1
|
Markowska A, Antoszczak M, Markowska J, Huczyński A. Role of Epigallocatechin Gallate in Selected Malignant Neoplasms in Women. Nutrients 2025; 17:212. [PMID: 39861342 PMCID: PMC11767294 DOI: 10.3390/nu17020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Tea is a significant source of flavonoids in the diet. Due to different production processes, the amount of bioactive compounds in unfermented (green) and (semi-)fermented tea differs. Importantly, green tea has a similar composition of phenolic compounds to fresh, unprocessed tea leaves. It consists primarily of monomeric flavan-3-ols, known as catechins, of which epigallocatechin gallate (EGCG) is the most abundant. Thanks to its antioxidant, antiproliferative, and antiangiogenic properties, EGCG has attracted the scientific community's attention to its potential use in preventing and/or combating cancer. In this review article, we summarize the literature reports found in the Google Scholar and PubMed databases on the anticancer effect of EGCG on selected malignant neoplasms in women, i.e., breast, cervical, endometrial, and ovarian cancers, which have been published over the last two decades. It needs to be emphasized that EGCG concentrations reported as effective against cancer cells are typically higher than those found in plasma after polyphenol administration. Moreover, the low bioavailability and absorption of EGCG appear to be the main reasons for the differences in the effects between in vitro and in vivo studies. In this context, we also decided to look at possible solutions to these problems, consisting of combining the polyphenol with other bioactive components or using nanotechnology. Despite the promising results of the studies conducted so far, mainly in vitro and on animal models, there is no doubt that further, broad-based activities are necessary to unequivocally assess the potential use of EGCG in oncological treatment to combat cancer in women.
Collapse
Affiliation(s)
- Anna Markowska
- Department of Perinatology and Women’s Health, Poznań University of Medical Sciences, 60-535 Poznań, Poland;
| | - Michał Antoszczak
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland;
| | - Janina Markowska
- Gynecological Oncology Center, Poznańska 58A, 60-850 Poznań, Poland
| | - Adam Huczyński
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland;
| |
Collapse
|
2
|
Pulido-Capiz A, Chimal-Vega B, Avila-Barrientos LP, Campos-Valenzuela A, Díaz-Molina R, Muñiz-Salazar R, Galindo-Hernández O, García-González V. Auraptene Boosts the Efficacy of the Tamoxifen Metabolites Endoxifen and 4-OH-Tamoxifen in a Chemoresistant ER+ Breast Cancer Model. Pharmaceutics 2024; 16:1179. [PMID: 39339215 PMCID: PMC11435248 DOI: 10.3390/pharmaceutics16091179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/22/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Approximately 80% of breast cancer (BC) cases are estrogen receptor positive (ER+) and sensitive to hormone treatment; Tamoxifen is a prodrug, and its main plasmatic active metabolites are 4-hydroxytamoxifen (4-OH Tam) and endoxifen. Despite the effectiveness of tamoxifen therapy, resistance can be developed. An increment in eukaryotic initiation factor-4A complex (eIF4A) activity can result in tamoxifen-resistant tumor cells. For this work, we developed a cell variant resistant to 4-OH Tam and endoxifen, denominated MCF-7Var E; then, the aim of this research was to reverse the acquired resistance of this variant to tamoxifen metabolites by incorporating the natural compound auraptene. Combination treatments of tamoxifen derivatives and auraptene successfully sensitized the chemoresistant MCF-7Var E. Our data suggest a dual regulation of eIF4A and ER by auraptene. Joint treatments of 4-OH Tam and endoxifen with auraptene identified a novel focus for chemoresistance disruption. Synergy was observed using the auraptene molecule and tamoxifen-derived metabolites, which induced a sensitization in MCF-7Var E cells and ERα parental cells that was not observed in triple-negative breast cancer cells (TNBC). Our results suggest a synergistic effect between auraptene and tamoxifen metabolites in a resistant ER+ breast cancer model, which could represent the first step to achieving a pharmacologic strategy.
Collapse
Affiliation(s)
- Angel Pulido-Capiz
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico; (A.P.-C.); (B.C.-V.); (A.C.-V.); (R.D.-M.); (O.G.-H.)
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| | - Brenda Chimal-Vega
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico; (A.P.-C.); (B.C.-V.); (A.C.-V.); (R.D.-M.); (O.G.-H.)
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| | | | - Alondra Campos-Valenzuela
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico; (A.P.-C.); (B.C.-V.); (A.C.-V.); (R.D.-M.); (O.G.-H.)
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| | - Raúl Díaz-Molina
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico; (A.P.-C.); (B.C.-V.); (A.C.-V.); (R.D.-M.); (O.G.-H.)
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| | - Raquel Muñiz-Salazar
- Escuela de Ciencias de la Salud, Universidad Autónoma de Baja California, Campus Ensenada, Ensenada 22890, Mexico;
| | - Octavio Galindo-Hernández
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico; (A.P.-C.); (B.C.-V.); (A.C.-V.); (R.D.-M.); (O.G.-H.)
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| | - Victor García-González
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico; (A.P.-C.); (B.C.-V.); (A.C.-V.); (R.D.-M.); (O.G.-H.)
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| |
Collapse
|
3
|
Singh S. Review on Natural Agents as Aromatase Inhibitors: Management of Breast Cancer. Comb Chem High Throughput Screen 2024; 27:2623-2638. [PMID: 37861041 DOI: 10.2174/0113862073269599231009115338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/16/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023]
Abstract
Breast cancer is a prevalent type of cancer that is typically hormone-dependent, caused by estrogen. Aromatase inhibitors are frequently utilised in the treatment of hormonereceptor- positive breast cancer because they prevent the enzyme aromatase from converting androgens to estrogens. Natural medicines with aromatase inhibitory characteristics have attracted interest as potential alternatives or complementary therapy to manufactured medications. This review discusses the function of natural agents as aromatase inhibitors in treating breast cancer. A variety of natural compounds have been investigated for their capacity to inhibit aromatase activity and lower estrogen levels. These agents include resveratrol from red wine and grapes, curcumin from turmeric extract and green teahigh in catechins, and other flavonoids such as genistein, luteolin and quercetin. It has been demonstrated that by decreasing estrogen synthesis, they can slow the growth of breast cancer cells that are dependent on estrogen. However, the clinical evidence supporting their efficacy and safety in breast cancer treatment is inadequate. More research is required to investigate the therapeutic potential of natural medicines, such as aromatase inhibitors, in treating breast cancer. The clinical trials are required to assess their efficacy, appropriate doses, and potential interactions with other therapies. In conclusion, natural aromatase inhibitory drugs are promising adjuncts in the treatment of hormone receptor-positive breast cancer. Their clinical value and safety profile, however, require additional investigation.
Collapse
Affiliation(s)
- Sonia Singh
- Institute of Pharmaceutical Research, GLA University Mathura, U.P: 281406, India
| |
Collapse
|
4
|
Singla RK, Wang X, Gundamaraju R, Joon S, Tsagkaris C, Behzad S, Khan J, Gautam R, Goyal R, Rakmai J, Dubey AK, Simal-Gandara J, Shen B. Natural products derived from medicinal plants and microbes might act as a game-changer in breast cancer: a comprehensive review of preclinical and clinical studies. Crit Rev Food Sci Nutr 2023; 63:11880-11924. [PMID: 35838143 DOI: 10.1080/10408398.2022.2097196] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Breast cancer (BC) is the most prevalent neoplasm among women. Genetic and environmental factors lead to BC development and on this basis, several preventive - screening and therapeutic interventions have been developed. Hormones, both in the form of endogenous hormonal signaling or hormonal contraceptives, play an important role in BC pathogenesis and progression. On top of these, breast microbiota includes both species with an immunomodulatory activity enhancing the host's response against cancer cells and species producing proinflammatory cytokines associated with BC development. Identification of novel multitargeted therapeutic agents with poly-pharmacological potential is a dire need to combat advanced and metastatic BC. A growing body of research has emphasized the potential of natural compounds derived from medicinal plants and microbial species as complementary BC treatment regimens, including dietary supplements and probiotics. In particular, extracts from plants such as Artemisia monosperma Delile, Origanum dayi Post, Urtica membranacea Poir. ex Savigny, Krameria lappacea (Dombey) Burdet & B.B. Simpson and metabolites extracted from microbes such as Deinococcus radiodurans and Streptomycetes strains as well as probiotics like Bacillus coagulans and Lactobacillus brevis MK05 have exhibited antitumor effects in the form of antiproliferative and cytotoxic activity, increase in tumors' chemosensitivity, antioxidant activity and modulation of BC - associated molecular pathways. Further, bioactive compounds like 3,3'-diindolylmethane, epigallocatechin gallate, genistein, rutin, resveratrol, lycopene, sulforaphane, silibinin, rosmarinic acid, and shikonin are of special interest for the researchers and clinicians because these natural agents have multimodal action and act via multiple ways in managing the BC and most of these agents are regularly available in our food and fruit diets. Evidence from clinical trials suggests that such products had major potential in enhancing the effectiveness of conventional antitumor agents and decreasing their side effects. We here provide a comprehensive review of the therapeutic effects and mechanistic underpinnings of medicinal plants and microbial metabolites in BC management. The future perspectives on the translation of these findings to the personalized treatment of BC are provided and discussed.
Collapse
Affiliation(s)
- Rajeev K Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Xiaoyan Wang
- Department of Pathology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Lab, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia
| | - Shikha Joon
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | | | - Sahar Behzad
- Evidence-based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Majmaah, Saudi Arabia
| | - Rupesh Gautam
- Department of Pharmacology, MM School of Pharmacy, MM University, Sadopur, Haryana, India
| | - Rajat Goyal
- Department of Pharmacology, MM School of Pharmacy, MM University, Sadopur, Haryana, India
| | - Jaruporn Rakmai
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, Bangkok, Thailand
| | | | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Marín V, Burgos V, Pérez R, Maria DA, Pardi P, Paz C. The Potential Role of Epigallocatechin-3-Gallate (EGCG) in Breast Cancer Treatment. Int J Mol Sci 2023; 24:10737. [PMID: 37445915 DOI: 10.3390/ijms241310737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
Breast cancer is one of the most diagnosed cancers worldwide, with an incidence of 47.8%. Its treatment includes surgery, radiotherapy, chemotherapy, and antibodies giving a mortality of 13.6%. Breast tumor development is driven by a variety of signaling pathways with high heterogeneity of surface receptors, which makes treatment difficult. Epigallocatechin-3-gallate (EGCG) is a natural polyphenol isolated as the main component in green tea; it has shown multiple beneficial effects in breast cancer, controlling proliferation, invasion, apoptosis, inflammation, and demethylation of DNA. These properties were proved in vitro and in vivo together with synergistic effects in combination with traditional chemotherapy, increasing the effectiveness of the treatment. This review focuses on the effects of EGCG on the functional capabilities acquired by breast tumor cells during its multistep development, the molecular and signal pathways involved, the synergistic effects in combination with current drugs, and how nanomaterials can improve its bioavailability on breast cancer treatment.
