell-based reporter gene assay to identify potential inhibitors of Wnt/β-catenin signaling. Magnolol, a neolignan from the cortex of Magnolia obovata, was identified as a promising candidate because it effectively inhibited β-catenin/TCF reporter gene (TOPflash) activity. Magnolol also suppressed Wnt3a-induced β-catenin translocation and subsequent target gene expression in human embryonic kidney 293 cells. To further investigate the precise mechanisms of action in the regulation of Wnt/β-catenin signaling by magnolol, we performed Western blot analysis, real-time reverse transcriptase-polymerase chain reactions, and an electrophoretic mobility shift assay in human colon cancer cells with aberrantly activated Wnt/β-catenin signaling. Magnolol inhibited the nuclear translocation of β-catenin and significantly suppressed the binding of β-catenin/TCF complexes onto their specific DNA-binding sites in the nucleus. These events led to the down-regulation of β-catenin/TCF-targeted downstream genes such as c-myc, matrix metalloproteinase-7, and urokinase-type plasminogen activator in SW480 and HCT116 human colon cancer cells. In addition, magnolol inhibited the invasion and motility of tumor cells and exhibited antitumor activity in a xenograft nude mouse model bearing HCT116 cells. These findings suggest that the growth inhibition of magnolol against human colon cancer cells can be partly attributed to the regulation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- You-Jin Kang
- College of Pharmacy, Seoul National University, San 56-1, Sillim-dong, Gwanak-gu, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Chen YH, Huang PH, Lin FY, Chen WC, Chen YL, Yin WH, Man KM, Liu PL. Magnolol: A multifunctional compound isolated from the Chinese medicinal plant Magnolia officinalis. Eur J Integr Med 2011. [DOI: 10.1016/j.eujim.2011.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Seo JU, Kim MH, Kim HM, Jeong HJ. Anticancer potential of magnolol for lung cancer treatment. Arch Pharm Res 2011; 34:625-33. [DOI: 10.1007/s12272-011-0413-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 11/29/2010] [Accepted: 12/29/2010] [Indexed: 12/22/2022]
|
10
|
Xu H, Tang W, Du G, Kokudo N. Targeting apoptosis pathways in cancer with magnolol and honokiol, bioactive constituents of the bark of Magnolia officinalis . Drug Discov Ther 2011; 5:202-10. [DOI: 10.5582/ddt.2011.v5.5.202] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Huanli Xu
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, the University of Tokyo
- National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College
| | - Wei Tang
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, the University of Tokyo
| | - Guanhua Du
- National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College
| | - Norihiro Kokudo
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, the University of Tokyo
| |
Collapse
|
11
|
Magnolol induces apoptosis via activation of both mitochondrial and death receptor pathways in A375-S2 cells. Arch Pharm Res 2010; 32:1789-94. [DOI: 10.1007/s12272-009-2218-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 09/29/2009] [Accepted: 10/08/2009] [Indexed: 11/27/2022]
|
12
|
Lee DH, Szczepanski MJ, Lee YJ. Magnolol induces apoptosis via inhibiting the EGFR/PI3K/Akt signaling pathway in human prostate cancer cells. J Cell Biochem 2009; 106:1113-22. [PMID: 19229860 DOI: 10.1002/jcb.22098] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We observed that treatment of prostate cancer cells for 24 h with magnolol, a phenolic component extracted from the root and stem bark of the oriental herb Magnolia officinalis, induced apoptotic cell death in a dose- and time-dependent manner. A sustained inhibition of the major survival signal, Akt, occurred in magnolol-treated cells. Treatment of PC-3 cells with an apoptosis-inducing concentration of magnolol (60 microM) resulted in a rapid decrease in the level of phosphorylated Akt leading to inhibition of its kinase activity. Magnolol treatment (60 microM) also caused a decrease in Ser((136)) phosphorylation of Bad (a proapoptotic protein), which is a downstream target of Akt. Protein interaction assay revealed that Bcl-xL, an anti-apoptotic protein, was associated with Bad during treatment with magnolol. We also observed that during treatment with magnolol, translocation of Bax to the mitochondrial membrane occurred and the translocation was accompanied by cytochrome c release, and cleavage of procaspase-8, -9, -3, and poly(ADP-ribose) polymerase (PARP). Similar results were observed in human colon cancer HCT116Bax(+/-) cell line, but not HCT116Bax(-/-) cell line. Interestingly, at similar concentrations (60 microM), magnolol treatment did not affect the viability of normal human prostate epithelial cell (PrEC) line. We also observed that apoptotic cell death by magnolol was associated with significant inhibition of pEGFR, pPI3K, and pAkt. These results suggest that one of the mechanisms of the apoptotic activity of magnolol involves its effect on epidermal growth factor receptor (EGFR)-mediated signaling transduction pathways.
