1
|
McQuerry JA, Chen J, Chang JT, Bild AH. Tepoxalin increases chemotherapy efficacy in drug-resistant breast cancer cells overexpressing the multidrug transporter gene ABCB1. Transl Oncol 2021; 14:101181. [PMID: 34298440 PMCID: PMC8322466 DOI: 10.1016/j.tranon.2021.101181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022] Open
Abstract
The COX-2 encoding gene PTGS2 is up-regulated upon ABCB1 overexpression in mammary epithelial cells. The 5-LOX, COX-1/2 inhibitor tepoxalin plus chemotherapy improves treatment efficacy in ABCB1-expressing cells. Tepoxalin reduces chemotherapy-induced selection for drug-resistant ABCB1-expressing cells.
Effective cancer chemotherapy treatment requires both therapy delivery and retention by malignant cells. Cancer cell overexpression of the multidrug transmembrane transporter gene ABCB1 (MDR1, multi-drug resistance protein 1) thwarts therapy retention, leading to a drug-resistant phenotype. We explored the phenotypic impact of ABCB1 overexpression in normal human mammary epithelial cells (HMECs) via acute adenoviral delivery and in breast cancer cell lines with stable integration of inducible ABCB1 expression. One hundred sixty-two genes were differentially expressed between ABCB1-expressing and GFP-expressing HMECs, including the gene encoding the cyclooxygenase-2 protein, PTGS2. Several breast cancer cell lines with inducible ABCB1 expression demonstrated sensitivity to the 5-lipoxygenase, cyclooxygenase-1/2 inhibitor tepoxalin in two-dimensional drug response assays, and combination treatment of tepoxalin either with chemotherapies or with histone deacetylase (HDAC) inhibitors improved therapeutic efficacy in these lines. Moreover, selection for the ABCB1-expressing cell population was reduced in three-dimensional co-cultures of ABCB1-expressing and GFP-expressing cells when chemotherapy was given in combination with tepoxalin. Further study is warranted to ascertain the clinical potential of tepoxalin, an FDA-approved therapeutic for use in domesticated mammals, to restore chemosensitivity and improve drug response in patients with ABCB1-overexpressing drug-resistant breast cancers.
Collapse
Affiliation(s)
- Jasmine A McQuerry
- Department of Oncological Sciences, School of Medicine, University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT 84112, USA; Department of Medical Oncology and Therapeutics Research, City of Hope, 1218 S Fifth Avenue, Monrovia, CA 91016, USA
| | - Jinfeng Chen
- Department of Medical Oncology and Therapeutics Research, City of Hope, 1218 S Fifth Avenue, Monrovia, CA 91016, USA
| | - Jeffrey T Chang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Andrea H Bild
- Department of Medical Oncology and Therapeutics Research, City of Hope, 1218 S Fifth Avenue, Monrovia, CA 91016, USA.
| |
Collapse
|
2
|
Quan X, Du H, Xu J, Hou X, Gong X, Wu Y, Zhou Y, Jiang J, Lu L, Yuan S, Yang X, Shi L, Sun L. Novel Quinoline Compound Derivatives of NSC23925 as Potent Reversal Agents Against P-Glycoprotein-Mediated Multidrug Resistance. Front Chem 2020; 7:820. [PMID: 31921759 PMCID: PMC6931887 DOI: 10.3389/fchem.2019.00820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 11/12/2019] [Indexed: 12/02/2022] Open
Abstract
Multidrug resistance is a serious problem and a common cause of cancer treatment failure, leading to patient death. Although numerous reversal resistance inhibitors have been evaluated in preclinical or clinical trials, efficient and low-toxicity reversal agents have not been identified. In this study, a series of novel quinoline compound derivatives from NSC23925 were designed to inhibit P-glycoprotein (P-gp). Among them, YS-7a showed a stronger inhibitory effect against P-gp than verapamil, as a positive control, when co-incubated with chemotherapy drugs at minimally cytotoxic concentrations. YS-7a suppressed the P-gp transport function without affecting the expression of P-gp but stimulated the ATPase activity of P-gp in a dose-dependent manner. Next, molecular docking was used to predict the six most probable binding sites, namely, SER270, VAL273, VAL274, ILE354, VAL357, and PHE390. Moreover, YS-7a had no effect on cytochrome P450 3A4 activity and showed little toxicity to normal cells. In addition, combined treatment of YS-7a with vincristine showed a better inhibitory effect than the positive control verapamil in vivo without a negative effect on mouse weight. Overall, our results showed that YS-7a could reverse cancer multidrug resistance through the inhibition of P-gp transport function in vitro and in vivo, suggesting that YS-7a may be a novel therapeutic agent.
