1
|
Nishana M, Nilavar NM, Kumari R, Pandey M, Raghavan SC. HIV integrase inhibitor, Elvitegravir, impairs RAG functions and inhibits V(D)J recombination. Cell Death Dis 2017; 8:e2852. [PMID: 28569776 PMCID: PMC5520896 DOI: 10.1038/cddis.2017.237] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/24/2017] [Accepted: 04/05/2017] [Indexed: 12/13/2022]
Abstract
Integrase inhibitors are a class of antiretroviral drugs used for the treatment of AIDS that target HIV integrase, an enzyme responsible for integration of viral cDNA into host genome. RAG1, a critical enzyme involved in V(D)J recombination exhibits structural similarity to HIV integrase. We find that two integrase inhibitors, Raltegravir and Elvitegravir, interfered with the physiological functions of RAGs such as binding, cleavage and hairpin formation at the recombination signal sequence (RSS), though the effect of Raltegravir was limited. Circular dichroism studies demonstrated a distinct change in the secondary structure of RAG1 central domain (RAG1 shares DDE motif amino acids with integrases), and when incubated with Elvitegravir, an equilibrium dissociation constant (Kd) of 32.53±2.9 μM was determined by Biolayer interferometry, leading to inhibition of its binding to DNA. Besides, using extrachromosomal assays, we show that Elvitegravir inhibited both coding and signal joint formation in pre-B cells. Importantly, treatment with Elvitegravir resulted in significant reduction of mature B lymphocytes in 70% of mice studied. Thus, our study suggests a potential risk associated with the use of Elvitegravir as an antiretroviral drug, considering the evolutionary and structural similarities between HIV integrase and RAGs.
Collapse
Affiliation(s)
| | - Namrata M Nilavar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Rupa Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Monica Pandey
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
2
|
Smith RA, Raugi DN, Pan C, Sow PS, Seydi M, Mullins JI, Gottlieb GS. In vitro activity of dolutegravir against wild-type and integrase inhibitor-resistant HIV-2. Retrovirology 2015; 12:10. [PMID: 25808007 PMCID: PMC4328052 DOI: 10.1186/s12977-015-0146-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/21/2015] [Indexed: 11/25/2022] Open
Abstract
Background Dolutegravir recently became the third integrase strand transfer inhibitor (INSTI) approved for use in HIV-1–infected individuals. In contrast to the extensive dataset for HIV-1, in vitro studies and clinical reports of dolutegravir for HIV-2 are limited. To evaluate the potential role of dolutegravir in HIV-2 treatment, we compared the susceptibilities of wild-type and INSTI-resistant HIV-1 and HIV-2 strains to the drug using single-cycle assays, spreading infections of immortalized T cells, and site-directed mutagenesis. Findings HIV-2 group A, HIV-2 group B, and HIV-1 isolates from INSTI-naïve individuals were comparably sensitive to dolutegravir in the single-cycle assay (mean EC50 values = 1.9, 2.6, and 1.3 nM, respectively). Integrase substitutions E92Q, Y143C, E92Q + Y143C, and Q148R conferred relatively low levels of resistance to dolutegravir in HIV-2ROD9 (2- to 6-fold), but Q148K, E92Q + N155H, T97A + N155H and G140S + Q148R resulted in moderate resistance (10- to 46-fold), and the combination of T97A + Y143C in HIV-2ROD9 conferred high-level resistance (>5000-fold). In contrast, HIV-1NL4-3 mutants E92Q + N155H, G140S + Q148R, and T97A + Y143C showed 2-fold, 4-fold, and no increase in EC50, respectively, relative to the parental strain. The resistance phenotypes for E92Q + N155H, and G140S + Q148R HIV-2ROD9 were also confirmed in spreading infections of CEM-ss cells. Conclusions Our data support the use of dolutegravir in INSTI-naïve HIV-2 patients but suggest that, relative to HIV-1, a broader array of replacements in HIV-2 integrase may enable cross-resistance between dolutegravir and other INSTI. Clinical studies are needed to evaluate the efficacy of dolutegravir in HIV-2–infected individuals, including patients previously treated with raltegravir or elvitegravir.
Collapse
|
3
|
Integrase as a Novel Target for the Inhibition of Human Immunodeficiency Virus Type 1 Infection: Current Status and Future Perspectives. Antiviral Res 2014. [DOI: 10.1128/9781555815493.ch5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
4
|
Examining structural analogs of elvitegravir as potential inhibitors of HIV-1 integrase. Arch Virol 2014; 159:2069-80. [DOI: 10.1007/s00705-014-2038-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 02/27/2014] [Indexed: 02/06/2023]
|
5
|
Abstract
PURPOSE OF REVIEW The virally encoded enzyme integrase plays a critical role in HIV-1 replication and has long been considered a promising target for the development of agents to treat HIV-1 infection. It is only recently, however, that the efficacy of integrase inhibitors has been demonstrated in experimental animal model systems of retroviral infection, and in HIV-1 infected subjects. Several compounds that have shown potent efficacy in short-term monotherapy studies have initiated phase two and three clinical studies in 2006. RECENT FINDINGS Although the first inhibitors in this new class of antiretroviral therapy are in the earliest stages of clinical development, the study of integrase function and inhibitor mechanism, as well as recent insights on resistance to prototypical inhibitors in vitro, have important implications for the discovery and development of these agents. SUMMARY This review will summarize the role of integrase in HIV-1 infection, the mechanism of integrase inhibitors, and the results of resistance studies on preclinical compounds which suggest there may be multiple opportunities for developing inhibitors against this essential HIV-1 target.
Collapse
|
6
|
Abstract
Integrase (IN) is a clinically validated target for the treatment of human immunodeficiency virus infections and raltegravir exhibits remarkable clinical activity. The next most advanced IN inhibitor is elvitegravir. However, mutant viruses lead to treatment failure and mutations within the IN coding sequence appear to confer cross-resistance. The characterization of those mutations is critical for the development of second generation IN inhibitors to overcome resistance. This review focuses on IN resistance based on structural and biochemical data, and on the role of the IN flexible loop i.e., between residues G140-G149 in drug action and resistance.