Collapse
Affiliation(s)
- Dae-Hee Lee
- Department of Surgery and Pharmacology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
13
|
Lim HK, Moon JY, Kim H, Cho M, Cho SK. Induction of apoptosis in U937 human leukaemia cells by the hexane fraction of an extract of immature Citrus grandis Osbeck fruits. Food Chem 2009. [DOI: 10.1016/j.foodchem.2008.10.088] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Chen C, Zhang Y, Li Y, Chu H, Xi Y. In vivoandin vitroanti-tumour response of selenium-protein polysaccharide extracted from rich seleniumAgaricus blazei. FOOD AGR IMMUNOL 2007. [DOI: 10.1080/09540100701616548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
15
|
Tse AKW, Wan CK, Zhu GY, Shen XL, Cheung HY, Yang M, Fong WF. Magnolol suppresses NF-kappaB activation and NF-kappaB regulated gene expression through inhibition of IkappaB kinase activation. Mol Immunol 2007; 44:2647-58. [PMID: 17240450 DOI: 10.1016/j.molimm.2006.12.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Accepted: 12/10/2006] [Indexed: 12/31/2022]
Abstract
The mis-regulation of nuclear factor-kappa B (NF-kappaB) signal pathway is involved in a variety of inflammatory diseases that leds to the production of inflammatory mediators. Our studies using human U937 promonocytes cells suggested that magnolol, a low molecular weight lignan isolated from the medicinal plant Magnolia officinalis, differentially down-regulated the pharmacologically induced expression of NF-kappaB-regulated inflammatory gene products MMP-9, IL-8, MCP-1, MIP-1alpha, TNF-alpha. Pre-treatment of magnolol blocked TNF-alpha-induced NF-kappaB activation in different cell types as evidenced by EMSA. Magnolol did not directly affect the binding of p65/p50 heterodimer to DNA. Immunoblot analysis demonstrated that magnolol inhibited the TNF-alpha-stimulated phosphorylation and degradation of the cytosolic NF-kappaB inhibitor IkappaBalpha and the effects were dose-dependent. Mechanistically, a non-radioactive IkappaB kinases (IKK) assay using immunoprecipitated IKKs protein demonstrated that magnolol inhibited both intrinsic and TNF-alpha-stimulated IKK activity, thus suggesting a critical role of magnolol in abrogating the phosphorylation and degradation of IkappaBalpha. The involvement of IKK was further verified in a HeLa cell NF-kappaB-dependent luciferase reporter system. In this system magnolol suppressed luciferase expression stimulated by TNF-alpha and by the transient transfection and expression of NIK (NF-kappaB-inducing kinase), wild type IKKbeta, constitutively active IKKalpha and IKKbeta, or the p65 subunit. Magnolol was also found to inhibit the nuclear translocation and phosphorylation of p65 subunit of NF-kappaB. In line with the observation that NF-kappaB activation may up-regulate anti-apoptotic genes, it was shown in U937 cells that magnolol enhanced TNF-alpha-induced apoptotic cell death. Our results suggest that magnolol or its derivatives may have potential anti-inflammatory actions through IKK inactivation.