Collapse
Affiliation(s)
- Xingping Quan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Hongzhi Du
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Jingjing Xu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Xiaoying Hou
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Xiaofeng Gong
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Yao Wu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Yuqi Zhou
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Jingwei Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Ligong Lu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Shengtao Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Xiangyu Yang
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Lei Shi
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Li Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
3
|
Freimund AE, Beach JA, Christie EL, Bowtell DD. Mechanisms of Drug Resistance in High-Grade Serous Ovarian Cancer. Hematol Oncol Clin North Am 2018; 32:983-996. [DOI: 10.1016/j.hoc.2018.07.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
4
|
Targeted inhibitors of P-glycoprotein increase chemotherapeutic-induced mortality of multidrug resistant tumor cells. Sci Rep 2018; 8:967. [PMID: 29343829 PMCID: PMC5772368 DOI: 10.1038/s41598-018-19325-x] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/27/2017] [Indexed: 12/17/2022] Open
Abstract
Overexpression of ATP-binding cassette (ABC) transporters is often linked to multidrug resistance (MDR) in cancer chemotherapies. P-glycoprotein (P-gp) is one of the best studied drug transporters associated with MDR. There are currently no approved drugs available for clinical use in cancer chemotherapies to reverse MDR by inhibiting P-glycoprotein. Using computational studies, we previously identified several compounds that inhibit P-gp by targeting its nucleotide binding domain and avoiding its drug binding domains. Several of these compounds showed successful MDR reversal when tested on a drug resistant prostate cancer cell line. Using conventional two-dimensional cell culture of MDR ovarian and prostate cancer cells and three dimensional prostate cancer microtumor spheroids, we demonstrated here that co-administration with chemotherapeutics significantly decreased cell viability and survival as well as cell motility. The P-gp inhibitors were not observed to be toxic on their own. The inhibitors increased cellular retention of chemotherapeutics and reporter compounds known to be transport substrates of P-gp. We also showed that these compounds are not transport substrates of P-gp and that two of the three inhibit P-gp, but not the closely related ABC transporter, ABCG2/BCRP. The results presented suggest that these P-gp inhibitors may be promising leads for future drug development.
Collapse
|
5
|
Yuan WQ, Zhang RR, Wang J, Ma Y, Li WX, Jiang RW, Cai SH. Asclepiasterol, a novel C21 steroidal glycoside derived from Asclepias curassavica, reverses tumor multidrug resistance by down-regulating P-glycoprotein expression. Oncotarget 2017; 7:31466-83. [PMID: 27129170 PMCID: PMC5058771 DOI: 10.18632/oncotarget.8965] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/02/2016] [Indexed: 12/12/2022] Open
Abstract
Multidrug resistance (MDR) mediated by P-glycoprotein (P-gp) is a major cause of cancer therapy failure. In this study, we identified a novel C21 steroidal glycoside, asclepiasterol, capable of reversing P-gp-mediated MDR. Asclepiasterol (2.5 and 5.0μM) enhanced the cytotoxity of P-gp substrate anticancer drugs in MCF-7/ADR and HepG-2/ADM cells. MDR cells were more responsive to paclitaxel in the presence of asclepiasterol, and colony formation of MDR cells was only reduced upon treatment with a combination of asclepiasterol and doxorubicin. Consistent with these findings, asclepiasterol treatment increased the intracellular accumulation of doxorubicin and rhodamine 123 (Rh123) in MDR cells. Asclepiasterol decreased expression of P-gp protein without stimulating or suppressing MDR1 mRNA levels. Asclepiasterol-mediated P-gp suppression caused inhibition of ERK1/2 phosphorylation in two MDR cell types, and EGF, an activator of the MAPK/ERK pathway, reversed the P-gp down-regulation, implicating the MAPK/ERK pathway in asclepiasterol-mediated P-gp down-regulation. These results suggest that asclepiasterol could be developed as a modulator for reversing P-gp-mediated MDR in P-gp-overexpressing cancer variants.