Collapse
Affiliation(s)
- Víctor Marín
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile
| | - Viviana Burgos
- Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Rudecindo Ortega, Temuco 02950, Chile
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Temuco 4780000, Chile
| | - Rebeca Pérez
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile
| | | | - Paulo Pardi
- Nucleo de Pesquisas NUPE/ENIAC University Center, Guarulhos 07012-030, Brazil
| | - Cristian Paz
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile
| |
Collapse
|
6
|
Chaudhary P, Mitra D, Das Mohapatra PK, Oana Docea A, Mon Myo E, Janmeda P, Martorell M, Iriti M, Ibrayeva M, Sharifi-Rad J, Santini A, Romano R, Calina D, Cho WC. Camellia sinensis: insights on its molecular mechanisms of action towards nutraceutical, anticancer potential and other therapeutic applications. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104680] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
7
|
Goda MS, Elhady SS, Nafie MS, Bogari HA, Malatani RT, Hareeri RH, Badr JM, Donia MS. Phragmanthera austroarabica A.G.Mill. and J.A.Nyberg Triggers Apoptosis in MDA-MB-231 Cells In Vitro and In Vivo Assays: Simultaneous Determination of Selected Constituents. Metabolites 2022; 12:metabo12100921. [PMID: 36295823 PMCID: PMC9611470 DOI: 10.3390/metabo12100921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Phragmanthera austroarabica (Loranthaceae), a semi-parasitic plant, is well known for its high content of polyphenols that are responsible for its antioxidant and anti-inflammatory activities. Gallic acid, catechin, and methyl gallate are bioactive metabolites of common occurrence in the family of Loranthaceae. Herein, the concentrations of these bioactive metabolites were assessed using high-performance thin layer chromatography (HPTLC). Methyl gallate, catechin, and gallic acid were scanned at 280 nm. Their concentrations were assessed as 14.5, 6.5 and 43.6 mg/g of plant dry extract, respectively. Phragmanthera austroarabica extract as well as the three pure compounds were evaluated regarding the cytotoxic activity. The plant extract exhibited promising cytotoxic activity against MDA-MB-231 breast cells with the IC50 value of 19.8 μg/mL while the tested pure compounds displayed IC50 values in the range of 21.26–29.6 μg/mL. For apoptosis investigation, P. austroarabica induced apoptotic cell death by 111-fold change and necrosis by 9.31-fold change. It also activated the proapoptotic genes markers and inhibited the antiapoptotic gene, validating the apoptosis mechanism. Moreover, in vivo studies revealed a significant reduction in the breast tumor volume and weight in solid Ehrlich carcinoma (SEC) mice. The treatment of SEC mice with P. austroarabica extract improved both hematological and biochemical parameters with amelioration in the liver and kidney histopathology to near normal. Taken together, P. austroarabica extract exhibited promising anti-cancer activity through an apoptosis-induction.
Collapse
Affiliation(s)
- Marwa S. Goda
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Galala University, New Galala 43713, Egypt
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (S.S.E.); (J.M.B.); Tel.: +966-544512552 (S.S.E.); +20-1091332451 (J.M.B.)
| | - Mohamed S. Nafie
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Hanin A. Bogari
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Raina T. Malatani
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rawan H. Hareeri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jihan M. Badr
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: (S.S.E.); (J.M.B.); Tel.: +966-544512552 (S.S.E.); +20-1091332451 (J.M.B.)
| | - Marwa S. Donia
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
8
|
van Dyk L, Verhoog NJD, Louw A. Combinatorial treatments of tamoxifen and SM6Met, an extract from Cyclopia subternata Vogel, are superior to either treatment alone in MCF-7 cells. Front Pharmacol 2022; 13:1017690. [PMID: 36210845 PMCID: PMC9535530 DOI: 10.3389/fphar.2022.1017690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Synergistic drug combinations are not only popular in antibiotic, anti-microbial, immune disease (i.e., AIDS) and viral infection studies, but has also gained traction in the field of cancer research as a multi-targeted approach. It has the potential to lower the doses needed of standard of care (SOC) therapeutic agents, whilst maintaining an effective therapeutic level. Lower dosages could ameliorate the fundamental problems such as drug resistance and metastasis associated with current SOC therapies. In the current study, we show that the combination of SM6Met with (2)-4-hydroxytamoxifen (4-OH-Tam, the active metabolite of tamoxifen) produces a strong synergistic effect in terms of inhibiting MCF7 ER-positive (ER+) breast cancer cell proliferation and that a 20 times lower dose of 4-OH-Tam in combination with SM6Met is required to produce the same inhibitory effect on cell proliferation as 4-OH-Tam on its own. Cell cycle analyses of the best combination ratios of SM6Met and 4-OH-Tam also suggests that the combination results in increased accumulation of cells in the S-phase and in the apoptotic phase. Moreover, the best combination ratio (20:1) of SM6Met with 4-OH-Tam displayed greater anti-metastatic potential in terms of inhibiting ER+ breast cancer cell migration, invasion, and colony formation than the SOC therapy alone, suggesting that SM6Met together with 4-OH-Tam could be a viable drug combination for not only delaying resistance and ameliorating the negative side-effects associated with current SOC therapies, like tamoxifen, but could also provide a novel, more affordable therapeutic alternative for treating or preventing ER+ breast cancer metastasis.
Collapse
|
9
|
Nisar S, Masoodi T, Prabhu KS, Kuttikrishnan S, Zarif L, Khatoon S, Ali S, Uddin S, Akil AAS, Singh M, Macha MA, Bhat AA. Natural products as chemo-radiation therapy sensitizers in cancers. Biomed Pharmacother 2022; 154:113610. [PMID: 36030591 DOI: 10.1016/j.biopha.2022.113610] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/02/2022] Open
Abstract
Cancer is a devastating disease and is the second leading cause of death worldwide. Surgery, chemotherapy (CT), and/or radiation therapy (RT) are the treatment of choice for most advanced tumors. Unfortunately, treatment failure due to intrinsic and acquired resistance to the current CT and RT is a significant challenge associated with poor patient prognosis. There is an urgent need to develop and identify agents that can sensitize tumor cells to chemo-radiation therapy (CRT) with minimal cytotoxicity to the healthy tissues. While many recent studies have identified the underlying molecular mechanisms and therapeutic targets for CRT failure, using small molecule inhibitors to chemo/radio sensitize tumors is associated with high toxicity and increased morbidity. Natural products have long been used as chemopreventive agents in many cancers. Combining many of these compounds with the standard chemotherapeutic agents or with RT has shown synergistic effects on cancer cell death and overall improvement in patient survival. Based on the available data, there is strong evidence that natural products have a robust therapeutic potential along with CRT and their well-known chemopreventive effects in many solid tumors. This review article reports updated literature on different natural products used as CT or RT sensitizers in many solid tumors. This is the first review discussing CT and RT sensitizers together in cancer.
Collapse
Affiliation(s)
- Sabah Nisar
- Depertment of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Tariq Masoodi
- Laboratory of Cancer immunology and genetics, Sidra Medicine, Qatar
| | - Kirti S Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Qatar
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Qatar
| | - Lubna Zarif
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Qatar
| | - Summaiya Khatoon
- Depertment of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Shahid Ali
- International Potato Center (CIP), Shillong, Meghalaya, India
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Ammira Al-Shabeeb Akil
- Depertment of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Mayank Singh
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, AIIMS, New Delhi, India.
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Jammu & Kashmir, India.
| | - Ajaz A Bhat
- Depertment of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
10
|
Lai J, Lin X, Cao F, Mok H, Chen B, Liao N. CDKN1C as a prognostic biomarker correlated with immune infiltrates and therapeutic responses in breast cancer patients. J Cell Mol Med 2021; 25:9390-9401. [PMID: 34464504 PMCID: PMC8500970 DOI: 10.1111/jcmm.16880] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/01/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022] Open
Abstract
Breast cancer (BC) prognosis and therapeutic sensitivity could not be predicted efficiently. Previous evidence have shown the vital roles of CDKN1C in BC. Therefore, we aimed to construct a CDKN1C‐based model to accurately predicting overall survival (OS) and treatment responses in BC patients. In this study, 995 BC patients from The Cancer Genome Atlas database were selected. Kaplan‐Meier curve, Gene set enrichment and immune infiltrates analyses were executed. We developed a novel CDKN1C‐based nomogram to predict the OS, verified by the time‐dependent receiver operating characteristic curve, calibration curve and decision curve. Therapeutic response prediction was followed based on the low‐ and high‐nomogram score groups. Our results indicated that low‐CDKN1C expression was associated with shorter OS and lower proportion of naïve B cells, CD8 T cells, activated NK cells. The predictive accuracy of the nomogram for 5‐year OS was superior to the tumour‐node‐metastasis stage (area under the curve: 0.746 vs. 0.634, p < 0.001). The nomogram exhibited excellent predictive performance, calibration ability and clinical utility. Moreover, low‐risk patients were identified with stronger sensitivity to therapeutic agents. This tool can improve BC prognosis and therapeutic responses prediction, thus guiding individualized treatment decisions.
Collapse
Affiliation(s)
- Jianguo Lai
- Department of Breast Cancer, Guangdong Provincial People's Hospital,Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiaoyi Lin
- Department of Breast Cancer, Guangdong Provincial People's Hospital,Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Fangrong Cao
- Department of Breast Cancer, Guangdong Provincial People's Hospital,Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hsiaopei Mok
- Department of Breast Cancer, Guangdong Provincial People's Hospital,Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Bo Chen
- Department of Breast Cancer, Guangdong Provincial People's Hospital,Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ning Liao
- Department of Breast Cancer, Guangdong Provincial People's Hospital,Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
11
|
Samanta S. Potential Bioactive Components and Health Promotional Benefits of Tea (Camellia sinensis). J Am Coll Nutr 2020; 41:65-93. [DOI: 10.1080/07315724.2020.1827082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Saptadip Samanta
- Department of Physiology, Midnapore College, Midnapore, West Bengal, India
| |
Collapse
|
12
|
|
13
|
Protective Effects of Epigallocatechin Gallate (EGCG) on Endometrial, Breast, and Ovarian Cancers. Biomolecules 2020; 10:biom10111481. [PMID: 33113766 PMCID: PMC7694163 DOI: 10.3390/biom10111481] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023] Open
Abstract
Green tea and its major bioactive component, (-)-epigallocatechin gallate (EGCG), possess diverse biological properties, particularly antiproliferation, antimetastasis, and apoptosis induction. Many studies have widely investigated the anticancer and synergistic effects of EGCG due to the side effects of conventional cytotoxic agents. This review summarizes recent knowledge of underlying mechanisms of EGCG on protective roles for endometrial, breast, and ovarian cancers based on both in vitro and in vivo animal studies. EGCG has the ability to regulate many pathways, including the activation of nuclear factor erythroid 2-related factor 2 (Nrf2), inhibition of nuclear factor-κB (NF-κB), and protection against epithelial-mesenchymal transition (EMT). EGCG has also been found to interact with DNA methyltransferases (DNMTs) and histone deacetylases (HDACs), which affect epigenetic modifications. Finally, the action of EGCG may exert a suppressive effect on gynecological cancers and have beneficial effects on auxiliary therapies for known drugs. Thus, future clinical intervention studies with EGCG will be necessary to more and clear evidence for the benefit to these cancers.