Collapse
Affiliation(s)
- Anfernee Kai-Wing Tse
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Huang SH, Chen Y, Tung PY, Wu JC, Chen KH, Wu JM, Wang SM. Mechanisms for the magnolol-induced cell death of CGTH W-2 thyroid carcinoma cells. J Cell Biochem 2007; 101:1011-22. [PMID: 17390340 DOI: 10.1002/jcb.21100] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Magnolol, a substance purified from the bark of Magnolia officialis, inhibits cell proliferation and induces apoptosis in a variety of cancer cells. The aim of this study was to study the effects of magnolol on CGTH W-2 thyroid carcinoma cells. After 24 h treatment with 80 microM magnolol in serum-containing medium, about 50% of the cells exhibited apoptotic features and 20% necrotic features. Cytochrome-c staining was diffused in the cytoplasm of the apoptotic cells, but restricted to the mitochondria in control cells. Western blot analyses showed an increase in levels of activated caspases (caspase-3 and -7) and of cleaved poly (ADP-ribose) polymerase (PARP) by magnolol. Concomitantly, immunostaining for apoptosis inducing factor (AIF) showed a time-dependent translocation from the mitochondria to the nucleus. Inhibition of either PARP or caspase activity blocked magnolol-induced apoptosis, supporting the involvement of the caspases and PARP. In addition, magnolol activated phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and inactivated Akt by decreasing levels of phosphorylated PTEN and phosphorylated Akt. These data suggest that magnolol promoted apoptosis probably by alleviating the inhibitory effect of Akt on caspase 9. Furthermore, inhibition of PARP activity, but not of caspase activity, completely prevented magnolol-induced necrosis, suggesting the notion that it might be caused by depletion of intracellular ATP levels due to PARP activation. These results show that magnolol initiates apoptosis via the cytochrome-c/caspase 3/PARP/AIF and PTEN/Akt/caspase 9/PARP pathways and necrosis via PARP activation.
Collapse
Affiliation(s)
- Shih-Horng Huang
- Department of Surgery and Division of General Surgery, Far Eastern Memorial Hospital, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
17
|
Patočka J, Jakl J, Strunecká A. Expectations of biologically active compounds of the genus Magnolia in biomedicine. J Appl Biomed 2006. [DOI: 10.32725/jab.2006.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
18
|
Chien CL, Chen YC, Chang MF, Greenberg AS, Wang SM. Magnolol induces the distributional changes of p160 and adipose differentiation-related protein in adrenal cells. Histochem Cell Biol 2005; 123:429-39. [PMID: 15844002 DOI: 10.1007/s00418-005-0771-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2005] [Indexed: 11/26/2022]
Abstract
Magnolol stimulates adrenal steroidogenesis and induces the distributional changes of p160 and adipose differentiation-related protein (ADRP) in rat adrenal cells. This study investigated the underlying signaling mechanisms involved in these processes. Magnolol (30 microM) caused a time-dependent increase in the phosphorylation of extracellular signal-related kinase (ERK) in cultured adrenal cells. The following evidence supports a link between ERK activation and p160 translocation. First, the magnolol-induced redistribution of p160 from the lipid droplet surface to the cytosol, resulting in the decrease in the percentages of p160-positive cells, and this decrease in p160-positive cells was completely blocked by pretreatment with either of the MAPK-ERK kinase (MEK) inhibitors PD98059 or U0126. Second, magnolol did not significantly decrease total p160 protein levels but caused an increase in threonine phosphorylation of p160, which reached a maximum after 5 min of magnolol treatment, and this magnolol-induced phosphorylation of p160 was prevented by pretreatment with U0126, suggesting the involvement of ERK. In addition, magnolol decreased both ADRP immunostaining intensity at the lipid droplet surface and the percentage of ADRP-positive cells. This was further confirmed biochemically by the decrease in ADRP levels in total cell homogenates and in lipid droplet fractions. Magnolol-induced decrease in ADRP staining at the lipid droplet surface was not affected by pretreatment with PD98059 or U0126, indicating that ERK signaling was not involved in this event. Furthermore, treatment with 30 microM magnolol for 6 h resulted in about 50% decrease in ADRP protein level. Therefore, decreased protein levels of p160 and ADRP at the lipid droplet surface induced by magnolol were mediated via two different mechanisms: phosphorylation of p160 and downregulation of ADRP expression, respectively.