Collapse
Affiliation(s)
- Wei-Qi Yuan
- College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, 511430, P. R. China
| | - Rong-Rong Zhang
- College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Jun Wang
- College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Yan Ma
- Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, 511430, P. R. China
| | - Wen-Xue Li
- Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, 511430, P. R. China
| | - Ren-Wang Jiang
- College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Shao-Hui Cai
- College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
6
|
Wang F, Chang JTH, Zhang Z, Morrison G, Nath A, Bhutra S, Huang RS. Discovering drugs to overcome chemoresistance in ovarian cancers based on the cancer genome atlas tumor transcriptome profile. Oncotarget 2017; 8:115102-115113. [PMID: 29383145 PMCID: PMC5777757 DOI: 10.18632/oncotarget.22870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/25/2017] [Indexed: 12/20/2022] Open
Abstract
Ovarian cancer accounts for the highest mortality among gynecologic cancers, mainly due to intrinsic or acquired chemoresistance. While mechanistic-based methods have been used to identify compounds that can overcome chemoresistance, an effective comprehensive drug screening has yet to be developed. We applied a transcriptome based drug sensitivity prediction method, to the Cancer Genome Atlas (TCGA) ovarian cancer dataset to impute patient tumor response to over 100 different drugs. By stratifying patients based on their predicted response to standard of care (SOC) chemotherapy, we identified drugs that are likely more sensitive in SOC resistant ovarian tumors. Five drugs (ABT-888, BIBW2992, gefitinib, AZD6244 and lenalidomide) exhibit higher efficacy in SOC resistant ovarian tumors when multi-platform of transcriptome profiling methods were employed. Additional in vitro and clinical sample validations were carried out and verified the effectiveness of these agents. Our candidate drugs hold great potential to improve clinical outcome of chemoresistant ovarian cancer.
Collapse
Affiliation(s)
- Fan Wang
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Jeremy T-H Chang
- Biological Sciences Collegiate Division, University of Chicago, Chicago, IL, USA
| | - Zhenyu Zhang
- Center for Data Intensive Science, University of Chicago, Chicago, IL, USA
| | - Gladys Morrison
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Aritro Nath
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA.,Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Steven Bhutra
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Rong Stephanie Huang
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA.,Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
7
|
Brasseur K, Gévry N, Asselin E. Chemoresistance and targeted therapies in ovarian and endometrial cancers. Oncotarget 2017; 8:4008-4042. [PMID: 28008141 PMCID: PMC5354810 DOI: 10.18632/oncotarget.14021] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/30/2016] [Indexed: 02/06/2023] Open
Abstract
Gynecological cancers are known for being very aggressive at their advanced stages. Indeed, the survival rate of both ovarian and endometrial cancers is very low when diagnosed lately and the success rate of current chemotherapy regimens is not very efficient. One of the main reasons for this low success rate is the acquired chemoresistance of these cancers during their progression. The mechanisms responsible for this acquired chemoresistance are numerous, including efflux pumps, repair mechanisms, survival pathways (PI3K/AKT, MAPK, EGFR, mTOR, estrogen signaling) and tumor suppressors (P53 and Par-4). To overcome these resistances, a new type of therapy has emerged named targeted therapy. The principle of targeted therapy is simple, taking advantage of changes acquired in malignant cancer cells (receptors, proteins, mechanisms) by using compounds specifically targeting these, thus limiting their action on healthy cells. Targeted therapies are emerging and many clinical trials targeting these pathways, frequently involved in chemoresistance, have been tested on gynecological cancers. Despite some targets being less efficient than expected as mono-therapies, the combination of compounds seems to be the promising avenue. For instance, we demonstrate using ChIP-seq analysis that estrogen downregulate tumor suppressor Par-4 in hormone-dependent cells by directly binding to its DNA regulatory elements and inhibiting estrogen signaling could reinstate Par-4 apoptosis-inducing abilities. This review will focus on the chemoresistance mechanisms and the clinical trials of targeted therapies associated with these, specifically for endometrial and ovarian cancers.
Collapse
Affiliation(s)
- Kevin Brasseur
- Research Group in Cellular Signaling, Department of Medical Biology, Canada Research Chair in Molecular Gyneco-Oncology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Nicolas Gévry
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Boulevard de l’Université, Sherbrooke, QC, Canada
| | - Eric Asselin
- Research Group in Cellular Signaling, Department of Medical Biology, Canada Research Chair in Molecular Gyneco-Oncology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| |
Collapse
|
8
|
Patel NR, Pattni BS, Abouzeid AH, Torchilin VP. Nanopreparations to overcome multidrug resistance in cancer. Adv Drug Deliv Rev 2013; 65:1748-62. [PMID: 23973912 DOI: 10.1016/j.addr.2013.08.004] [Citation(s) in RCA: 257] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 08/02/2013] [Indexed: 01/08/2023]
Abstract
Multidrug resistance is the most widely exploited phenomenon by which cancer eludes chemotherapy. Broad variety of factors, ranging from the cellular ones, such as over-expression of efflux transporters, defective apoptotic machineries, and altered molecular targets, to the physiological factors such as higher interstitial fluid pressure, low extracellular pH, and formation of irregular tumor vasculature are responsible for multidrug resistance. A combination of various undesirable factors associated with biological surroundings together with poor solubility and instability of many potential therapeutic small & large molecules within the biological systems and systemic toxicity of chemotherapeutic agents has necessitated the need for nano-preparations to optimize drug delivery. The physiology of solid tumors presents numerous challenges for successful therapy. However, it also offers unique opportunities for the use of nanotechnology. Nanoparticles, up to 400 nm in size, have shown great promise for carrying, protecting and delivering potential therapeutic molecules with diverse physiological properties. In this review, various factors responsible for the MDR and the use of nanotechnology to overcome the MDR, the use of spheroid culture as well as the current technique of producing microtumor tissues in vitro are discussed in detail.