Collapse
|
14
|
Potential Therapeutic Targets of Epigallocatechin Gallate (EGCG), the Most Abundant Catechin in Green Tea, and Its Role in the Therapy of Various Types of Cancer. Molecules 2020; 25:molecules25143146. [PMID: 32660101 PMCID: PMC7397003 DOI: 10.3390/molecules25143146] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023] Open
Abstract
Epigallocatechin-3-gallate (EGCG), an active compound of green tea and its role in diseases cure and prevention has been proven. Its role in diseases management can be attributed to its antioxidant and anti-inflammatory properties. The anti-cancer role of this green tea compound has been confirmed in various types of cancer and is still being under explored. EGCG has been proven to possess a chemopreventive effect through inhibition of carcinogenesis process such as initiation, promotion, and progression. In addition, this catechin has proven its role in cancer management through modulating various cell signaling pathways such as regulating proliferation, apoptosis, angiogenesis and killing of various types of cancer cells. The additive or synergistic effect of epigallocatechin with chemopreventive agents has been verified as it reduces the toxicities and enhances the anti-cancerous effects. Despite its effectiveness and safety, the implications of EGCG in cancer prevention is certainly still discussed due to a poor bioavailability. Several studies have shown the ability to overcome poor bioavailability through nanotechnology-based strategies such as encapsulation, liposome, micelles, nanoparticles and various other formulation. In this review, we encapsulate therapeutic implication of EGCG in cancer management and the mechanisms of action are discussed with an emphasis on human clinical trials.
Collapse
|
15
|
Kazi J, Sen R, Ganguly S, Jha T, Ganguly S, Chatterjee Debnath M. Folate decorated epigallocatechin-3-gallate (EGCG) loaded PLGA nanoparticles; in-vitro and in-vivo targeting efficacy against MDA-MB-231 tumor xenograft. Int J Pharm 2020; 585:119449. [PMID: 32464231 DOI: 10.1016/j.ijpharm.2020.119449] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/13/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022]
Abstract
Epigallocatechin-3-gallate (EGCG), a major polyphenolic constituent of green tea exhibits significant anti-cancer potential over a wide range of cancer cells. We have developed folate peptide decorated PLGA-NPs loaded with EGCG (FP-EGCG-NPs) to bind folate receptor (FR) specific breast cancer cell lines and evaluated their efficacy in pre-clinical studies. EGCG loaded PLGA nanoparticles (EGCG-NPs) were characterised for size, surface morphology, surface charge, encapsulation efficacy and in-vitro drug release kinetics. Cellular uptake and in-vitro cytotoxicities of free drug, folate peptide conjugated and unconjugated EGCG-NPs were investigated against FR positive MDA-MB-231 and MCF-7 cells. The conjugated nanoparticles exhibited promising cytotoxic potentials as well as significantly high cellular internalisation in MDA-MB-231 cells as compared to unconjugated one. It also ensured longer half life, higher plasma concentration, favourably high apoptotic potential and significantly high mitochondrial depolarization effect as compared to free EGCG. The loaded nanoparticles were radiolabeled with technetium-99m and their tumor selectivity in MDA-MB-231 tumor bearing nude mice was investigated by scintigraphic imaging study. Finally in-vivo therapeutic efficacy studies in tumor bearing nude mice were also done to evaluate the efficacy of the formulation for cancer treatment.
Collapse
Affiliation(s)
- Julekha Kazi
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Ramkrishna Sen
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Soumya Ganguly
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Tarun Jha
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Shantanu Ganguly
- Regional Radiation Medicine Center, Thakurpukur Cancer Center and Welfare Home Campus, Kolkata, India
| | - Mita Chatterjee Debnath
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.
| |
Collapse
|
16
|
Bimonte S, Cascella M, Barbieri A, Arra C, Cuomo A. Current shreds of evidence on the anticancer role of EGCG in triple negative breast cancer: an update of the current state of knowledge. Infect Agent Cancer 2020; 15:2. [PMID: 31938038 PMCID: PMC6954554 DOI: 10.1186/s13027-020-0270-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/16/2019] [Indexed: 12/31/2022] Open
Abstract
Triple-Negative Breast Cancer (TNBC), represents a subtype of breast cancer in which the estrogens receptor (ER) negative, the progesterone receptor (PR) negative and the human epidermal growth factor receptor 2 (HER2) negative, are not expressed. Thusly, TNBC does not respond to hormonal therapies or to those targeting the HER2 protein receptors. To overcome this flawed issue, new alternative therapies based on the use of natural substances, as the (-) - epigallocatechin 3-gallate (EGCG), has been proposed. It is largely documented that EGCG, the principal constituent of green tea, has suppressive effects on different types of cancer, including breast cancer, through the regulation of different signaling pathways. Thus, is reasonable to assume that EGCG could be viewed as a therapeutic option for the prevention and the treatment of TNBC. Here, we summarizing these promising results with the scope of turn a light on the potential roles of EGCG in the treatment of TNBC patients.
Collapse
Affiliation(s)
- Sabrina Bimonte
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori - IRCCS – “Fondazione G. Pascale”, Naples, Italy
| | - Marco Cascella
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori - IRCCS – “Fondazione G. Pascale”, Naples, Italy
| | - Antonio Barbieri
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori - IRCCS – “Fondazione G. Pascale”, Naples, Italy
| | - Claudio Arra
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori - IRCCS – “Fondazione G. Pascale”, Naples, Italy
| | - Arturo Cuomo
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori - IRCCS – “Fondazione G. Pascale”, Naples, Italy
| |
Collapse
|
17
|
Sudhakaran M, Sardesai S, Doseff AI. Flavonoids: New Frontier for Immuno-Regulation and Breast Cancer Control. Antioxidants (Basel) 2019; 8:E103. [PMID: 30995775 PMCID: PMC6523469 DOI: 10.3390/antiox8040103] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/01/2019] [Accepted: 04/05/2019] [Indexed: 12/15/2022] Open
Abstract
Breast cancer (BC) remains the second most common cause of cancer-related deaths in women in the US, despite advances in detection and treatment. In addition, breast cancer survivors often struggle with long-term treatment related comorbidities. Identifying novel therapies that are effective while minimizing toxicity is critical in curtailing this disease. Flavonoids, a subclass of plant polyphenols, are emerging as promising treatment options for the prevention and treatment of breast cancer. Recent evidence suggests that in addition to anti-oxidant properties, flavonoids can directly interact with proteins, making them ideal small molecules for the modulation of enzymes, transcription factors and cell surface receptors. Of particular interest is the ability of flavonoids to modulate the tumor associated macrophage function. However, clinical applications of flavonoids in cancer trials are limited. Epidemiological and smaller clinical studies have been largely hypothesis generating. Future research should aim at addressing known challenges with a broader use of preclinical models and investigating enhanced dose-delivery systems that can overcome limited bioavailability of dietary flavonoids. In this review, we discuss the structure-functional impact of flavonoids and their action on breast tumor cells and the tumor microenvironment, with an emphasis on their clinical role in the prevention and treatment of breast cancer.
Collapse
Affiliation(s)
- Meenakshi Sudhakaran
- Department Physiology, Michigan State University, East Lansing, MI 48824, USA.
- Physiology Graduate Program, Michigan State University, East Lansing, MI 48824, USA.
| | - Sagar Sardesai
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Andrea I Doseff
- Department Physiology, Michigan State University, East Lansing, MI 48824, USA.
- Department Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
18
|
de Oliveira Júnior RG, Christiane Adrielly AF, da Silva Almeida JRG, Grougnet R, Thiéry V, Picot L. Sensitization of tumor cells to chemotherapy by natural products: A systematic review of preclinical data and molecular mechanisms. Fitoterapia 2018; 129:383-400. [DOI: 10.1016/j.fitote.2018.02.025] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 12/13/2022]
|
19
|
(-)-Epigallocatechin 3-Gallate Synthetic Analogues Inhibit Fatty Acid Synthase and Show Anticancer Activity in Triple Negative Breast Cancer. Molecules 2018; 23:molecules23051160. [PMID: 29751678 PMCID: PMC6099607 DOI: 10.3390/molecules23051160] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/02/2018] [Accepted: 05/10/2018] [Indexed: 12/27/2022] Open
Abstract
(−)-Epigallocatechin 3-gallate (EGCG) is a natural polyphenol from green tea with reported anticancer activity and capacity to inhibit the lipogenic enzyme fatty acid synthase (FASN), which is overexpressed in several human carcinomas. To improve the pharmacological profile of EGCG, we previously developed a family of EGCG derivatives and the lead compounds G28, G37 and G56 were characterized in HER2-positive breast cancer cells overexpressing FASN. Here, diesters G28, G37 and G56 and two G28 derivatives, monoesters M1 and M2, were synthesized and assessed in vitro for their cytotoxic, FASN inhibition and apoptotic activities in MDA-MB-231 triple-negative breast cancer (TNBC) cells. All compounds displayed moderate to high cytotoxicity and significantly blocked FASN activity, monoesters M1 and M2 being more potent inhibitors than diesters. Interestingly, G28, M1, and M2 also diminished FASN protein expression levels, but only monoesters M1 and M2 induced apoptosis. Our results indicate that FASN inhibition by such polyphenolic compounds could be a new strategy in TNBC treatment, and highlight the potential anticancer activities of monoesters. Thus, G28, G37, G56, and most importantly M1 and M2, are anticancer candidates (alone or in combination) to be further characterized in vitro and in vivo.
Collapse
|
20
|
Natural Products for the Management and Prevention of Breast Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:8324696. [PMID: 29681985 PMCID: PMC5846366 DOI: 10.1155/2018/8324696] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/18/2017] [Accepted: 01/16/2018] [Indexed: 12/21/2022]
Abstract
Among all types of cancer, breast cancer is one of the most challenging diseases, which is responsible for a large number of cancer related deaths. Hormonal therapy, surgery, chemotherapy, and radiotherapy have been used as treatment of breast cancer, for a very long time. Due to severe side effects and multidrug resistance, these treatment approaches become increasingly ineffective. However, adoption of complementary treatment approach can be a big solution for this situation, as it is evident that compounds derived from natural source have a great deal of anticancer activity. Natural compounds can fight against aggressiveness of breast cancer, inhibit cancerous cell proliferation, and modulate cancer related pathways. A large number of research works are now focusing on the natural and dietary compounds and trying to find out new and more effective treatment strategies for the breast cancer patients. In this review, we discussed some significant natural chemical compounds with their mechanisms of actions, which can be very effective against the breast cancer and can be more potent by their proper modifications and further clinical research. Future research focusing on the natural anti-breast-cancer agents can open a new horizon in breast cancer treatment, which will play a great role in enhancing the survival rate of breast cancer patients.