Collapse
Affiliation(s)
| | | | | | - Yves Pommier
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-301-496-5944; Fax: +1-301-402-0752
| |
Collapse
|
7
|
Abstract
The development of multiple agents with potent antiretroviral activity against HIV has ushered in a new age of optimism in the management of patients infected with the virus. However, the viruses' dynamic ability to develop resistance against these agents necessitates the investigation of novel targets for viral suppression. Raltegravir represents a first-in-class agent targeting the HIV integrase enzyme, which is responsible for integration of virally encoded DNA into the host genome. Over the last 5 years, clinical trials data has demonstrated an increasing role for raltegravir in the management of both treatment-experienced and treatment-naïve HIV-1-infected patients. This review focuses on the evidence supporting raltegravir's efficacy in an array of clinical settings. Other HIV-1 integrase inhibitors in development are also briefly discussed.
Collapse
Affiliation(s)
- N Lance Okeke
- Duke University Medical Center, Department of Hospital Medicine, Durham Regional Hospital, Durham, North Carolina, USA
| | | |
Collapse
|
8
|
Huang M, Grant GH, Richards WG. Binding modes of diketo-acid inhibitors of HIV-1 integrase: a comparative molecular dynamics simulation study. J Mol Graph Model 2011; 29:956-64. [PMID: 21531158 PMCID: PMC3101338 DOI: 10.1016/j.jmgm.2011.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 03/30/2011] [Accepted: 04/01/2011] [Indexed: 11/18/2022]
Abstract
HIV-1 integrase (IN) has become an attractive target since drug resistance against HIV-1 reverse transcriptase (RT) and protease (PR) has appeared. Diketo acid (DKA) inhibitors are potent and selective inhibitors of HIV-1 IN: however the action mechanism is not well understood. Here, to study the inhibition mechanism of DKAs we performed 10 ns comparative molecular dynamics simulations on HIV-1 IN bound with three most representative DKA inhibitors: Shionogi inhibitor, S-1360 and two Merck inhibitors L-731,988 and L-708,906. Our simulations show that the acidic part of S-1360 formed salt bridge and cation-π interactions with Lys159. In addition, the catalytic Glu152 in S-1360 was pushed away from the active site to form an ion-pair interaction with Arg199. The Merck inhibitors can maintain either one or both of these ion-pair interaction features. The difference in potencies of the DKA inhibitors is thus attributed to the different binding modes at the catalytic site. Such structural information at atomic level, not only demonstrates the action modes of DKA inhibitors but also provides a novel starting point for structural-based design of HIV-1 IN inhibitors.
Collapse
Affiliation(s)
- Meilan Huang
- School of Chemistry and Chemical Engineering, David Keir Building, Queens University Belfast, Stranmillis Road, Belfast BT95AG, UK.
| | | | | |
Collapse
|
9
|
Crosby DC, Lei X, Gibbs CG, McDougall BR, Robinson WE, Reinecke MG. Design, synthesis, and biological evaluation of novel hybrid dicaffeoyltartaric/diketo acid and tetrazole-substituted L-chicoric acid analogue inhibitors of human immunodeficiency virus type 1 integrase. J Med Chem 2010; 53:8161-75. [PMID: 20977258 DOI: 10.1021/jm1010594] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fourteen analogues of the anti-HIV-1 integrase (IN) inhibitor L-chicoric acid (L-CA) were prepared. Their IC(50) values for 3'-end processing and strand transfer against recombinant HIV-1 IN were determined in vitro, and their cell toxicities and EC(50) against HIV-1 were measured in cells (ex vivo). Compounds 1-6 are catechol/β-diketoacid hybrids, the majority of which exhibit submicromolar potency against 3'-end processing and strand transfer, though only with modest antiviral activities. Compounds 7-10 are L-CA/p-fluorobenzylpyrroloyl hybrids, several of which were more potent against strand transfer than 3'-end processing, a phenomenon previously attributed to the β-diketo acid pharmacophore. Compounds 11-14 are tetrazole bioisosteres of L-CA and its analogues, whose in vitro potencies were comparable to L-CA but with enhanced antiviral potency. The trihydroxyphenyl analogue 14 was 30-fold more potent than L-CA at relatively nontoxic concentrations. These data indicate that L-CA analogues are attractive candidates for development into clinically relevant inhibitors of HIV-1 IN.
Collapse
Affiliation(s)
- David C Crosby
- Department of Pathology and Laboratory Medicine, University of California, Irvine, California 92697-4800, USA
| | | | | | | | | | | |
Collapse
|
10
|
Effect of raltegravir resistance mutations in HIV-1 integrase on viral fitness. J Acquir Immune Defic Syndr 2010; 55:148-55. [PMID: 20634701 DOI: 10.1097/qai.0b013e3181e9a87a] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Raltegravir resistance is conferred by mutations at integrase codons 143, 148, and 155 together with associated secondary mutations. The N155H mutants emerge first, and are eventually replaced by Q148H mutants, usually in combination with G140S. These mutations have different effects on susceptibility and replication capacity, but data on the relative fitness of RAL-resistant viruses are limited. To understand the impact of the different RAL resistance pathways on viral fitness, mutations at integrase codons 74, 92, 138, 140, 148, 155, and/or 163 were introduced into HIV-1NL4-3 by site-directed mutagenesis and expressed in recombinant viruses. Relative fitness and drug susceptibility were determined in the absence or presence of RAL. In the absence of drug, RAL-resistant mutants were less fit than wild type, and the Q148H mutant was significantly less fit than the N155H mutant. Fitness was partially restored by the presence of additional RAL resistance mutations at positions G140S and E92Q or E138K, respectively. In the presence of RAL, the N155H mutant remained fitter than the Q148H mutant, but the G140S/Q148H double mutant was fitter than single mutants or the E92Q/N155H double mutant. These findings correspond well with the clinical trials data and help explain the temporal pattern of RAL resistance evolution.