Collapse
|
9
|
Mao Z, Bian G, Sheng W, He S, Yang J, Dong X. Adenovirus-mediated IL-24 expression enhances the chemosensitivity of multidrug-resistantgastric cancer cells to cisplatin. Oncol Rep 2013; 30:2288-96. [PMID: 23982423 DOI: 10.3892/or.2013.2695] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/02/2013] [Indexed: 11/06/2022] Open
Abstract
Chemotherapy is one of the commonly used strategies in gastric cancer, especially for unresectable patients, but it becomes insensitive to repeated administration of even the most effective chemotherapeutic agents, such as cisplatin. Given this, there is an urgent need for developing chemosensitizers to overcome acquired resistance to chemotherapeutic agents. Interleukin-24 (IL-24), a cytokine-tumor suppressor, shows broad-spectrum and tumor-specific antitumor properties, and studies have demonstrated that IL-24 could conspicuously restore the chemosensitivity of MDR cancer cells. Herein, we developed a human MDR gastric cancer cell subline, SGC7901/CDDP, by repeated selection of resistant clones of parental sensitive cells, and further investigated the chemosensitizing effects and the underlying mechanisms of adenovirus-mediated IL-24 (Ad-IL-24) gene therapy plus CDDP for the human MDR gastric cancer cells SGC7901/CDDP in vitro and in vivo. The results demonstrated that the expression of IL-24 mRNA and protein was profoundly downregulated in SGC7901/CDDP cells by RT-PCR and western blot analysis. In addition, the cell viability assay showed that the IC50 of SGC7901/CDDP cells to CDDP, 5-FU, ADM and MTX was significantly enhanced compared to parental sensitive SGC7901 cells. Ad-IL-24-induced IL-24 overexpression decreased the IC50 of the above agents (not MTX), induced G2/M cell cycle arrest, and Ad-IL-24 plus CDDP elicited significant apoptosis and tumor suppression of SGC7901/CDDP cells in vitro and SGC7901/CDDP cell xenograft tumors in vivo, respectively. Moreover, our results demonstrated that the mechanisms of Ad-IL-24-elicited chemosensitizing effects were closely associated with a substantial upregulation of Bax and downregulation of P-gp and Bcl-2 in SGC7901/CDDP cells in vitro and SGC7901/CDDP xenograft tissues in vivo. Thus, this study indicates that overexpression of IL-24 gene can significantly promote chemosensitivity in MDR phenotype SGC7901/CDDP gastric cancer cells.
Collapse
Affiliation(s)
- Zonglei Mao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | | | | | | | | | | |
Collapse
|
10
|
Xia CQ, Smith PG. Drug Efflux Transporters and Multidrug Resistance in Acute Leukemia: Therapeutic Impact and Novel Approaches to Mediation. Mol Pharmacol 2012; 82:1008-21. [DOI: 10.1124/mol.112.079129] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
11
|
PET study on mice bearing human colon adenocarcinoma cells using [11C]GF120918, a dual radioligand for P-glycoprotein and breast cancer resistance protein. Nucl Med Commun 2011; 31:985-93. [PMID: 20859232 DOI: 10.1097/mnm.0b013e32833fbf87] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE To evaluate the functions of P-glycoprotein (Pgp) and breast cancer resistance protein (BCRP) in human colon adenocarcinoma (Caco-2), we carried out an in-vitro study and a small animal positron emission tomography (PET) study using [C]GF120918 (elacridar). METHODS [C]GF120918 was synthesized by reacting the desmethyl precursor with [C]CH3I. An in-vitro study using [C]GF120918 was carried out in Caco-2 and Madin-Darby canine kidney cells in the presence or absence of a transporter inhibitor (cyclosporine A and unlabeled GF120918). The biodistribution of radioactivity after the injection of [C]GF120918 was determined in Caco-2-bearing mice using a small animal PET scanner. RESULTS In Caco-2 cells expressing Pgp and BCRP, coincubation with unlabeled GF120918 caused an approximately two-fold increase in [C]GF120918 uptake compared with that of the control ([C]GF120918 only). In Caco-2-bearing mice, PET results indicated that [C]GF120918 uptake in the tumor was low, but was significantly increased by treatment with unlabeled GF120918. In metabolite analysis, the radioactive component in the tumor almost corresponded to intact [C]GF120918. CONCLUSION A PET study combining the administration of [C]GF120918 with unlabeled GF120918 may be a useful tool for evaluating the functions of Pgp and BCRP in tumors.