Collapse
Affiliation(s)
- Chung-Liang Chien
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, 1-1 Jen-Ai Road, Taipei, 100, Taiwan
| | | | | | | | | |
Collapse
|
19
|
Falluel-Morel A, Aubert N, Vaudry D, Basille M, Fontaine M, Fournier A, Vaudry H, Gonzalez BJ. Opposite regulation of the mitochondrial apoptotic pathway by C2-ceramide and PACAP through a MAP-kinase-dependent mechanism in cerebellar granule cells. J Neurochem 2005; 91:1231-43. [PMID: 15569266 DOI: 10.1111/j.1471-4159.2004.02810.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The sphingomyelin-derived messenger ceramides provoke neuronal apoptosis through caspase-3 activation, while the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) promotes neuronal survival and inhibits caspase-3 activity. However, the mechanisms leading to the opposite regulation of caspase-3 by C2-ceramide and PACAP are currently unknown. Here, we show that PACAP prevents C2-ceramide-induced inhibition of mitochondrial potential and C2-ceramide-evoked cytochrome c release. C2-ceramide stimulated Bax expression, but had no effect on Bcl-2, while PACAP abrogated the action of C2-ceramide on Bax and stimulated Bcl-2 expression. The effects of C2-ceramide and PACAP on Bax and Bcl-2 were blocked, respectively, by the JNK inhibitor L-JNKI1 and the MEK inhibitor U0126. L-JNKI1 prevented the alteration of mitochondria induced by C2-ceramide while U0126 suppressed the protective effect of PACAP against the deleterious action of C2-ceramide on mitochondrial potential. Moreover, L-JNKI1 inhibited the stimulatory effect of C2-ceramide on caspase-9 and -3 and prevented C2-ceramide-induced cell death. U0126 blocked PACAP-induced Bcl-2 expression, abrogated the inhibitory effect of PACAP on ceramide-induced caspase-9 activity, and promoted granule cell death. The present study reveals that C2-ceramide and PACAP exert opposite effects on Bax and Bcl-2 through, respectively, JNK- and ERK-dependent mechanisms. These data indicate that the mitochondrial pathway plays a pivotal role in the pro- and anti-apoptotic effects of C2-ceramide and PACAP.
Collapse
Affiliation(s)
- Anthony Falluel-Morel
- European Institute for Peptide Research (IFRMP 23), Laboratory of Cellular and Molecular Neuroendocrinology, University of Rouen, Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | |
Collapse
|
20
|
KANG KYOUNGAH, LIM HEEKYOUNG, KIM SEUNGUK, KIM YEONGWAN, KIM WONTAEK, CHUNG HASOOK, CHOO MINKYUNG, KIM DONGHYUN, KIM HEESUN, SHIM MIJA, CHUNG MYUNGHEE, HYUN JINWON. INDUCTION OF APOPTOSIS BY GINSENG SAPONIN METABOLITE IN U937 HUMAN MONOCYTIC LEUKEMIA CELLS. J Food Biochem 2005. [DOI: 10.1111/j.1745-4514.2005.00001.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Fong WF, Tse AKW, Poon KH, Wang C. Magnolol and honokiol enhance HL-60 human leukemia cell differentiation induced by 1,25-dihydroxyvitamin D3 and retinoic acid. Int J Biochem Cell Biol 2005; 37:427-41. [PMID: 15474987 DOI: 10.1016/j.biocel.2004.05.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Revised: 05/14/2004] [Accepted: 05/17/2004] [Indexed: 10/26/2022]
Abstract
Magnolol (MG) and honokiol (HK), two lignans showing anti-inflammatory and anti-oxidant properties and abundantly available in the medicinal plants Magnolia officinalis and M. obovata, were found to enhance HL-60 cell differentiation initiated by low doses of 1,25-dihydroxyvitamin D3 (VD3) and all-trans-retinoic acid (ATRA). Cells expressing membrane differentiation markers CD11b and CD14 were increased from 4% in non-treated control to 8-16% after being treated with 10-30 microM MG or HK. When added to 1 nM VD3, MG or HK increased markers expressing cells from approximately 30% to 50-80%. When either MG or HK was added to 20 nM ATRA, only CD11b, but not CD14, expressing cells were increased from 9% to 24-70%. Under the same conditions, adding MG or HK to VD3 or ATRA treatment further enlarged the G0/G1 cell population and increased the expression of p27(Kip1), a cyclin-dependent kinase inhibitor. Pharmacological studies using PD098059 (a MEK inhibitor), SB203580 (a p38 MAPK inhibitor) and SP600125 (a JNK inhibitor) suggested that the MEK pathway was important for VD3 and ATRA-induced differentiation and also its enhancement by MG or HK, the p38 MAPK pathway had a inhibitory effect and the JNK pathway had little influence. It is evident that MG and HK are potential differentiation enhancing agents which may allow the use of low doses of VD3 and ATRA in the treatment for acute promyelocytic leukemia.
Collapse
Affiliation(s)
- Wang-Fun Fong
- Bioactive Products Research Group, Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, China.
| | | | | | | |
Collapse
|