Collapse
|
21
|
Sinha D, Biswas J, Nabavi SM, Bishayee A. Tea phytochemicals for breast cancer prevention and intervention: From bench to bedside and beyond. Semin Cancer Biol 2017; 46:33-54. [DOI: 10.1016/j.semcancer.2017.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/25/2017] [Accepted: 04/01/2017] [Indexed: 02/06/2023]
|
22
|
Imran M, Ullah A, Saeed F, Nadeem M, Arshad MU, Suleria HAR. Cucurmin, anticancer, & antitumor perspectives: A comprehensive review. Crit Rev Food Sci Nutr 2017; 58:1271-1293. [PMID: 27874279 DOI: 10.1080/10408398.2016.1252711] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cucurmin, a naturally yellow component isolated from turmeric, ability to prevent various life-style related disorders. The current review article mainly emphasizes on different anticancer perspectives of cucurmin, i.e., colon, cervical, uterine, ovarian, prostate head and neck, breast, pulmonary, stomach and gastric, pancreatic, bladder oral, oesophageal, and bone cancer. It holds a mixture of strong bioactive molecule known as cucurminoids that has ability to reduce cancer/tumor at initial, promotion and progression stages of tumor development. In particular, these compounds block several enzymes required for the growth of tumors and may therefore involve in tumor treatments. Moreover, it modulates an array of cellular progressions, i.e., nitric oxide synthetase activity, protein kinase C activity, epidermal growth factor (EGF) receptor intrinsic kinase activity, nuclear factor kappa (NF-kB) activity, inhibiting lipid peroxidation and production of reactive oxygen species. However, current manuscript summarizes most of the recent investigations of cucurmin but still further research should be conducted to explore the role of curcumin to mitigate various cancers.
Collapse
Affiliation(s)
- Muhammad Imran
- a Department of Diet and Nutritional Sciences , Imperial College of Business Studies , Lahore , Pakistan.,b National Institute of Food Science and Technology , University of Agriculture Faisalabad , Pakistan
| | - Azmat Ullah
- e Department of Food Science and Human Nutrition , University of Veterinary and Animal Sciences , Lahore , Pakistan
| | - Farhan Saeed
- c Institute of Home & Food Sciences , Government College University Faisalabad , Pakistan
| | - Muhammad Nadeem
- d Department of Environmental Sciences , COMSATS Institute of Information Technology Vehari , Pakistan
| | - Muhammad Umair Arshad
- c Institute of Home & Food Sciences , Government College University Faisalabad , Pakistan
| | | |
Collapse
|
23
|
Dhima IT, Peschos D, Simos YV, Gkiouli MI, Palatianou ME, Ragos VN, Kalfakakou V, Evangelou AM, Karkabounas SC. Modulation of cisplatin cytotoxic activity against leiomyosarcoma cells by epigallocatechin-3-gallate. Nat Prod Res 2017. [DOI: 10.1080/14786419.2017.1343318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Irida Th. Dhima
- Laboratory of Physiology, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Dimitrios Peschos
- Laboratory of Physiology, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Yannis V. Simos
- Laboratory of Physiology, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Maria I. Gkiouli
- Institute of Medical Engineering (IMETUM), Technical University of Munich, Munich, Germany
| | - Maria E. Palatianou
- Laboratory of Physiology, Faculty of Medicine, University of Ioannina, Ioannina, Greece
- Department of Internal Medicine, General Hospital of Nikaia Agios Panteleimon, Piraeus, Greece
| | - Vasilios N. Ragos
- Maxillofacial Surgery, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Vasiliki Kalfakakou
- Laboratory of Physiology, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Angelos M. Evangelou
- Laboratory of Physiology, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | | |
Collapse
|
24
|
Hong OY, Noh EM, Jang HY, Lee YR, Lee BK, Jung SH, Kim JS, Youn HJ. Epigallocatechin gallate inhibits the growth of MDA-MB-231 breast cancer cells via inactivation of the β-catenin signaling pathway. Oncol Lett 2017; 14:441-446. [PMID: 28693189 DOI: 10.3892/ol.2017.6108] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/17/2017] [Indexed: 02/03/2023] Open
Abstract
Epigallocatechin gallate (EGCG), a major constituent of green tea, has potential as a treatment for a variety of diseases, including cancer. EGCG induces apoptosis and inhibits tumorigenesis through multiple signaling pathways in breast cancer cells. β-catenin signaling modulators could be useful in the prevention and therapy of breast cancer. However, the precise anticancer effect of EGCG through the β-catenin signaling pathway in breast cancer is unclear. The present study investigated the association between β-catenin expression and clinicopathological factors of breast cancer patients, and the effect of EGCG on β-catenin expression in breast cancer cells. β-catenin expression was analyzed according to the clinicopathological factors of 74 patients with breast cancer. All patients were females diagnosed with invasive ductal carcinoma. Western blot analysis revealed that β-catenin was expressed at higher levels in breast cancer tissue than in normal tissue. β-catenin expression was associated with lymph node metastasis (P=0.04), tumor-node-metastasis stage (P=0.03) and estrogen receptor status (P<0.01). EGCG decreased MDA-MB-231 cell viability and significantly downregulated the expression of β-catenin, phosphorylated Akt and cyclin D1. Remarkably, additive effects of LY294002 and wortmannin, two phosphatidylinositol-3 kinase inhibitors, were observed. The present results suggest that EGCG inhibits the growth of MDA-MB-231 cells through the inactivation of the β-catenin signaling pathway. Based on these promising results, EGCG may be a potential treatment for triple negative breast cancer patients.
Collapse
Affiliation(s)
- On-Yu Hong
- Department of Biochemistry, Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju, Chonbuk 54907, Republic of Korea
| | - Eun-Mi Noh
- Department of Oral Biochemistry and Institute of Biomaterials Implant, School of Dentistry, Wonkwang University, Iksan, Chonbuk 54538, Republic of Korea
| | - Hye-Yeon Jang
- Department of Biochemistry, Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju, Chonbuk 54907, Republic of Korea
| | - Young-Rae Lee
- Department of Oral Biochemistry and Institute of Biomaterials Implant, School of Dentistry, Wonkwang University, Iksan, Chonbuk 54538, Republic of Korea
| | - Byoung Kil Lee
- Department of Surgery, Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Chonbuk 54907, Republic of Korea
| | - Sung Hoo Jung
- Department of Surgery, Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Chonbuk 54907, Republic of Korea
| | - Jong-Suk Kim
- Department of Biochemistry, Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju, Chonbuk 54907, Republic of Korea
| | - Hyun Jo Youn
- Department of Surgery, Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Chonbuk 54907, Republic of Korea
| |
Collapse
|
25
|
Moradzadeh M, Hosseini A, Erfanian S, Rezaei H. Epigallocatechin-3-gallate promotes apoptosis in human breast cancer T47D cells through down-regulation of PI3K/AKT and Telomerase. Pharmacol Rep 2017. [PMID: 28646740 DOI: 10.1016/j.pharep.2017.04.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Green tea has antioxidant, anti-tumor and anti-bacterial properties. Epigallocatechin-3-gallate (EGCG) in green tea is highly active as a cancer chemopreventive agent. In this study, we designed a series of experiments to examine the effects of EGCG on proliferation and apoptosis of estrogen receptor α-positive breast cancer (T47D) cells. METHODS Cells were treated with EGCG (0-80μM) and tamoxifen (0-20μM), as the positive control, up to 72h. Cell viability was determined by MTT assay. Apoptosis investigated by real time PCR of apoptosis and survival (Bax, Bcl-2, p21, p53, PTEN, PI3K, AKT, caspase3 and caspase9 and hTERT) genes and by western blot of Bax/Bcl-2 proteins expressions. RESULTS The results showed that EGCG decreased cell viability as concentration- and time-dependently. IC50 values were 14.17μM for T47D and 193.10μM for HFF cells, as compared with 3.39μM and 32.75μM for tamoxifen after 72h treatment, respectively. Also, EGCG (80μM) significantly increased the genes of PTEN, CASP3, CASP9 and decreased AKT approximately equal to tamoxifen. In gene expression, EGCG (80μM) significantly increased Bax/Bcl-2 ratio to 8-fold vise 15-fold in tamoxifen (20μM)-treated T47D cells during 72h. In protein expression of Bax/Bcl-2, EGCG significantly increased 6-fold while this ratio augmented 10-fold in tamoxifen group. EGCG significantly decreased 0.8, 0.4 and 0.3 gene expression of hTERT in 24, 48 and 72h, respectively. CONCLUSIONS This study suggests that EGCG may be a useful adjuvant therapeutic agent for the treatment of breast cancer.
Collapse
Affiliation(s)
- Maliheh Moradzadeh
- Department of New Sciences and Technology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saiedeh Erfanian
- Research center for non-Communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran.
| | - Hadi Rezaei
- Department of Microbiology, Jahrom University of Medical Sciences, Jahrom, Iran
| |
Collapse
|
26
|
Lazzeroni M, Guerrieri-Gonzaga A, Gandini S, Johansson H, Serrano D, Cazzaniga M, Aristarco V, Macis D, Mora S, Caldarella P, Pagani G, Pruneri G, Riva A, Petrangolini G, Morazzoni P, DeCensi A, Bonanni B. A Presurgical Study of Lecithin Formulation of Green Tea Extract in Women with Early Breast Cancer. Cancer Prev Res (Phila) 2017; 10:363-370. [PMID: 28400479 DOI: 10.1158/1940-6207.capr-16-0298] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/04/2017] [Accepted: 04/07/2017] [Indexed: 11/16/2022]
Abstract
Epidemiologic data support an inverse association between green tea intake and breast cancer risk. Greenselect Phytosome (GSP) is a lecithin formulation of a caffeine-free green tea catechin extract. The purpose of the study was to determine the tissue distribution of epigallocatechin-3-O-gallate (EGCG) and its effect on cell proliferation and circulating biomarkers in breast cancer patients. Twelve early breast cancer patients received GSP 300 mg, equivalent to 44.9 mg of EGCG, daily for 4 weeks prior to surgery. The EGCG levels were measured before (free) and after (total) enzymatic hydrolysis by HPLC-MS/MS in plasma, urine, breast cancer tissue, and surrounding normal breast tissue. Fasting blood samples were taken at baseline, before the last administration, and 2 hours later. Repeated administration of GSP achieved levels of total EGCG ranging from 17 to 121 ng/mL in plasma. Despite a high between-subject variability, total EGCG was detectable in all tumor tissue samples collected up to 8 ng/g. Median total EGCG concentration was higher in the tumor as compared with the adjacent normal tissue (3.18 ng/g vs. 0 ng/g, P = 0.02). Free EGCG concentrations ranged from 8 to 65.8 ng/mL in plasma (P between last administration and 2 hours after <0.001). Free EGCG plasma levels showed a significant positive correlation with the Ki-67 decrease in tumor tissue (P = 0.02). No change in any other biomarkers was noted, except for a slight increase in testosterone levels after treatment. Oral GSP increases bioavailability of EGCG, which is detectable in breast tumor tissue and is associated with antiproliferative effects on breast cancer tissue. Cancer Prev Res; 10(6); 363-9. ©2017 AACR.