Collapse
|
12
|
Abstract
The ATP-based tumor chemosensitivity assay (ATP-TCA) is a standardised system which can be adapted to a variety of uses with both cell lines and primary cell cultures. It has a strong track record in drug development, mechanistic studies of chemoresistance and as an aid to clinical decision-making. The method starts with the extraction of cells in suspension from continuous cell culture (for cell lines), malignant effusions or biopsy material. Enzymatic digestion is used to obtain cells from tumor tissue. The assay uses a serum-free medium and polypropylene plates to prevent the growth of non-neoplastic cells over a 6-day incubation period followed by detergent-based extraction of cellular ATP for measurement by luciferin-luciferase assay in a luminometer. The assay results are usually shown as percentage inhibition at each concentration tested, and can be used with suitable software to examine synergy between different anticancer agents.
Collapse
|
13
|
Hughes JR. One of the hottest topics in epileptology: ABC proteins. Their inhibition may be the future for patients with intractable seizures. Neurol Res 2008; 30:920-5. [PMID: 18593522 DOI: 10.1179/174313208x319116] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
One of the new topics in epileptology is the ABC proteins, which seem to control whether or not anti-epileptic drugs (AEDs) can come in contact with and affect the epileptogenic areas that cause seizures. The goal of this report is to simplify the concepts involved in these proteins and then to review the progress made in the field, especially of one protein called P-glycoprotein (P-gp). First, the ABC proteins are reviewed, mainly P-gp, which appears to alter drug permeability (like an extra blood-brain barrier). The possibility is discussed that changes in P-gp are the result of many seizures; are caused by the AEDs, or truly reflect pharmacoresistance. The different locations where these changes can be seen include the endothelial cells, glia and also neurons. The polymorphism of P-gp, called C3435T, probably has little functional significance and finally the importance of inhibitors of P-g to reverse pharmacoresistance is emphasized. Tariquidar (XR9576) is likely to be a good candidate that appears to inhibit these proteins and therefore to allow the AEDs to control the intractable seizures that may account for nearly 40% of our patients.
Collapse
Affiliation(s)
- John R Hughes
- Department of Neurology, University of Illinois Medical Center, 912 S. Wood Street, Chicago, IL 60612, USA.
| |
Collapse
|
14
|
Cree IA, Kurbacher CM, Lamont A, Hindley AC, Love S. A prospective randomized controlled trial of tumour chemosensitivity assay directed chemotherapy versus physician's choice in patients with recurrent platinum-resistant ovarian cancer. Anticancer Drugs 2007; 18:1093-101. [PMID: 17704660 DOI: 10.1097/cad.0b013e3281de727e] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The primary aim of this randomized trial was to determine response rate and progression-free survival following chemotherapy in patients with platinum-resistant recurrent ovarian cancer, who had been treated according to an ATP-based tumour chemosensitivity assay in comparison with physician's choice. A total of 180 patients were randomized to assay-directed therapy (n=94) or physician's-choice chemotherapy (n=86). Median follow-up at analysis was 18 months. Response was assessable in 147 patients: 31.5% achieved a partial or complete response in the physician's-choice group compared with 40.5% in the assay-directed group (26 versus 31% by intention-to-treat analysis respectively). Intention-to-treat analysis showed a median progression-free survival of 93 days in the physician's-choice group and 104 days in the assay-directed group (hazard ratio 0.8, 95% confidence interval 0.59-1.10, not significant). No difference was seen in overall survival between the groups, although 12/39 (41%) of patients who crossed over from the physician's-choice arm obtained a response. Increased use of combination therapy was seen in the physician's-choice arm during the study as a result of the observed effects of assay-directed therapy in patients. Patients entering the physician's-choice arm of the study during the first year did significantly worse than those who entered in the subsequent years (hazard ratio 0.44, 95% confidence interval 0.2-0.9, P<0.03). This small randomized clinical trial has documented a trend towards improved response and progression-free survival for assay-directed treatment. Chemosensitivity testing might provide useful information in some patients with ovarian cancer, although a larger trial is required to confirm this. The ATP-based tumour chemosensitivity assay remains an investigational method in this condition.