Collapse
|
11
|
Caby F, Valin N, Marcelin AG, Schneider L, Andrade R, Guiguet M, Tubiana R, Canestri A, Valantin MA, Peytavin G, Pacanowski J, Morand-Joubert L, Calvez V, Girard PM, Katlama C. Raltegravir as functional monotherapy leads to virological failure and drug resistance in highly treatment-experienced HIV-infected patients. ACTA ACUST UNITED AC 2010; 42:527-32. [PMID: 20222846 DOI: 10.3109/00365541003621502] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The objective of this study was to evaluate the development of resistance to raltegravir (RAL) in patients with viraemia between 40 and 400 copies/ml. All HIV-1-infected patients with multidrug-resistant virus, plasma HIV-1 RNA >1000 copies/ml and starting RAL were enrolled in this observational study and followed up until week 48. Sixty-seven patients with median plasma HIV-1 RNA at 4.3 log(10) copies/ml and CD4 at 177 cells/mm(3) were included. At week 24, 43 achieved full viral suppression (FVS; plasma HIV-1 RNA <40 copies/ml), 18 had incomplete viral suppression (IVS; plasma HIV-1 RNA 40-<or=400 copies/ml) and 6 experienced virological failure (VF; plasma HIV-1 RNA >400 copies/ml). At week 48, all the FVS were sustained, 16 of the IVS patients retained a plasma HIV-1 RNA <400 copies/ml and only 2 of the IVS at week 24 experienced VF. No RAL resistance was detected in the persistent low viraemia. In contrast, integrase mutation was detected in 6 of the patients with VF. A genotypic sensitivity score equal to 0 was associated with plasma HIV-1 RNA >40 copies/ml at week 24 (OR 20.9, 95% CI 2.0-215.1) and with RAL resistance (OR 14.2, 95% CI 2.1-94.7). This study confirmed the high efficacy of a RAL-containing regimen under routine clinical conditions in infections caused by multidrug-resistant virus. If persistent low viraemia is observed over more than 48 weeks without the emergence of resistance, RAL should never be given as functional monotherapy, as it is associated with a maximal risk of VF and the emergence of RAL resistance.
Collapse
Affiliation(s)
- Fabienne Caby
- Service des Maladies Infectieuses et Tropicales, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ceccherini-Silberstein F, Malet I, Fabeni L, Dimonte S, Svicher V, D'Arrigo R, Artese A, Costa G, Bono S, Alcaro S, d'Arminio Monforte A, Katlama C, Calvez V, Antinori A, Marcelin AG, Perno CF. Specific HIV-1 integrase polymorphisms change their prevalence in untreated versus antiretroviral-treated HIV-1-infected patients, all naive to integrase inhibitors. J Antimicrob Chemother 2010; 65:2305-18. [DOI: 10.1093/jac/dkq326] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
13
|
|
14
|
Ceccherini-Silberstein F, Van Baelen K, Armenia D, Trignetti M, Rondelez E, Fabeni L, Scopelliti F, Pollicita M, Van Wesenbeeck L, Van Eygen V, Dori L, Sarmati L, Aquaro S, Palamara G, Andreoni M, Stuyver LJ, Perno CF. Secondary integrase resistance mutations found in HIV-1 minority quasispecies in integrase therapy-naive patients have little or no effect on susceptibility to integrase inhibitors. Antimicrob Agents Chemother 2010; 54:3938-48. [PMID: 20479206 PMCID: PMC2935022 DOI: 10.1128/aac.01720-09] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 01/05/2010] [Accepted: 05/05/2010] [Indexed: 11/20/2022] Open
Abstract
The goal of this study was to explore the presence of integrase strand transfer inhibitor (InSTI) resistance mutations in HIV-1 quasispecies present in InSTI-naïve patients and to evaluate their in vitro effects on phenotypic susceptibility to InSTIs and their replication capacities. The RT-RNase H-IN region was PCR amplified from plasma viral RNA obtained from 49 HIV-1 subtype B-infected patients (21 drug naïve and 28 failing highly active antiretroviral therapy [HAART] not containing InSTIs) and recombined with an HXB2-based backbone with RT and IN deleted. Recombinant viruses were tested against raltegravir and elvitegravir and for replication capacity. Three-hundred forty-four recombinant viruses from 49 patients were successfully analyzed both phenotypically and genotypically. The majority of clones were not phenotypically resistant to InSTIs: 0/344 clones showed raltegravir resistance, and only 3 (0.87%) showed low-level elvitegravir resistance. No primary resistance mutations for raltegravir and elvitegravir were found as major or minor species. The majority of secondary mutations were also absent or rarely present. Secondary mutations, such as T97A and G140S, found rarely and only as minority quasispecies, were present in the elvitegravir-resistant clones. A novel mutation, E92G, although rarely found in minority quasispecies, showed elvitegravir resistance. Preexisting genotypic and phenotypic raltegravir resistance was extremely rare in InSTI-naïve patients and confined to only a restricted minority of secondary variants. Overall, these results, together with others based on population and ultradeep sequencing, suggest that at this point IN genotyping in all patients before raltegravir treatment may not be cost-effective and should not be recommended until evidence of transmitted drug resistance to InSTIs or the clinical relevance of IN minor variants/polymorphisms is determined.
Collapse
|
15
|
Goethals O, Vos A, Van Ginderen M, Geluykens P, Smits V, Schols D, Hertogs K, Clayton R. Primary mutations selected in vitro with raltegravir confer large fold changes in susceptibility to first-generation integrase inhibitors, but minor fold changes to inhibitors with second-generation resistance profiles. Virology 2010; 402:338-46. [PMID: 20421122 DOI: 10.1016/j.virol.2010.03.034] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 02/09/2010] [Accepted: 03/18/2010] [Indexed: 10/19/2022]
Abstract
Emergence of resistance to raltegravir reduces its treatment efficacy in HIV-1-infected patients. To delineate the effect of resistance mutations on viral susceptibility to integrase inhibitors, in vitro resistance selections with raltegravir and with MK-2048, an integrase inhibitor with a second-generation-like resistance profile, were performed. Mutation Q148R arose in four out of six raltegravir-selected resistant viruses. In addition, mutations Q148K and N155H were selected. In the same time frame, no mutations were selected with MK-2048. Q148H/K/R and N155H conferred resistance to raltegravir, but only minor changes in susceptibility to MK-2048. V54I, a previously unreported mutation, selected with raltegravir, was identified as a possible compensation mutation. Mechanisms by which N155H, Q148H/K/R, Y143R and E92Q confer resistance are proposed based on a structural model of integrase. These data improve the understanding of resistance against raltegravir and cross-resistance to MK-2048 and other integrase inhibitors, which will aid in the discovery of second-generation integrase inhibitors.