Collapse
Affiliation(s)
- Matteo Lazzeroni
- Division of Cancer Prevention and Genetics, European Institute of Oncology, Milan, Italy.
| | | | - Sara Gandini
- Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy
| | - Harriet Johansson
- Division of Cancer Prevention and Genetics, European Institute of Oncology, Milan, Italy
| | - Davide Serrano
- Division of Cancer Prevention and Genetics, European Institute of Oncology, Milan, Italy
| | - Massimiliano Cazzaniga
- Division of Cancer Prevention and Genetics, European Institute of Oncology, Milan, Italy
| | - Valentina Aristarco
- Division of Cancer Prevention and Genetics, European Institute of Oncology, Milan, Italy
| | - Debora Macis
- Division of Cancer Prevention and Genetics, European Institute of Oncology, Milan, Italy
| | - Serena Mora
- Division of Cancer Prevention and Genetics, European Institute of Oncology, Milan, Italy
| | | | | | - Giancarlo Pruneri
- Division of Pathology, European Institute of Oncology, Milan, Italy.,University of Milan, School of Medicine, Milan, Italy
| | | | | | | | - Andrea DeCensi
- Division of Medical Oncology, E.O. Ospedali Galliera, Genoa, Italy.,Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, United Kingdom
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, European Institute of Oncology, Milan, Italy
| |
Collapse
|
27
|
Effect and mechanism of resveratrol on drug resistance in human bladder cancer cells. Mol Med Rep 2017; 15:1179-1187. [PMID: 28098863 PMCID: PMC5367328 DOI: 10.3892/mmr.2017.6111] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 10/11/2016] [Indexed: 11/26/2022] Open
Abstract
Multidrug resistance (MDR) is a significant barrier to the effective treatment of bladder cancer. In order to improve the management of bladder cancer, it is crucial to identify strategies that may reverse MDR. The effects of three herbal medicines, ginsenoside Rh2, (−)-epigallocatechin gallate (EGCG) and resveratrol (RES) on bladder cancer were determined. The effect of these three herbal medicines against the drug resistance in adriamycin (ADM)-resistant pumc-91 cells (pumc-91/ADM) was assessed using the Cell Counting Kit-8 cell proliferation assay system. Cell cycle distribution analysis was performed using flow cytometry following treatment with RES. The mRNA and protein expression levels of multidrug resistance protein 1 (MRP1), lung resistance protein (LRP), glutathione S-transferase (GST), B cell leukemia/lymphoma-2 (BCL-2) and topoisomerase-II (Topo-II) were evaluated using reverse transcription-quantitative polymerase chain reaction and immunofluorescence, respectively. RES enhanced the cytotoxicity of anticancer agents on pumc-91/ADM cells; however, Rh2 and EGCG were unable to induce a similar effect. Additionally, RES treatment led to S phase cell cycle arrest accompanied by a decrease in the number of cells in the G1 phase. A significant decrease of MRP1, LRP, GST, BCL-2 levels and an increase of Topo-II levels were observed in RES groups compared with the control group. RES effectively reversed ADM resistance in pumc-91/ADM cells and the underlying molecular mechanism may be associated with the alteration of MRP1, LRP, GST, BCL-2 and Topo-II expression levels. Therefore, RES may be a potential candidate for reversing drug resistance in bladder cancer chemotherapy.
Collapse
|
28
|
Cao J, Han J, Xiao H, Qiao J, Han M. Effect of Tea Polyphenol Compounds on Anticancer Drugs in Terms of Anti-Tumor Activity, Toxicology, and Pharmacokinetics. Nutrients 2016; 8:nu8120762. [PMID: 27983622 PMCID: PMC5188417 DOI: 10.3390/nu8120762] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/17/2016] [Accepted: 11/21/2016] [Indexed: 12/16/2022] Open
Abstract
Multidrug resistance and various adverse side effects have long been major problems in cancer chemotherapy. Recently, chemotherapy has gradually transitioned from mono-substance therapy to multidrug therapy. As a result, the drug cocktail strategy has gained more recognition and wider use. It is believed that properly-formulated drug combinations have greater therapeutic efficacy than single drugs. Tea is a popular beverage consumed by cancer patients and the general public for its perceived health benefits. The major bioactive molecules in green tea are catechins, a class of flavanols. The combination of green tea extract or green tea catechins and anticancer compounds has been paid more attention in cancer treatment. Previous studies demonstrated that the combination of chemotherapeutic drugs and green tea extract or tea polyphenols could synergistically enhance treatment efficacy and reduce the adverse side effects of anticancer drugs in cancer patients. In this review, we summarize the experimental evidence regarding the effects of green tea-derived polyphenols in conjunction with chemotherapeutic drugs on anti-tumor activity, toxicology, and pharmacokinetics. We believe that the combination of multidrug cancer treatment with green tea catechins may improve treatment efficacy and diminish negative side effects.
Collapse
Affiliation(s)
- Jianhua Cao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Jie Han
- Analytical Center, Beijing Normal University, Beijing 100875, China.
| | - Hao Xiao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Jinping Qiao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Mei Han
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
29
|
Sturgeon KM, Schweitzer A, Leonard JJ, Tobias DK, Liu Y, Cespedes Feliciano E, Malik VS, Joshi A, Rosner B, De Jonghe BC. Physical activity induced protection against breast cancer risk associated with delayed parity. Physiol Behav 2016; 169:52-58. [PMID: 27884590 DOI: 10.1016/j.physbeh.2016.11.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/12/2016] [Accepted: 11/18/2016] [Indexed: 10/20/2022]
Abstract
Epidemiological evidence indicates that physical activity between menarche and first pregnancy is associated with a lower risk of breast cancer among women with at least 20years between these reproductive events. The mechanism by which physical activity during this interval confers protection is unknown. This study used a novel animal model to assess potentially protective effects of physical activity on tumor development in delayed parity. Thirty-six female Sprague Dawley rats received an i.p. injection of 50mg/kg N-methyl-N-nitrosourea (MNU) at 5weeks of age. Estrogen and progesterone pellets were implanted subcutaneously 1week (early parity, EP, n=8) or 4weeks (delayed parity, DP, n=11) following MNU injection. An additional group of DP rats were progressively exercise trained (Ex+DP, n=9) on a treadmill following MNU injection for 7weeks (up to 20m/min at 15% incline for 30min). We observed the greatest tumor latency and smallest tumor burden in Ex+DP animals. Ductal hyperplasia and inflammation of non-tumor bearing mammary glands were only found in DP, and we detected a significant increase in collagen for DP and Ex+DP compared to EP. Exercise induced differential gene expression of cyclin-dependent kinase-inhibitor 1C (Cdkn1c) and urokinase-plasminogen activator (Plau) in mammary tissue of Ex+DP animals compared to DP alone. While there are delayed parity-induced changes in mammary gland collagen and gene expression levels, Ex+DP animals had longer tumor latency, smaller tumor burden, and glandular tissue resistant to ductal hyperplasia. Exercise may induce protection through beneficial regulation of gene expression profiles.
Collapse
Affiliation(s)
| | - Aaron Schweitzer
- University of Pennsylvania, School of Arts and Sciences, Philadelphia, PA, USA
| | - John J Leonard
- University of Pennsylvania, School of Arts and Sciences, Philadelphia, PA, USA
| | - Deirdre K Tobias
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Ying Liu
- Washington University, School of Medicine, St. Louis, MO, USA
| | | | | | - Amit Joshi
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Bernard Rosner
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Bart C De Jonghe
- University of Pennsylvania, School of Nursing, Philadelphia, PA, USA
| |
Collapse
|
30
|
Wang S, Lei T, Zhang M. The Reversal Effect and Its Mechanisms of Tetramethylpyrazine on Multidrug Resistance in Human Bladder Cancer. PLoS One 2016; 11:e0157759. [PMID: 27391608 PMCID: PMC4938409 DOI: 10.1371/journal.pone.0157759] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 06/03/2016] [Indexed: 01/11/2023] Open
Abstract
Chemotherapy is an important strategy for the treatment of bladder cancer. However, the main problem limiting the success of chemotherapy is the development of multidrug resistance (MDR). To improve the management of bladder cancer, it is an urgent matter to search for strategies to reverse MDR. We chose three kinds of herbal medicines including ginsenoside Rh2, (-)-Epigallocatechin gallate (EGCG) and Tetramethylpyrazine (TMP) to detect their effects on bladder cancer. Reversal effects of these three herbal medicines for drug resistance in adriamycin (ADM)-resistant Pumc-91 cells (Pumc-91/ADM) were assessed by Cell Counting Kit-8 (CCK-8) cell proliferation assay system. The mechanisms of reversal effect for TMP were explored in Pumc-91/ADM and T24/DDP cells. After Pumc-91/ADM and T24/DDP cells were treated with TMP, cell cycle distribution analysis was performed by flow cytometry. The expression of MRP1, GST, BCL-2, LRP and TOPO-II was evaluated using quantitative real-time polymerase chain reaction (qRT-PCR), immunefluorescence assay and western blot. It was observed that TMP was capable of enhancing the cytotoxicity of anticancer agents on Pumc-91/ADM cells in response to ADM, however Rh2 and EGCG were unable to. The reversal effect of TMP was also demonstrated in T24/DDP cells. Moreover, the treatment with TMP in Pumc-91/ADM and T24/DDP cells led to an increased of G1 phase accompanied with a concomitant decrease of cell numbers in S phase. Compared to the control group, an obvious decrease of MRP1, GST, BCL-2 and an increase of TOPO-II were shown in TMP groups with a dose-dependency in mRNA and protein levels. However, there was no difference on LRP expression between TMP groups and the control group. TMP could effectively reverse MDR of Pumc-91/ADM and T24/DDP cells and its mechanisms might be correlated with the alteration of MRP1, GST, BCL-2 and TOPO-II. TMP might be a potential candidate for reversing drug resistance in bladder cancer chemotherapy.