Collapse
Affiliation(s)
- Ian A Cree
- Translational Oncology Research Centre, Queen Alexandra Hospital, Portsmouth, UK.
| | | | | | | | | |
Collapse
|
15
|
Emdad L, Lebedeva IV, Su ZZ, Sarkar D, Dent P, Curiel DT, Fisher PB. Melanoma differentiation associated gene-7/interleukin-24 reverses multidrug resistance in human colorectal cancer cells. Mol Cancer Ther 2007; 6:2985-94. [DOI: 10.1158/1535-7163.mct-07-0399] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Katayama K, Yoshioka S, Tsukahara S, Mitsuhashi J, Sugimoto Y. Inhibition of the mitogen-activated protein kinase pathway results in the down-regulation of P-glycoprotein. Mol Cancer Ther 2007; 6:2092-102. [PMID: 17620438 DOI: 10.1158/1535-7163.mct-07-0148] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The multidrug resistance gene 1 (MDR1) product, P-glycoprotein (P-gp), pumps out a variety of anticancer agents from the cell, including anthracyclines, Vinca alkaloids, and taxanes. The expression of P-gp therefore confers resistance to these anticancer agents. In our present study, we found that FTI-277 (a farnesyltransferase inhibitor), U0126 [an inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase (MEK)], and 17-allylamino-17-demethoxygeldanamycin (an inhibitor of heat shock protein 90) reduced the endogenous expression levels of P-gp in the human colorectal cancer cells, HCT-15 and SW620-14. In contrast, inhibitors of phosphatidylinositol 3-OH kinase, mammalian target of rapamycin, p38 mitogen-activated protein kinase, and c-Jun NH(2)-terminal kinase did not affect P-gp expression in these cells. We further found that U0126 down-regulated exogenous P-gp expression in the MDR1-transduced human breast cancer cells, MCF-7/MDR and MDA-MB-231/MDR. However, the MDR1 mRNA levels in these cells were unaffected by this treatment. PD98059 (a MEK inhibitor), ERK small interfering RNA, and p90 ribosomal S6 kinase (RSK) small interfering RNA also suppressed P-gp expression. Conversely, epidermal growth factor and basic fibroblast growth factor enhanced P-gp expression, but the MDR1 mRNA levels were unchanged in epidermal growth factor-stimulated cells. Pulse-chase analysis revealed that U0126 promoted P-gp degradation but did not affect the biosynthesis of this gene product. The pretreatment of cells with U0126 enhanced the paclitaxel-induced cleavage of poly(ADP-ribose) polymerase and paclitaxel sensitivity. Furthermore, U0126-treated cells showed high levels of rhodamine123 uptake. Hence, our present data show that inhibition of the MEK-ERK-RSK pathway down-regulates P-gp expression levels and diminishes the cellular multidrug resistance.
Collapse
Affiliation(s)
- Kazuhiro Katayama
- Department of Chemotherapy, Kyoritsu University of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | | | | | | | | |
Collapse
|
17
|
Katayama K, Masuyama K, Yoshioka S, Hasegawa H, Mitsuhashi J, Sugimoto Y. Flavonoids inhibit breast cancer resistance protein-mediated drug resistance: transporter specificity and structure–activity relationship. Cancer Chemother Pharmacol 2007; 60:789-97. [PMID: 17345086 DOI: 10.1007/s00280-007-0426-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Accepted: 01/15/2007] [Indexed: 11/28/2022]
Abstract
PURPOSE ATP-binding cassette (ABC) transporters, such as P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug resistance-related protein 1 (MRP1), confer resistance to various anticancer agents. We previously reported that some flavonoids have BCRP-inhibitory activity. Here we show the reversal effects of an extensive panel of flavonoids upon BCRP-, P-gp-, and MRP1-mediated drug resistance. METHODS Reversal effects of flavonoids upon BCRP-, P-gp-, or MRP1-mediated drug resistance were examined in the BCRP- or MDR1-transduced human leukemia K562 cells or in the MRP1-transfected human epidermoid carcinoma KB-3-1 cells using cell growth inhibition assays. The IC(50) values were determined from the growth inhibition curves. The