Collapse
Affiliation(s)
- Olivia Goethals
- Tibotec Virco Virology BVBA, Gen De Wittelaan L 11B 3, 2800 Mechelen, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
16
|
The HIV-1 integrase genotype strongly predicts raltegravir susceptibility but not viral fitness of primary virus isolates. AIDS 2010; 24:17-25. [PMID: 19770695 DOI: 10.1097/qad.0b013e328331c81e] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE : Resistance to raltegravir is associated with three genetic pathways defined by the mutations Y143R/C, Q148H/R/K or N155H in integrase, which also infer a viral fitness cost. Additionally, the three major HIV-1 drug-targeted enzymes protease, reverse transcriptase and integrase mature from the same polyprotein, suggesting the potential for interaction between them. This study aims to elucidate the relative contribution of protease-reverse transcriptase, integrase and the rest of the HIV-1 genome to viral fitness and susceptibility to raltegravir. METHODS : Recombinant viruses included integrase, protease-reverse transcriptase or the complete pol-coding region from three patients whose raltegravir-containing regimen had failed. The first had the mutations G140S+Q148H+S230N, the second had Y143R+G163R and the third had no evidence of genotypic resistance in integrase. Primary virus isolates were obtained from peripheral blood mononuclear cells. In-vitro phenotypic resistance and changes in replication capacity were assessed. RESULTS : Virus isolates, and integrase-recombinant and pol-recombinant viruses from the patients harboring integrase resistance mutations showed a decrease in raltegravir susceptibility, with no differences between them. Defects in viral fitness were modulated by resistance mutations within protease, reverse transcriptase and integrase, which were further compensated by regions outside pol. Moreover, protease-reverse transcriptase rescued replication capacity of viruses containing integrase resistance mutations, although integrase was unable to compensate defects in replication capacity caused by protease-reverse transcriptase resistance mutations. CONCLUSION : Susceptibility to raltegravir is driven by resistance mutations in integrase, whereas other viral genes are involved in restoring defects in viral fitness in patients whose raltegravir-containing regimen fails, suggesting the existence of epistatic effects on replication capacity.
Collapse
|
17
|
A Study on Drug Resistance Mechanism of HIV-1 Integrase Mutants by Molecular Modeling*. PROG BIOCHEM BIOPHYS 2009. [DOI: 10.3724/sp.j.1206.2008.00656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Barreca ML, Iraci N, De Luca L, Chimirri A. Induced-fit docking approach provides insight into the binding mode and mechanism of action of HIV-1 integrase inhibitors. ChemMedChem 2009; 4:1446-56. [PMID: 19544345 DOI: 10.1002/cmdc.200900166] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A three-dimensional model of a complex between HIV-1 integrase (IN), viral DNA, and metal ions that we recently built was used as a target for a docking method (induced-fit docking, IFD) that accurately predicts ligand binding modes and concomitant structural changes in the receptor. Six different well-known integrase strand transfer inhibitors (INSTIs): L-708,906, L-731,988, S-1360, L-870,810, raltegravir, and elvitegravir were thus used as ligands for our docking simulations. The obtained IFD results are consistent with the mechanism of action proposed for this class of IN inhibitors, that is, metal chelating/binding agents. This study affords new insight into the possible mechanism of inhibition and binding conformations for INSTIs. The impact on our hypothesis of specific mutations associated with IN inhibitor resistance was also evaluated. All these findings might have implications for integrase-directed HIV-1 drug discovery efforts.
Collapse
Affiliation(s)
- Maria Letizia Barreca
- Dipartimento di Chimica e Tecnologia del Farmaco, Facoltà di Farmacia, Università di Perugia, Via del Liceo 1, 06123 Perugia, Italy.
| | | | | | | |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Most of the studies investigating inhibition of human immunodeficiency virus integration have focused on blocking the enzymatic functions of HIV integrase, with the predominant judgment that integration inhibitors need to block at least one of the integrase-catalyzed reactions. Recent studies, however, have highlighted the importance of other proteins and their contacts with integrase in the preintegration complex, and their involvement in chromosomal integration of the viral DNA. RECENT FINDINGS Promising results of clinical trials for two new integrase inhibitors were announced recently, providing the proof of the concept for using HIV-1 integrase inhibitors as antiretroviral therapy. Two strategies are currently employed for the development of novel inhibitors of HIV integrase: synthesis of hybrid molecules comprising core structures of two or more known inhibitors, and three-dimensional pharmacophore searches based on previously discovered compounds. By highlighting the role of the cellular cofactor LEDGF/p75 in HIV integration, novel approaches are indicated that aim to develop compounds altering contact between HIV integrase and integration cofactors. SUMMARY By the discovery of novel inhibitors and targets for HIV integration, coupled with recent studies in characterizing preintegration complex formation, new insight is provided for the rational design of anti-HIV integration inhibitors.
Collapse
|
20
|
McColl DJ, Chen X. Strand transfer inhibitors of HIV-1 integrase: bringing IN a new era of antiretroviral therapy. Antiviral Res 2009; 85:101-18. [PMID: 19925830 DOI: 10.1016/j.antiviral.2009.11.004] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 11/05/2009] [Accepted: 11/10/2009] [Indexed: 01/16/2023]
Abstract
HIV-1 integrase (IN) is one of three essential enzymes (along with reverse transcriptase and protease) encoded by the viral pol gene. IN mediates two critical reactions during viral replication; firstly 3'-end processing (3'EP) of the double-stranded viral DNA ends and then strand transfer (STF) which joins the viral DNA to the host chromosomal DNA forming a functional integrated proviral DNA. IN is a 288 amino acid protein containing three functional domains, the N-terminal domain (NTD), catalytic core domain (CCD) and the C-terminal domain (CTD). The CCD contains three conserved catalytic residues, Asp64, Asp116 and Glu152, which coordinate divalent metal ions essential for the STF reaction. Intensive research over the last two decades has led to the discovery and development of small molecule inhibitors of the IN STF reaction (INSTIs). INSTIs are catalytic inhibitors of IN, and act to chelate the divalent metal ions in the CCD. One INSTI, raltegravir (RAL, Merck Inc.) was approved in late 2007 for the treatment of HIV-1 infection in patients with prior antiretroviral (ARV) treatment experience and was recently approved also for first line therapy. A second INSTI, elvitegravir (EVG, Gilead Sciences, Inc.) is currently undergoing phase 3 studies in ARV treatment-experienced patients and phase 2 studies in ARV naïve patients as part of a novel fixed dose combination. Several additional INSTIs are in early stage clinical development. This review will discuss the discovery and development of this novel class of antiretrovirals. This article forms part of a special issue of Antiviral Research marking the 25th anniversary of antiretroviral drug discovery and development, Vol 85, issue 1, 2010.