Collapse
Affiliation(s)
- Shanshan Wang
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Ting Lei
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Man Zhang
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
- * E-mail:
| |
Collapse
|
31
|
Lin YL, Chen CH, Wu HY, Tsai NM, Jian TY, Chang YC, Lin CH, Wu CH, Hsu FT, Leung TK, Liao KW. Inhibition of breast cancer with transdermal tamoxifen-encapsulated lipoplex. J Nanobiotechnology 2016; 14:11. [PMID: 26892504 PMCID: PMC4759757 DOI: 10.1186/s12951-016-0163-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/08/2016] [Indexed: 12/21/2022] Open
Abstract
Background Tamoxifen is currently used for the treatment of both early and advanced estrogen receptor (ER) positive breast cancer in pre- and post-menopausal women. However, using tamoxifen routinely to inhibit endogenous or exogenous estrogen effects is occasionally difficult because of its potential side effects. Objectives The aim of this study is to design a local drug delivery system to encapsulate tamoxifen for observing their efficacy of skin penetration, drug accumulation and cancer therapy. Methods A cationic liposome-PEG-PEI complex (LPPC) was used as a carrier for the encapsulation of tamoxifen and forming ‘LPPC/TAM’ for transdermal release. The cytotoxicity of LPPC/TAM was analyzed by MTT. The skin penetration, tumor growth inhibition and organ damages were measured in xenograft mice following transdermal treatment. Results LPPC/TAM had an average size less than 270 nm and a zeta-potential of approximately 40 mV. LPPC/TAM displayed dramatically increased the cytotoxic activity in all breast cancer cells, especially in ER-positive breast cancer cells. In vivo, LPPC drug delivery helped the fluorescent dye penetrating across the skim and accumulating rapidly in tumor area.
Administration of LPPC/TAM by transdermal route inhibited about 86 % of tumor growth in mice bearing BT474 tumors. This local treatment of LPPC/TAM did not injury skin and any organs. Conclusion LPPC-delivery system provided a better skin penetration and drug accumulation and therapeutic efficacy. Therefore, LPPC/TAM drug delivery maybe a useful transdermal tool of drugs utilization for breast cancer therapy.
Collapse
Affiliation(s)
- Yu-Ling Lin
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan, ROC. .,Center for Bioinformatics Research, National Chiao Tung University, Hsinchu, Taiwan, ROC.
| | - Chia-Hung Chen
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan, ROC.
| | - Hsin-Yi Wu
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan, ROC.
| | - Nu-Man Tsai
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan, ROC. .,Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC.
| | - Ting-Yan Jian
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan, ROC.
| | - Yuan-Ching Chang
- Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan, ROC.
| | - Chi-Hsin Lin
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan, ROC.
| | - Chih-Hsiung Wu
- Department of Surgery, En Chu Kong Hospital, New Taipei City, Taiwan, ROC.
| | - Fei-Ting Hsu
- Department of Medical Imaging, Taipei Medical University Hospital, Taipei, Taiwan, ROC. .,Translational Imaging Research Center, Taipei Medical University, Taipei, Taiwan, ROC.
| | - Ting Kai Leung
- Department of Diagnostic Radiology, Taipei Medical University Hospital, Taipei, Taiwan, ROC. .,Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan, ROC. .,Department of Diagnostic Radiology, Taipei Hospital, Ministry of Health and Welfare, Taipei, Taiwan, ROC. .,College of Science and Engineering, Fu Jen Catholic University, Hsinchuang, Taiwan, ROC.
| | - Kuang-Wen Liao
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan, ROC. .,Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan, ROC. .,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC.
| |
Collapse
|
32
|
Fujiki H, Sueoka E, Watanabe T, Suganuma M. Synergistic enhancement of anticancer effects on numerous human cancer cell lines treated with the combination of EGCG, other green tea catechins, and anticancer compounds. J Cancer Res Clin Oncol 2015; 141:1511-22. [PMID: 25544670 DOI: 10.1007/s00432-014-1899-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/17/2014] [Indexed: 01/08/2023]
Abstract
PURPOSE In 2008, we reported that 10 Japanese-size cups of green tea daily, supplemented with tablets of green tea extract (GTE), reduced the recurrence of colorectal adenoma by 51.6% in patients after polypectomy. Based on these results, we paid special attention to Japanese cancer patients, who consume green tea every day and are administered anticancer drugs. This encouraged us to study whether the combination of green tea catechins and anticancer drugs has the potential to enhance the efficacy of the drugs. RESULTS AND DISCUSSION The combination of GTE and NSAIDs synergistically inhibited tumor development in rodents through the activation of the GADD153-DR5-TRAIL apoptotic pathway. Since then, this study was further extended by various investigators to the combinations of EGCG and other green tea catechins with anticancer compounds, the latter of which include NSAIDs, phytochemicals, and anticancer drugs. In order to demonstrate whether diversity of the combinations would generally induce synergistic anticancer effects on numerous human cancer cell lines, we studied the results of 42 in vitro combination experiments and the synergistic inhibition of tumor volume of 13 combination experiments using xenograft mouse models, which were previously reported by other investigators. The various combinations of EGCG and anticancer compounds induced similar synergistic anticancer effects for both in vitro and in vivo experiments, and showed an average reduction in tumor volume by 70.3%. Considering the evidence showing that treatment with EGCG inhibited self-renewal of cancer stem cells, the combination shows a great advantage. CONCLUSION Green tea is a cancer preventive for humans, showing a new trend of green tea catechins as synergists with anticancer compounds.
Collapse
Affiliation(s)
- Hirota Fujiki
- Department of Clinical Laboratory Medicine, Faculty of Medicine, Saga University, Nabeshima, Saga, 849-8501, Japan,
| | | | | | | |
Collapse
|
33
|
Singh BN, Singh HB, Singh A, Naqvi AH, Singh BR. Dietary phytochemicals alter epigenetic events and signaling pathways for inhibition of metastasis cascade: phytoblockers of metastasis cascade. Cancer Metastasis Rev 2015; 33:41-85. [PMID: 24390421 DOI: 10.1007/s10555-013-9457-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cancer metastasis is a multistep process in which a cancer cell spreads from the site of the primary lesion, passes through the circulatory system, and establishes a secondary tumor at a new nonadjacent organ or part. Inhibition of cancer progression by dietary phytochemicals (DPs) offers significant promise for reducing the incidence and mortality of cancer. Consumption of DPs in the diet has been linked to a decrease in the rate of metastatic cancer in a number of preclinical animal models and human epidemiological studies. DPs have been reported to modulate the numerous biological events including epigenetic events (noncoding micro-RNAs, histone modification, and DNA methylation) and multiple signaling transduction pathways (Wnt/β-catenin, Notch, Sonic hedgehog, COX-2, EGFR, MAPK-ERK, JAK-STAT, Akt/PI3K/mTOR, NF-κB, AP-1, etc.), which can play a key role in regulation of metastasis cascade. Extensive studies have also been performed to determine the molecular mechanisms underlying antimetastatic activity of DPs, with results indicating that these DPs have significant inhibitory activity at nearly every step of the metastatic cascade. DPs have anticancer effects by inducing apoptosis and by inhibiting cell growth, migration, invasion, and angiogenesis. Growing evidence has also shown that these natural agents potentiate the efficacy of chemotherapy and radiotherapy through the regulation of multiple signaling pathways. In this review, we discuss the variety of molecular mechanisms by which DPs regulate metastatic cascade and highlight the potentials of these DPs as promising therapeutic inhibitors of cancer.
Collapse
Affiliation(s)
- B N Singh
- Research and Development Division, Sowbhagya Biotech Private Limited, Cherlapally, Hyderabad, 500051, Andhra Pradesh, India
| | | | | | | | | |
Collapse
|
34
|
Tyagi T, Treas JN, Mahalingaiah PKS, Singh KP. Potentiation of growth inhibition and epigenetic modulation by combination of green tea polyphenol and 5-aza-2′-deoxycytidine in human breast cancer cells. Breast Cancer Res Treat 2015; 149:655-68. [DOI: 10.1007/s10549-015-3295-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 02/02/2015] [Indexed: 12/18/2022]
|
35
|
Yiannakopoulou EC. Interaction of green tea catechins with breast cancer endocrine treatment: a systematic review. Pharmacology 2014; 94:245-8. [PMID: 25471334 DOI: 10.1159/000369170] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/16/2014] [Indexed: 11/19/2022]
Abstract
Recent data have shown strong chemopreventive and possibly cancer chemotherapeutic effects of green tea polyphenols and EGCG against breast cancer. This systematic review aims to synthesize data on the possible interaction of green tea catechins with breast cancer endocrine treatment. Electronic databases were searched with the appropriate search terms. Experimental trials suggest a synergistic interaction of green tea catechins with tamoxifen or raloxifene in the treatment of estrogen receptor-positive and estrogen receptor-negative breast cancer through estrogen receptor-dependent and -independent mechanisms. No evidence of an interaction of green tea catechins with aromatase inhibitors or fulvestrant has been reported. As green tea catechins are natural compounds with a rather favorable safety profile, the strategy of co-administrating green tea catechins with tamoxifen seems to be a rational approach in chemoprevention, adjuvant and metastatic breast cancer treatment that needs further investigation.
Collapse
Affiliation(s)
- Eugenia C Yiannakopoulou
- Department of Medical Laboratories, Faculty of Health and Caring Professions, Technological Educational Institute of Athens, Athens, Greece
| |
Collapse
|
36
|
Huang R, Faratian D, Sims AH, Wilson D, Thomas JS, Harrison DJ, Langdon SP. Increased STAT1 signaling in endocrine-resistant breast cancer. PLoS One 2014; 9:e94226. [PMID: 24728078 PMCID: PMC3984130 DOI: 10.1371/journal.pone.0094226] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 03/13/2014] [Indexed: 01/12/2023] Open
Abstract
Proteomic profiling of the estrogen/tamoxifen-sensitive MCF-7 cell line and its partially sensitive (MCF-7/LCC1) and fully resistant (MCF-7/LCC9) variants was performed to identify modifiers of endocrine sensitivity in breast cancer. Analysis of the expression of 120 paired phosphorylated and non-phosphorylated epitopes in key oncogenic and tumor suppressor pathways revealed that STAT1 and several phosphorylated epitopes (phospho-STAT1(Tyr701) and phospho-STAT3(Ser727)) were differentially expressed between endocrine resistant and parental controls, confirmed by qRT-PCR and western blotting. The STAT1 inhibitor EGCG was a more effective inhibitor of the endocrine resistant MCF-7/LCC1 and MCF-7/LCC9 lines than parental MCF-7 cells, while STAT3 inhibitors Stattic and WP1066 were equally effective in endocrine-resistant and parental lines. The effects of the STAT inhibitors were additive, rather than synergistic, when tested in combination with tamoxifen in vitro. Expression of STAT1 and STAT3 were measured by quantitative immunofluorescence in invasive breast cancers and matched lymph nodes. When lymph node expression was compared to its paired primary breast cancer expression, there was greater expression of cytoplasmic STAT1 (∼3.1 fold), phospho-STAT3(Ser727) (∼1.8 fold), and STAT5 (∼1.5 fold) and nuclear phospho-STAT3(Ser727) (∼1.5 fold) in the nodes. Expression levels of STAT1 and STAT3 transcript were analysed in 550 breast cancers from publicly available gene expression datasets (GSE2990, GSE12093, GSE6532). When treatment with tamoxifen was considered, STAT1 gene expression was nearly predictive of distant metastasis-free survival (DMFS, log-rank p = 0.067), while STAT3 gene expression was predictive of DMFS (log-rank p<0.0001). Analysis of STAT1 and STAT3 protein expression in a series of 546 breast cancers also indicated that high expression of STAT3 protein was associated with improved survival (DMFS, p = 0.006). These results suggest that STAT signaling is important in endocrine resistance, and that STAT inhibitors may represent potential therapies in breast cancer, even in the resistant setting.