RI(50) values were then determined as the concentration of inhibitor that causes a twofold reduction of the IC(50) in each transfectant. The reversal of BCRP activity was tested by measuring the fluorescence of intracellular topotecan. RESULTS The BCRP-inhibitory activity of 32 compounds was screened, and 20 were found to be active. Among these active compounds, 3',4',7-trimethoxyflavone showed the strongest anti-BCRP activity with RI(50) values of 0.012 microM for SN-38 and 0.044 muM for mitoxantrone. We next examined the effects of a panel of 11 compounds on P-gp- and MRP1-mediated drug resistance. Two of the flavones, 3',4',7-trimethoxyflavone and acacetin, showed only low anti-P-gp activity, with the remainder displaying no suppressive effects against P-gp. None of the flavonoids that we tested inhibited MRP1. CONCLUSION Our present results thus indicate that many flavonoids selectively inhibit BCRP only. Moreover, we examined the structure-BCRP inhibitory activity relationship from our current study.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/antagonists & inhibitors
- ATP-Binding Cassette Transporters/metabolism
- Antineoplastic Agents, Hormonal/pharmacokinetics
- Biological Transport
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Dose-Response Relationship, Drug
- Drug Resistance, Neoplasm/drug effects
- Drug Screening Assays, Antitumor
- Flavones/administration & dosage
- Flavones/pharmacology
- Flavonoids/administration & dosage
- Flavonoids/pharmacology
- Humans
- Inhibitory Concentration 50
- K562 Cells
- Multidrug Resistance-Associated Proteins/drug effects
- Multidrug Resistance-Associated Proteins/metabolism
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/metabolism
- Structure-Activity Relationship
- Topotecan/pharmacokinetics
Collapse
Affiliation(s)
- Kazuhiro Katayama
- Department of Chemotherapy, Kyoritsu University of Pharmacy, Tokyo, 105-8512, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Schmidt M, Bremer E, Hasenclever D, Victor A, Gehrmann M, Steiner E, Schiffer IB, Gebhardt S, Lehr HA, Mahlke M, Hermes M, Mustea A, Tanner B, Koelbl H, Pilch H, Hengstler JG. Role of the progesterone receptor for paclitaxel resistance in primary breast cancer. Br J Cancer 2007; 96:241-7. [PMID: 17211474 PMCID: PMC2359989 DOI: 10.1038/sj.bjc.6603538] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Paclitaxel plays an important role in the treatment of primary breast cancer. However, a substantial proportion of patients treated with paclitaxel does not appear to derive any benefit from this therapy. We performed a prospective study using tumour cells isolated from 50 primary breast carcinomas. Sensitivity of primary tumour cells to paclitaxel was determined in a clinically relevant range of concentrations (0.85–27.2 μg ml−1 paclitaxel) using an ATP assay. Chemosensitivity data were used to study a possible association with immunohistochemically determined oestrogen and progesterone receptor (ER and PR) status, as well as histopathological parameters. Progesterone receptor (PR) mRNA expression was also determined by quantitative RT–PCR. We observed a clear association of the PR status with chemosensitivity to paclitaxel. Higher levels of immunohistochemically detected PR expression correlated with decreased chemosensitivity (P=0.008). Similarly, high levels of PR mRNA expression were associated with decreased paclitaxel chemosensitivity (P=0.007). Cells from carcinomas with T-stages 3 and 4 were less sensitive compared to stages 1 and 2 (P=0.013). Multiple regression analysis identified PR receptor status and T-stage as independent predictors of paclitaxel chemosensitivity, whereas the ER, N-stage, grading and age were not influential. In conclusion, in vitro sensitivity to paclitaxel was higher for PR-negative compared with PR-positive breast carcinoma cells. Thus, PR status should be considered as a possible factor of influence when designing new trials and chemotherapy protocols.