Collapse
Affiliation(s)
- Damian J McColl
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA 94404, United States.
| | | |
Collapse
|
21
|
|
22
|
The dynamics of appearance and disappearance of HIV-1 integrase mutations during and after withdrawal of raltegravir therapy. AIDS 2009; 23:2159-64. [PMID: 19571721 DOI: 10.1097/qad.0b013e32832ec4ae] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To monitor HIV-1 integrase resistance mutations during raltegravir (RAL) therapy, including the impact of RAL interruption. DESIGN AND METHOD An analysis of viral load and the HIV-1 integrase gene evolution in 26 HIV-1 treatment-experienced patients undergoing RAL therapy. RESULTS Initial suppression of viral load was observed in all patients; however, four patients failed to maintain suppression and subsequently developed resistance at viral load rebound. Mutations Q148R (2 months) followed by G140A/Q148R and then G140A/Y143CHR/Q148R/G163R were detected in the virus from one patient, and these reverted to wild type when treatment was withdrawn, although clonal analysis identified maintenance of RAL resistance minority species at this time point. RAL treatment was restarted after 6 months, and 2 weeks later, Y143CY/G163RG mutations appeared. In three other patients, viruses with N155H emerged at viral rebound either alone (2 months), followed by V151I (8 months) or alone (10 months), or together with V151I/G163RG (7 months). Loss of virus with the N155H mutation occurred in these patients when RAL therapy was terminated, despite maintenance of reverse transcriptase/polymerase resistance mutations. CONCLUSION Complete viral suppression was important in order to prevent resistance emerging. RAL-resistance mutations were detected in the presence of other antiviral treatments, and the reverse of these mutations following RAL cessation suggests that a fitness deficit was conferred by these mutants. The observation that following RAL interruption virus rebound was with previously existing reverse transcriptase/polymerase mutations in the absence of integrase mutations implies that it is pre-RAL-archived viruses that re-emerge.
Collapse
|
23
|
Natural polymorphisms of human immunodeficiency virus type 1 integrase and inherent susceptibilities to a panel of integrase inhibitors. Antimicrob Agents Chemother 2009; 53:4275-82. [PMID: 19651917 DOI: 10.1128/aac.00397-09] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We evaluated the human immunodeficiency virus type 1 (HIV-1) integrase coding region of the pol gene for the presence of natural polymorphisms in patients during early infection (AHI) and with triple-class drug-resistant HIV-1 (MDR). We analyzed selected recombinant viruses containing patient-derived HIV-1 integrase for susceptibility to a panel of strand transfer integrase inhibitors (InSTI). A pretreatment sequence analysis of the integrase coding region was performed for 112 patients identified during acute or early infection and 15 patients with triple-class resistance. A phenotypic analysis was done on 10 recombinant viruses derived from nine patients against a panel of six diverse InSTI. Few of the polymorphisms associated with in vitro InSTI resistance were identified in the samples from newly infected individuals or those patients with MDR HIV-1. We identified polymorphisms V72I, L74I, T97A, V151I, M154I/L, E157Q, V165I, V201I, I203M, T206S, and S230N. V72I was the most common, seen in 63 (56.3%) of the AHI samples. E157Q was the only naturally occurring mutation thought to contribute to resistance to elvitegravir, raltegravir, and L-870,810. None of the patient-derived viruses demonstrated any significant decrease in susceptibility to the drugs tested. In summary, the integrase coding region contains as much natural variation as that seen in protease, but mutations associated with high-level resistance to existing InSTI are rarely, if ever, present in integrase naïve patients, especially those being used clinically. Most of the highly prevalent polymorphisms have little effect on InSTI susceptibility in the absence of specific primary mutations. Baseline testing for integrase susceptibility in InSTI-naïve patients is not currently warranted.
Collapse
|
24
|
Xu L, Anderson J, Garrett N, Ferns B, Wildfire A, Cook P, Workman J, Graham S, Smit E. Dynamics of raltegravir resistance profile in an HIV type 2-infected patient. AIDS Res Hum Retroviruses 2009; 25:843-7. [PMID: 19618998 DOI: 10.1089/aid.2009.0039] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The evolutionary dynamics of RAL resistance in the HIV-2 virus were examined through population and clonal sequence analysis of the IN from baseline, during treatment, and after stopping RAL therapy. The treatment failure of an RAL regimen in the HIV-2 patient studied was associated with the emergence of mutations via the N155H resistance pathway and subsequent switching to the Y143C mutational route. This study has also identified four novel secondary mutations, Q91R, S147G, A153G, and M183I, not previously reported in HIV-1 patients failing RAL therapy. Resistant variants involving the Y143C pathway were noted to have persisted beyond 4 weeks following the cessation of RAL therapy. All resistance-associated mutations were lost at 20 weeks after stopping RAL therapy. Our findings provide evidence supporting the supposition that substantial cross-resistance between strand transfer IN-Is is likely in HIV-2 as shown in HIV-1.