Collapse
Affiliation(s)
- Rui Huang
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Dana Faratian
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Andrew H. Sims
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Danielle Wilson
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Jeremy S. Thomas
- Department of Pathology, Western General Hospital, Edinburgh, Scotland, United Kingdom
| | - David J. Harrison
- Pathology, Medical and Biological Sciences Building, University of St Andrews, North Haugh, St. Andrews, Fife, Scotland, United Kingdom
| | - Simon P. Langdon
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
37
|
Zeng L, Holly JMP, Perks CM. Effects of physiological levels of the green tea extract epigallocatechin-3-gallate on breast cancer cells. Front Endocrinol (Lausanne) 2014; 5:61. [PMID: 24847310 PMCID: PMC4019852 DOI: 10.3389/fendo.2014.00061] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/13/2014] [Indexed: 11/22/2022] Open
Abstract
Physiological concentrations of the green tea extract epigallocatechin-3-gallate (EGCG) caused growth inhibition in estrogen receptor α (ERα)-positive MCF7 cells that was associated with down-regulation of the ERα and reduced insulin-like growth factor binding protein-2 abundance and increased protein abundance of the tumor suppressor genes p53/p21. In contrast to MCF7 cells that have wt p53, EGCG alone did not change cell proliferation or death significantly in another ERα-positive cell line T47D that possesses mutant p53. EGCG increased ERα protein levels and as a consequence, the cells responded significantly better to an ERα antagonist tamoxifen (TAM) in the presence of EGCG. EGCG significantly increased cell death in an ERα-negative cell line, MDA-MB-231 that also possesses mutant p53. EGCG significantly increased the ERα and insulin-like growth factor-I receptor levels and thereby enhanced the sensitivities of the cells to TAM and a blocking antibody targeting the insulin-like growth factor-1 receptor (αIR3). In contrast to MCF7, T47D and MDA-MB-231 breast cancer cells that exhibited significant changes in key molecules involved in breast growth and survival upon treatment with physiological levels of EGCG, the growth, survival, and levels of these proteins in non-malignant breast epithelial cells, MCF10A cells, were not affected.
Collapse
Affiliation(s)
- Li Zeng
- IGFs and Metabolic Endocrinology Group, School of Clinical Sciences, Southmead Hospital, University of Bristol, Bristol, UK
| | - Jeff M. P. Holly
- IGFs and Metabolic Endocrinology Group, School of Clinical Sciences, Southmead Hospital, University of Bristol, Bristol, UK
| | - Claire M. Perks
- IGFs and Metabolic Endocrinology Group, School of Clinical Sciences, Southmead Hospital, University of Bristol, Bristol, UK
- *Correspondence: Claire M. Perks, IGFs and Metabolic Endocrinology Group, School of Clinical Sciences, Southmead Hospital, University of Bristol, Learning and Research Building, 2nd Floor, Bristol BS10 5NB, UK e-mail:
| |
Collapse
|
38
|
Yu SS, Spicer DV, Hawes D, Tseng CC, Yang CS, Pike MC, Wu AH. Biological effects of green tea capsule supplementation in pre-surgery postmenopausal breast cancer patients. Front Oncol 2013; 3:298. [PMID: 24380073 PMCID: PMC3861892 DOI: 10.3389/fonc.2013.00298] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 11/26/2013] [Indexed: 01/18/2023] Open
Abstract
Regular green tea intake has been associated with an inverse risk of breast cancer. There are compelling experimental evidence that green tea, particularly, epigallocatechin gallate, the most potent green tea catechin, possesses a range of anti-cancer properties. We conducted a pre-surgical study of green tea capsules vs. no-green tea in women with primary breast cancer to determine the effects of green tea supplementation on markers of biological response. Postmenopausal women with ductal carcinoma in situ (DCIS) or stage I or II breast cancer took green tea capsules (940 mg per day) for an average of 35 days prior to surgery (n = 13) or received no green tea (n = 18). Paired diagnostic core biopsy and surgical specimen samples were analyzed for cell proliferation (Ki-67), apoptosis (caspase-3), and angiogenesis (CD34) separately in benign and malignant cell components. There were no significant changes in caspase-3 and CD34 in the green tea and no green tea groups and there were no significant differences in the change in these markers between the two groups. However, Ki-67 levels declined in both benign and malignant cell components in the green tea group; the decline in Ki-67 positivity in malignant cells was not statistically significant (P = 0.10) but was statistically significant in benign cells (P = 0.007). Ki-67 levels in benign and malignant cells did not change significantly in the no green tea group. There was a statistically significant difference in the change in Ki-67 in benign cells (P = 0.033) between the green tea and the no green tea groups. The trend of a consistent reduction in Ki-67 in both benign and malignant cells in the green tea group warrants further investigations in a larger study of breast cancer patients or high-risk women.
Collapse
Affiliation(s)
- Steven S Yu
- Department of Medicine, Keck School of Medicine, University of Southern California , Los Angeles, CA , USA
| | - Darcy V Spicer
- Department of Medicine, Keck School of Medicine, University of Southern California , Los Angeles, CA , USA
| | - Debra Hawes
- Department of Pathology, Keck School of Medicine, University of Southern California , Los Angeles, CA , USA
| | - Chiu-Chen Tseng
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California , Los Angeles, CA , USA
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University , Piscataway, NJ , USA
| | - Malcolm C Pike
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California , Los Angeles, CA , USA ; Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center , New York, NY , USA
| | - Anna H Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California , Los Angeles, CA , USA
| |
Collapse
|
39
|
Vinod BS, Maliekal TT, Anto RJ. Phytochemicals as chemosensitizers: from molecular mechanism to clinical significance. Antioxid Redox Signal 2013; 18:1307-48. [PMID: 22871022 DOI: 10.1089/ars.2012.4573] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review provides an overview of the clinical relevance of chemosensitization, giving special reference to the phenolic phytochemicals, curcumin, genistein, epigallocatechin gallate, quercetin, emodin, and resveratrol, which are potential candidates due to their ability to regulate multiple survival pathways without inducing toxicity. We also give a brief summary of all the clinical trials related to the important phytochemicals that emerge as chemosensitizers. The mode of action of these phytochemicals in regulating the key players of the death receptor pathway and multidrug resistance proteins is also abridged. Rigorous efforts in identifying novel chemosensitizers and unraveling their molecular mechanism have resulted in some of the promising candidates such as curcumin, genistein, and polyphenon E, which have gone into clinical trials. Even though considerable research has been conducted in identifying the salient molecular players either contributing to drug efflux or inhibiting DNA repair and apoptosis, both of which ultimately lead to the development of chemoresistance, the interdependence of the molecular pathways leading to chemoresistance is still the impeding factor in the success of chemotherapy. Even though clinical trials are going on to evaluate the chemosensitizing efficacy of phytochemicals such as curcumin, genistein, and polyphenon E, recent results indicate that more intense study is required to confirm their clinical efficacy. Current reports also warrant intense investigation about the use of more phytochemicals such as quercetin, emodin, and resveratrol as chemosensitizers, as all of them have been shown to modulate one or more of the key regulators of chemoresistance.
Collapse
Affiliation(s)
- Balachandran S Vinod
- Cancer Research Program, Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | | | | |
Collapse
|
40
|
Braicu C, Gherman C. Epigallocatechin gallate induce cell death and apoptosis in triple negative breast cancer cells Hs578T. J Drug Target 2012; 21:250-256. [DOI: 10.3109/1061186x.2012.740673] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
41
|
Fujiki H, Suganuma M. Green tea: an effective synergist with anticancer drugs for tertiary cancer prevention. Cancer Lett 2012; 324:119-25. [PMID: 22626556 DOI: 10.1016/j.canlet.2012.05.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 05/11/2012] [Accepted: 05/13/2012] [Indexed: 01/25/2023]
Abstract
Green tea is now an acknowledged cancer preventive in Japan. Based on evidence that colorectal adenomas and prostate cancer in humans have been prevented, we review here the concept that the combination of anticancer drugs with green tea catechin synergistically induces apoptosis of human cancer cells, inhibits tumor formation in mice, and enhances inhibition of tumor growth in xenograft mouse models. As a molecular mechanism by the combination, the induction of growth arrest and DNA damage-inducible 153 (GADD153, CHOP) gene expression is discussed in relation to death receptor 5 and TRAIL-apoptotic pathway. The combination of anticancer drugs with green tea could be a new cancer therapeutic strategy in humans.
Collapse
Affiliation(s)
- Hirota Fujiki
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan.
| | | |
Collapse
|
42
|
Kanwar J, Taskeen M, Mohammad I, Huo C, Chan TH, Dou QP. Recent advances on tea polyphenols. Front Biosci (Elite Ed) 2012; 4:111-31. [PMID: 22201858 DOI: 10.2741/363] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Over the past decade many scientific and medical studies have focused on green tea for its long-purported health benefits. There is convincing evidence that tea is a cup of life. It has multiple preventive and therapeutic effects. This review thus focuses on the recent advances of tea polyphenols and their applications in the prevention and treatment of human cancers. Of the various polyphenols in tea, (-)-Epigallocatechin-3-gallate (EGCG) is the most abundant, and active compound studied in tea research. EGCG inhibits several molecular targets to inhibit cancer initiation and modulates several essential survival pathways to block cancer progression. Herein, we describe the various mechanisms of action of EGCG and also discuss previous and current ongoing clinical trials of EGCG and green tea polyphenols in different cancer types.