Collapse
Affiliation(s)
- M Schmidt
- Department of Obstetrics & Gynecology, Medical School, University of Mainz, Mainz, Germany
| | - E Bremer
- Department of Obstetrics & Gynecology, Medical School, University of Mainz, Mainz, Germany
| | - D Hasenclever
- Coordinating Center for Clinical Trials, University of Leipzig, Leipzig, Germany
| | - A Victor
- Institute of Medical Biometry, Epidemiology and Information Science, University of Mainz, Mainz, Germany
| | | | - E Steiner
- Department of Obstetrics & Gynecology, Medical School, University of Mainz, Mainz, Germany
| | - I B Schiffer
- Department of Obstetrics & Gynecology, Medical School, University of Mainz, Mainz, Germany
| | - S Gebhardt
- Department of Obstetrics & Gynecology, Medical School, University of Mainz, Mainz, Germany
| | - H-A Lehr
- Institute of Pathology, Johannes Gutenberg University, Mainz, Germany
| | - M Mahlke
- Department of Obstetrics & Gynecology, Medical School, University of Mainz, Mainz, Germany
| | - M Hermes
- Center for Toxicology, University of Leipzig, Haertelstr. 16-18, 04107 Leipzig, Germany
- Leibniz Research Centre for Working Environment and Human Factors, University of Dortmund, Dortmund, Germany
| | - A Mustea
- Department of Obstetrics and Gynecology, Charite, Berlin, Germany
| | - B Tanner
- Department of Obstetrics & Gynecology, Medical School, University of Mainz, Mainz, Germany
| | - H Koelbl
- Department of Obstetrics & Gynecology, Medical School, University of Mainz, Mainz, Germany
| | - H Pilch
- Department of Obstetrics and Gynecology, University of Leipzig, Philipp-Rosenthal-Str. 55, 04103F Leipzig, Germany
| | - J G Hengstler
- Center for Toxicology, University of Leipzig, Haertelstr. 16-18, 04107 Leipzig, Germany
- Leibniz Research Centre for Working Environment and Human Factors, University of Dortmund, Dortmund, Germany
- E-mail:
| |
Collapse
|
19
|
Ludwig JA, Szakács G, Martin SE, Chu BF, Cardarelli C, Sauna ZE, Caplen NJ, Fales HM, Ambudkar SV, Weinstein JN, Gottesman MM. Selective toxicity of NSC73306 in MDR1-positive cells as a new strategy to circumvent multidrug resistance in cancer. Cancer Res 2006; 66:4808-15. [PMID: 16651436 PMCID: PMC1474781 DOI: 10.1158/0008-5472.can-05-3322] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
ATP-binding cassette (ABC) proteins include the best known mediators of resistance to anticancer drugs. In particular, ABCB1 [MDR1/P-glycoprotein (P-gp)] extrudes many types of drugs from cancer cells, thereby conferring resistance to those agents. Attempts to overcome P-gp-mediated drug resistance using specific inhibitors of P-gp has had limited success and has faced many therapeutic challenges. As an alternative approach to using P-gp inhibitors, we characterize a thiosemicarbazone derivative (NSC73306) identified in a generic screen as a compound that exploits, rather than suppresses, P-gp function to induce cytotoxicity. Cytotoxic activity of NSC73306 was evaluated in vitro using human epidermoid, ovarian, and colon cancer cell lines expressing various levels of P-gp. Our findings suggest that cells become hypersensitive to NSC73306 in proportion to the increased P-gp function and multidrug resistance (MDR). Abrogation of both sensitivity to NSC73306 and resistance to P-gp substrate anticancer agents occurred with specific inhibition of P-gp function using either a P-gp inhibitor (PSC833, XR9576) or RNA interference, suggesting that cytotoxicity was linked to MDR1 function, not to other, nonspecific factors arising during the generation of resistant or transfected cells. Molecular characterization of cells selected for resistance to NSC73306 revealed loss of P-gp expression and consequent loss of the MDR phenotype. Although hypersensitivity to NSC73306 required functional expression of P-gp, biochemical assays revealed no direct interaction between NSC73306 and P-gp. This article shows that NSC73306 kills cells with intrinsic or acquired P-gp-induced MDR and indirectly acts to eliminate resistance to MDR1 substrates.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Line, Tumor
- Colonic Neoplasms/drug therapy
- Colonic Neoplasms/metabolism
- Cyclosporins/pharmacology
- Doxorubicin/pharmacology
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Neoplasm
- Drug Screening Assays, Antitumor
- Drug Synergism
- Female
- Humans
- Indoles/pharmacology
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- RNA, Small Interfering/genetics
Collapse
Affiliation(s)
- Joseph A. Ludwig
- Laboratory of Cell Biology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892
- Genomics and Bioinformatics Group, Laboratory of Molecular Pharmacology, CCR, NCI, NIH
| | - Gergely Szakács
- Laboratory of Cell Biology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892
| | - Scott E. Martin
- Gene Silencing Section, Office of Science and Technology Partnerships, Office of the Director, CCR, NCI, NIH
| | - Benjamin F. Chu
- Laboratory of Cell Biology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892
| | - Carol Cardarelli
- Laboratory of Cell Biology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892
| | - Zuben E. Sauna
- Laboratory of Cell Biology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892
| | - Natasha J. Caplen
- Gene Silencing Section, Office of Science and Technology Partnerships, Office of the Director, CCR, NCI, NIH
| | - Henry M. Fales
- Laboratory of Biophysical Chemistry, National Heart Lung and Blood Institute, NIH
| | - Suresh V. Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892
| | - John N. Weinstein
- Genomics and Bioinformatics Group, Laboratory of Molecular Pharmacology, CCR, NCI, NIH
| | - Michael M. Gottesman
- Laboratory of Cell Biology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892
| |
Collapse
|