Collapse
Affiliation(s)
- Li Xu
- Health Protection Agency, Heart of England NHS Foundation Trust, Birmingham B9 5SS, U.K
| | - Jane Anderson
- Homerton University Hospital NHS Foundation Trust, London, U.K
| | - Nigel Garrett
- Homerton University Hospital NHS Foundation Trust, London, U.K
| | | | | | - Pamela Cook
- Health Protection Agency, Heart of England NHS Foundation Trust, Birmingham B9 5SS, U.K
| | - Judith Workman
- Health Protection Agency, Heart of England NHS Foundation Trust, Birmingham B9 5SS, U.K
| | - Susan Graham
- Health Protection Agency, Heart of England NHS Foundation Trust, Birmingham B9 5SS, U.K
| | - Erasmus Smit
- Health Protection Agency, Heart of England NHS Foundation Trust, Birmingham B9 5SS, U.K
| |
Collapse
|
25
|
Lack of primary mutations associated with integrase inhibitors among HIV-1 subtypes B, C, and F circulating in Brazil. J Acquir Immune Defic Syndr 2009; 51:7-12. [PMID: 19262402 DOI: 10.1097/qai.0b013e31819df3b3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Antiretroviral drugs targeting integrase (IN) have recently been approved for use in combined and salvage therapeutic interventions. OBJECTIVE To evaluate the presence of natural polymorphisms and resistance mutations associated with IN inhibitors among HIV-1 subtypes B, C, and F samples obtained from drug-naive individuals and patients failing highly active antiretroviral therapy in Brazil. METHODS Proviral DNA was obtained from blood samples of 105 HIV-1-positive drug-naive patients infected by B, C, or F subtypes and plasma viral RNA from 30 subtype B-infected individuals failing highly active antiretroviral therapy. The IN region was amplified by nested polymerase chain reaction and automatically sequenced for subtype determination. Translated amino acid sequences were inspected for IN mutations associated with antiretroviral resistance. RESULTS Eleven mutations described as conferring in vitro resistance to IN strand transfer inhibitors were detected among the HIV-1 Brazilian samples. V72I and V201I were considered as polymorphisms. Major mutations associated with elvitegravir or raltegravir in vivo resistance (Q148K/H/R, N155H) were not detected. CONCLUSIONS Although some naturally occurring polymorphisms were observed, the absence of major resistance mutations for the current IN inhibitors provides a good rationale for the introduction of these drugs in Brazil. These results highlight the importance of the continuous surveillance of IN genetic diversity.
Collapse
|
26
|
Menéndez-Arias L. Molecular basis of human immunodeficiency virus drug resistance: an update. Antiviral Res 2009; 85:210-31. [PMID: 19616029 DOI: 10.1016/j.antiviral.2009.07.006] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 06/26/2009] [Accepted: 07/03/2009] [Indexed: 11/25/2022]
Abstract
Antiretroviral therapy has led to a significant decrease in human immunodeficiency virus (HIV)-related mortality. Approved antiretroviral drugs target different steps of the viral life cycle including viral entry (coreceptor antagonists and fusion inhibitors), reverse transcription (nucleoside and non-nucleoside inhibitors of the viral reverse transcriptase), integration (integrase inhibitors) and viral maturation (protease inhibitors). Despite the success of combination therapies, the emergence of drug resistance is still a major factor contributing to therapy failure. Viral resistance is caused by mutations in the HIV genome coding for structural changes in the target proteins that can affect the binding or activity of the antiretroviral drugs. This review provides an overview of the molecular mechanisms involved in the acquisition of resistance to currently used and promising investigational drugs, emphasizing the structural role of drug resistance mutations. The optimization of current antiretroviral drug regimens and the development of new drugs are still challenging issues in HIV chemotherapy. This article forms part of a special issue of Antiviral Research marking the 25th anniversary of antiretroviral drug discovery and development, Vol 85, issue 1, 2010.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid), c/Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
27
|
Van Baelen K, Rondelez E, Van Eygen V, Ariën K, Clynhens M, Van den Zegel P, Winters B, Stuyver LJ. A combined genotypic and phenotypic human immunodeficiency virus type 1 recombinant virus assay for the reverse transcriptase and integrase genes. J Virol Methods 2009; 161:231-9. [PMID: 19559730 DOI: 10.1016/j.jviromet.2009.06.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 06/09/2009] [Accepted: 06/16/2009] [Indexed: 10/20/2022]
Abstract
With the approval of the first HIV-1 integrase inhibitor raltegravir and a second one in phase III clinical development (elvitegravir), genotypic and phenotypic resistance assays are required to guide antiretroviral therapy and to investigate treatment failure. In this study, a genotypic and phenotypic recombinant virus assay was validated for determining resistance against integrase inhibitors. The assays are based on the amplification of a region encompassing not only HIV-1 integrase, but also reverse transcriptase and RNAseH. The overall amplification success was 85% (433/513) and increased to 93% (120/129) for samples with a viral load above 3 log(10) copies/ml. Both B and non-B HIV-1 subtypes could be genotyped successfully (93%; 52/56 and 100%; 49/49, respectively) and reproducibly. The phenotypic assay showed a high success rate (96.5%; 139/144) for subtype B (100%; 19/19) and non-B subtypes (92%; 45/49), and was found to be accurate and reproducible as assessed using well-characterized integrase mutants. Using both assays, baseline resistance to raltegravir and elvitegravir in subtype B and non-B HIV-1 strains selected at random was not observed, although integrase polymorphisms were present at varying prevalence. Biological cutoff values were found to be 2.1 and 2.0 for raltegravir and elvitegravir, respectively. In summary, a genotypic and phenotypic integrase resistance assay was validated successfully for accuracy, reproducibility, analytical and clinical sensitivity, and dynamic range.