Collapse
Affiliation(s)
- Jyoti Kanwar
- The Developmental Therapeutics Program, Barbara Ann Karmanos Cancer Institute, and Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | | | | | |
Collapse
|
43
|
Oleaga C, García M, Solé A, Ciudad CJ, Izquierdo-Pulido M, Noé V. CYP1A1 is overexpressed upon incubation of breast cancer cells with a polyphenolic cocoa extract. Eur J Nutr 2011; 51:465-76. [DOI: 10.1007/s00394-011-0231-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 07/18/2011] [Indexed: 10/17/2022]
|
44
|
Huang HC, Lin CL, Lin JK. 1,2,3,4,6-penta-O-galloyl-β-D-glucose, quercetin, curcumin and lycopene induce cell-cycle arrest in MDA-MB-231 and BT474 cells through downregulation of Skp2 protein. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:6765-6775. [PMID: 21598989 DOI: 10.1021/jf201096v] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The F-box protein S-phase kinase-associated protein 2 (Skp2), which acts as an oncogene through targeting p27 for degradation, is overexpressed in many different human cancers. Skp2 can play an important role in breast cancer progression and may also be a novel molecular target for the treatment of breast cancer, especially estrogen receptor (ER)/human epidermal growth factor 2 (HER2) negative breast cancers. Unfortunately, specific drugs that target Skp2 are unavailable at present. Therefore, it is important to explore whether commonly used chemopreventive agents may downregulate Skp2 expression. In this study, we examined the effects of 1,2,3,4,6-penta-O-galloyl-β-D-glucose (pentagalloylglucose, 5gg), quercetin, curcumin and lycopene on the expression of Skp2 in MDA-MB-231 (ER/HER2-negative) and BT474 (ER-negative/HER2-positive) cells. We found that all four phytochemicals studied induced cell growth inhibition in MDA-MB-231 cells. The mechanism of the initial growth inhibitory events involves blocking the cell cycle progression. Further, we found that quercetin and curcumin induced growth arrest by inhibition of Skp2, and induced p27 expression in MDA-MB-231 cells. However, the decrease in Skp2 levels in cells treated with 5gg or lycopene did not translate to p27 upregulation. Consequently, the downregulation of Skp2 did not always correlate with the upregulation of p27, suggesting that phytochemical-dependent downregulation of Skp2 can influence cell growth in several ways. Several studies have demonstrated that Skp2 directs the ubiquitylation and subsequent degradation of forkhead box protein O1 (FoxO1). Furthermore, our results reveal that FoxO1 protein was increased after 5gg, quercetin, curcumin and lycopene treatment. The therapeutic strategies designed to reduce Skp2 may therefore play an important clinical role in treatment of breast cancer cells, especially ER/HER2-negative breast cancers.
Collapse
Affiliation(s)
- Hsiu-Chen Huang
- Department of Applied Science, National Hsinchu University of Education, Hsinchu 30014, Taiwan
| | | | | |
Collapse
|
45
|
Wu AH, Butler LM. Green tea and breast cancer. Mol Nutr Food Res 2011; 55:921-30. [PMID: 21538855 DOI: 10.1002/mnfr.201100006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 02/16/2011] [Accepted: 03/01/2011] [Indexed: 01/22/2023]
Abstract
The identification of modifiable lifestyle factors that could reduce the risk of breast cancer is a research priority. Despite the enormous chemopreventive potential of green tea and compelling evidence from animal studies, its role in breast cancer development in humans is still unclear. Part of the uncertainty is related to the relatively small number of epidemiological studies on green tea and breast cancer and that the overall results from case-control studies and prospective cohort studies are discordant. In addition, the mechanisms by which green tea intake may influence risk of breast cancer in humans remain not well studied. We review the human studies that have evaluated the relationship between green tea intake and four biomarkers (sex steroid hormones, mammographic density, insulin-like growth factor, adiponectin) that are believed to be important in breast cancer development. Results from these biomarker studies are also inconclusive. Limitations of observational studies and areas of further investigations are discussed.
Collapse
Affiliation(s)
- Anna H Wu
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA.
| | | |
Collapse
|
46
|
Huang H, Chen D, Li S, Li X, Liu N, Lu X, Liu S, Zhao K, Zhao C, Guo H, Yang C, Zhou P, Dong X, Zhang C, Guanmei, Dou QP, Liu J. Gambogic acid enhances proteasome inhibitor-induced anticancer activity. Cancer Lett 2011; 301:221-8. [PMID: 21216092 DOI: 10.1016/j.canlet.2010.12.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 12/14/2010] [Accepted: 12/15/2010] [Indexed: 11/16/2022]
Abstract
Proteasome inhibition has emerged as a novel approach to anticancer therapy. Numerous natural compounds, such as gambogic acid, have been tested in vitro and in vivo as anticancer agents for cancer prevention and therapy. However, whether gambogic acid has chemosensitizing properties when combined with proteasome inhibitors in the treatment of malignant cells is still unknown. In an effort to investigate this effect, human leukemia K562 cells, mouse hepatocarcinoma H22 cells and H22 cell allografts were treated with gambogic acid, a proteasome inhibitor (MG132 or MG262) or the combination of both, followed by measurement of cellular viability, apoptosis induction and tumor growth inhibition. We report, for the first time, that: (i) the combination of natural product gambogic acid and the proteasome inhibitor MG132 or MG262 results in a synergistic inhibitory effect on growth of malignant cells and tumors in allograft animal models and (ii) there was no apparent systemic toxicity observed in the animals treated with the combination. Therefore, the findings presented in this study demonstrate that natural product gambogic acid is a valuable candidate to be used in combination with proteasome inhibitors, thus representing a compelling anticancer strategy.
Collapse
Affiliation(s)
- Hongbiao Huang
- Department of Pathophysiology, Guangzhou Medical College, Guangdong, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Suganuma M, Saha A, Fujiki H. New cancer treatment strategy using combination of green tea catechins and anticancer drugs. Cancer Sci 2010; 102:317-23. [PMID: 21199169 DOI: 10.1111/j.1349-7006.2010.01805.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Green tea is now recognized as the most effective cancer preventive beverage. In one study, 10 Japanese-size cups of green tea daily supplemented with tablets of green tea extract limited the recurrence of colorectal polyps in humans to 50%. Thus, cancer patients who consume green tea and take anticancer drugs will have double prevention. We studied the effects of combining (-)-epigallocatechin gallate (EGCG) and anticancer drugs, focusing on inhibition of cell growth and induction of apoptosis. Numerous anticancer drugs, such as tamoxifen, COX-2 inhibitors, and retinoids were used for the experiments, and the combination of EGCG and COX-2 inhibitors consistently induced the enhancement of apoptosis. To study the mechanism of the enhancement, we paid special attention to the enhanced expressions of DDIT3 (growth arrest and DNA damage-inducible 153, GADD153), GADD45A, and CDKN1A (p21/WAF1/CIP1) genes, based on our previous evidence that a combination of EGCG and sulindac specifically induced upregulated expression of GADD153 and p21 genes in PC-9 lung cancer cells. The synergistic enhancements of apoptosis and GADD153 gene expression in human non-small cell lung cancer cells by the combination of EGCG and celecoxib were mediated through the activation of the MAPK signaling pathway. This article reviews the synergistic enhancement of apoptosis, gene expression, and anticancer effects using various combinations of EGCG and anticancer drugs, including the combination of (-)-epicatechin (EC) and curcumin. Based on the evidence, we present a new concept: green tea catechins as synergists with anticancer drugs.
Collapse
Affiliation(s)
- Masami Suganuma
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan.
| | | | | |
Collapse
|
48
|
Li Y, Yuan YY, Meeran SM, Tollefsbol TO. Synergistic epigenetic reactivation of estrogen receptor-α (ERα) by combined green tea polyphenol and histone deacetylase inhibitor in ERα-negative breast cancer cells. Mol Cancer 2010; 9:274. [PMID: 20946668 PMCID: PMC2967543 DOI: 10.1186/1476-4598-9-274] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 10/14/2010] [Indexed: 11/23/2022] Open
Abstract
Background The status of estrogen receptor-α (ERα) is critical to the clinical prognosis and therapeutic approach in breast cancer. ERα-negative breast cancer is clinically aggressive and has a poor prognosis because of the lack of hormone target-directed therapies. Previous studies have shown that epigenetic regulation plays a major role in ERα silencing in human breast cancer cells. Dietary green tea polyphenol, (-)-epigallocatechin-3-gallate (EGCG), is believed to be an anticancer agent in part through its regulation of epigenetic processes. Results In our current studies, we found that EGCG can reactivate ERα expression in ERα-negative MDA-MB-231 breast cancer cells. Combination studies using EGCG with the histone deacetylase (HDAC) inhibitor, trichostatin A (TSA), revealed a synergistic effect of reactivation of ERα expression in ERα-negative breast cancer cells. Reactivation of ERα expression by EGCG and TSA treatment was found to sensitize ERα-dependent cellular responses to activator 17β-estradiol (E2) and antagonist tamoxifen in ERα-negative breast cancer cells. We also found that EGCG can lead to remodeling of the chromatin structure of the ERα promoter by altering histone acetylation and methylation status thereby resulting in ERα reactivation. A decreased binding of the transcription repressor complex, Rb/p130-E2F4/5-HDAC1-SUV39H1-DNMT1, in the regulatory region of the ERα promoter also contributes to ERα transcriptional activation through treatment with EGCG and/or TSA. Conclusions Collectively, these studies show that green tea EGCG can restore ERα expression by regulating epigenetic mechanisms, and this effect is enhanced when combined with an HDAC inhibitor. This study will facilitate more effective uses of combination approaches in breast cancer therapy and will help to explore more effective chemotherapeutic strategies toward hormone-resistant breast cancer.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|
49
|
Kim JW, Amin ARMR, Shin DM. Chemoprevention of head and neck cancer with green tea polyphenols. Cancer Prev Res (Phila) 2010; 3:900-9. [PMID: 20663981 DOI: 10.1158/1940-6207.capr-09-0131] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Recently, squamous cell carcinoma of the head and neck chemoprevention research has made major advances with novel clinical trial designs suited for the purpose, use of biomarkers to identify high-risk patients, and the emergence of numerous molecularly targeted agents and natural dietary compounds. Among many natural compounds, green tea polyphenols, particularly (-)-epigallocatechin-3-gallate (EGCG), possess remarkable potential as chemopreventive agents. EGCG modulates several key molecular signaling pathways at multiple levels and has synergistic or additive effects when combined with many other natural or synthetic compounds. This review will provide an update of the potential of green tea polyphenols, particularly EGCG, for the chemoprevention of squamous cell carcinoma of the head and neck.
Collapse
|
50
|
Vessières A, Corbet C, Heldt JM, Lories N, Jouy N, Laïos I, Leclercq G, Jaouen G, Toillon RA. A ferrocenyl derivative of hydroxytamoxifen elicits an estrogen receptor-independent mechanism of action in breast cancer cell lines. J Inorg Biochem 2010; 104:503-11. [DOI: 10.1016/j.jinorgbio.2009.12.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 12/29/2009] [Accepted: 12/30/2009] [Indexed: 11/16/2022]
|