Collapse
Affiliation(s)
- Kurt Van Baelen
- Virco BVBA, Generaal De Wittelaan L11 B3, Mechelen, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Engelman A. Mechanistic and pharmacological analyses of HIV-1 integration. Methods 2009; 47:225-8. [PMID: 19389610 PMCID: PMC2709961 DOI: 10.1016/j.ymeth.2009.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 03/16/2009] [Indexed: 11/30/2022] Open
Abstract
Significant advances have transpired in the human immunodeficiency virus type 1 (HIV-1) integration field in recent years. Considering its essential nature, integrase has long been a target of interest for antiviral drug development. The most significant advance was the approval of the Merck compound raltegravir, the first licensed integrase inhibitor, in October 2007. Another milestone was the identification and characterization of specific nucleoprotein complexes that mediate integrase 3' processing and DNA strand transfer activities in vitro. Genome-wide distribution analyses have furthermore revealed that different retroviruses differentially target distinctive regions of chromatin during integration. For examples, lentiviruses favor actively transcribed genes whereas gammaretroviruses such as Moloney murine leukemia virus prefer transcriptional start sites. Though the underlying mechanisms are unknown for most retroviruses, the lentiviral preference is in large part guided through the interaction with the integrase binding protein lens epithelium-derived growth factor (LEDGF)/p75. Experimental methods that formed the foundations for each of these advances, as well as other techniques topical to the study of HIV-1 integration, are described in this issue of Methods.
Collapse
Affiliation(s)
- Alan Engelman
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, 44 Binney Street, CLSB-1010, Boston, MA 02115, USA, Email address: , Tel: +1 617 632 4361, Fax: +1 617 632 4338
| |
Collapse
|
29
|
Witmer M, Danovich R. Selection and analysis of HIV-1 integrase strand transfer inhibitor resistant mutant viruses. Methods 2009; 47:277-82. [PMID: 19286458 DOI: 10.1016/j.ymeth.2009.02.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 02/20/2009] [Accepted: 02/24/2009] [Indexed: 11/25/2022] Open
Abstract
This report describes methods for the selection and analysis of antiretroviral resistance to HIV integrase strand transfer inhibitors (InSTIs) in cell culture. The method involves the serial passage of HIV-1 in the presence of increasing concentrations of test inhibitors, followed by the cloning and sequencing of the integrase coding region from the selected viruses. The identified mutations are subsequently re-engineered into a reference wild-type molecular clone, and the resulting replication capacity and level of drug resistance are determined relative to the wild-type virus. Here we describe examples of selection and analysis of InSTI-resistant viruses using four integrase inhibitors from three structurally distinct chemical classes; a diketo acid, two naphthyridines, and a pyrimidinecarboxamide. Each inhibitor selected an independent route to resistance. Interestingly, the shift in the IC50 required to suppress the re-engineered resistant mutant viruses closely matched the concentration of compound used during the selection of drug resistance.
Collapse
Affiliation(s)
- Marc Witmer
- Department of Antiviral Research, Merck Research Laboratories, 770 Sumneytown Pike, WP26A-3000, West Point, PA 19486, USA
| | | |
Collapse
|
30
|
Serrao E, Odde S, Ramkumar K, Neamati N. Raltegravir, elvitegravir, and metoogravir: the birth of "me-too" HIV-1 integrase inhibitors. Retrovirology 2009; 6:25. [PMID: 19265512 PMCID: PMC2660292 DOI: 10.1186/1742-4690-6-25] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 03/05/2009] [Indexed: 11/10/2022] Open
Abstract
Merck's MK-0518, known as raltegravir, has recently become the first FDA-approved HIV-1 integrase (IN) inhibitor and has since risen to blockbuster drug status. Much research has in turn been conducted over the last few years aimed at recreating but optimizing the compound's interactions with the protein. Resulting me-too drugs have shown favorable pharmacokinetic properties and appear drug-like but, as expected, most have a highly similar interaction with IN to that of raltegravir. We propose that, based upon conclusions drawn from our docking studies illustrated herein, most of these me-too MK-0518 analogues may experience a low success rate against raltegravir-resistant HIV strains. As HIV has a very high mutational competence, the development of drugs with new mechanisms of inhibitory action and/or new active substituents may be a more successful route to take in the development of second- and third-generation IN inhibitors.
Collapse
Affiliation(s)
- Erik Serrao
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, School of Pharmacy, Los Angeles, CA 90089, USA.
| | | | | | | |
Collapse
|
31
|
Malet I, Delelis O, Soulie C, Wirden M, Tchertanov L, Mottaz P, Peytavin G, Katlama C, Mouscadet JF, Calvez V, Marcelin AG. Quasispecies variant dynamics during emergence of resistance to raltegravir in HIV-1-infected patients. J Antimicrob Chemother 2009; 63:795-804. [PMID: 19221102 DOI: 10.1093/jac/dkp014] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Raltegravir is the first approved inhibitor of HIV-1 integrase (IN). In most patients, raltegravir failure is associated with mutations in the IN gene, through two different genetic pathways: 155 (N155H) or 148 (Q148K/R/H). The objective of this study was to characterize the dynamics of HIV-1 quasispecies variant populations in patients who failed to respond to raltegravir treatment. PATIENTS AND METHODS Bulk genotyping and clonal analysis were performed during the follow-up of 10 patients who failed to respond to raltegravir treatment. RESULTS Treatment failed through the 155 pathway in six patients and through the 148 pathway in two patients; two further patients switched from the 155 to the 148 pathway. In the two patients switching from the 155 to the 148 pathway, clonal analysis showed that Q148R/H and N155H mutations were present on different strands, suggesting that these two pathways are independent. This was consistent with our finding that each genetic profile was associated with different secondary mutations. We observed a greater variability among quasispecies associated with the 155 pathway, and IC(50) determinations showed that the fold resistance to raltegravir, relative to wild-type, was 10 for the N155H mutant and 50 for the G140S+Q148H mutant. CONCLUSIONS Clonal analysis strongly suggests that the two main genetic pathways, 155 and 148, involved in the development of resistance to raltegravir are independent and exclusive. Moreover, the switch of the resistance profile from 155 to 148 may be related to the higher level of resistance to raltegravir conferred by the 148 pathway and also to the higher instability of the 155 pathway.
Collapse
|
32
|
Langley DR, Samanta HK, Lin Z, Walker MA, Krystal MR, Dicker IB. The terminal (catalytic) adenosine of the HIV LTR controls the kinetics of binding and dissociation of HIV integrase strand transfer inhibitors. Biochemistry 2009; 47:13481-8. [PMID: 18991395 DOI: 10.1021/bi801372d] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Specific HIV integrase strand transfer inhibitors are thought to bind to the integrase active site, positioned to coordinate with two catalytic magnesium atoms in a pocket flanked by the end of the viral LTR. A structural role for the 3' terminus of the viral LTR in the inhibitor-bound state has not previously been examined. This study describes the kinetics of binding of a specific strand transfer inhibitor to integrase variants assembled with systematic changes to the terminal 3' adenosine. Kinetic experiments are consistent with a two-step binding model in which there are different functions for the terminal adenine base and the terminal deoxyribose sugar. Adenine seems to act as a "shield" which retards the rate of inhibitor association with the integrase active site, possibly by acting as an internal competitive inhibitor. The terminal deoxyribose is responsible for retarding the rate of inhibitor dissociation, either by sterically blocking inhibitor egress or by a direct interaction with the bound inhibitor. These findings further our understanding of the details of the inhibitor binding site of specific strand transfer inhibitors.
Collapse
Affiliation(s)
- David R Langley
- Department of Computer Assisted Drug Design, Bristol-Myers Squibb Research & Development, Wallingford, Connecticut 06492, USA
| | | | | | | | | | | |
Collapse
|
33
|
Preclinical evaluation of GS-9160, a novel inhibitor of human immunodeficiency virus type 1 integrase. Antimicrob Agents Chemother 2008; 53:1194-203. [PMID: 19104010 DOI: 10.1128/aac.00984-08] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GS-9160 is a novel and potent inhibitor of human immunodeficiency virus type 1 (HIV-1) integrase (IN) that specifically targets the process of strand transfer. It is an authentic inhibitor of HIV-1 integration, since treatment of infected cells results in an elevation of two-long terminal repeat circles and a decrease of integration junctions. GS-9160 has potent and selective antiviral activity in primary human T lymphocytes producing a 50% effective concentration (EC(50)) of approximately 2 nM, with a selectivity index (50% cytotoxic concentration/EC(50)) of approximately 2,000. The antiviral potency of GS-9160 decreased by 6- to 10-fold in the presence of human serum. The antiviral activity of GS-9160 is synergistic in combination with representatives from three different classes of antiviral drugs, namely HIV-1 protease inhibitors, nonnucleoside reverse transcriptase inhibitors, and nucleotide reverse transcriptase inhibitors. Viral resistance selections performed with GS-9160 yielded a novel pattern of mutations within the catalytic core domain of IN; E92V emerged initially, followed by L74M. While E92V as a single mutant conferred 12-fold resistance against GS-9160, L74M had no effect as a single mutant. Together, these mutations conferred 67-fold resistance to GS-9160, indicating that L74M may potentiate the resistance caused by E92V. The pharmacokinetic profile of GS-9160 in healthy human volunteers revealed that once-daily dosing was not likely to achieve antiviral efficacy; hence, the clinical development of this compound was discontinued.
Collapse
|
34
|
Dolan J, Chen A, Weber IT, Harrison RW, Leis J. Defining the DNA substrate binding sites on HIV-1 integrase. J Mol Biol 2008; 385:568-79. [PMID: 19014951 DOI: 10.1016/j.jmb.2008.10.083] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 10/24/2008] [Accepted: 10/28/2008] [Indexed: 10/21/2022]
Abstract
A tetramer model for human immunodeficiency virus type 1 (HIV-1) integrase (IN) with DNA representing long terminal repeat (LTR) termini was previously assembled to predict the IN residues that interact with the LTR termini; these predictions were experimentally verified for nine amino acid residues [Chen, A., Weber, I. T., Harrison, R. W. & Leis, J. (2006). Identification of amino acids in HIV-1 and avian sarcoma virus integrase subsites required for specific recognition of the long terminal repeat ends. J. Biol. Chem., 281, 4173-4182]. In a similar strategy, the unique amino acids found in avian sarcoma virus IN, rather than HIV-1 or Mason-Pfizer monkey virus IN, were substituted into the structurally related positions of HIV-1 IN. Substitutions of six additional residues (Q44, L68, E69, D229, S230, and D253) showed changes in the 3' processing specificity of the enzyme, verifying their predicted interaction with the LTR DNA. The newly identified residues extend interactions along a 16-bp length of the LTR termini and are consistent with known LTR DNA/HIV-1 IN cross-links. The tetramer model for HIV-1 IN with LTR termini was modified to include two IN binding domains for lens-epithelium-derived growth factor/p75. The target DNA was predicted to bind in a surface trench perpendicular to the plane of the LTR DNA binding sites of HIV-1 IN and extending alongside lens-epithelium-derived growth factor. This hypothesis is supported by the in vitro activity phenotype of HIV-1 IN mutant, with a K219S substitution showing loss in strand transfer activity while maintaining 3' processing on an HIV-1 substrate. Mutations at seven other residues reported in the literature have the same phenotype, and all eight residues align along the length of the putative target DNA binding trench.
Collapse
Affiliation(s)
- James Dolan
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
35
|
Buzón MJ, Marfil S, Puertas MC, Garcia E, Clotet B, Ruiz L, Blanco J, Martinez-Picado J, Cabrera C. Raltegravir Susceptibility and Fitness Progression of HIV Type-1 Integrase in Patients on Long-Term Antiretroviral Therapy. Antivir Ther 2008. [DOI: 10.1177/135965350801300710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background HIV type-1 (HIV-1) protease (PR), reverse transcriptase (RT) and integrase (IN) share the same precursor polyprotein and there is much evidence to suggest functional interactions between IN and RT. We aimed to elucidate whether long-term highly active antiretroviral therapy (HAART) targeting PR and RT could influence raltegravir susceptibility and the fitness of IN. Methods HIV-1 IN sequences from 45 heavily antiretroviral-experienced patients with longitudinal samples separated by a median of 10 years were obtained to estimate the rate of nucleotide substitution. IN recombinant viruses were generated from five selected patients. Phenotypic susceptibility to raltegravir was tested in vitro. Changes in viral replication capacity were assayed by growth kinetics and competition of intrapatient IN recombinant viruses. Results The amino acid substitution rate within IN was 0.06% per year during long-term antiretroviral treatment. Some substitutions had previously been associated with resistance to different IN inhibitors. Despite this, neither the early- nor late-derived IN recombinant viruses showed an increase in phenotypic susceptibility to raltegravir. Moreover, IN recombinant viruses corresponding to IN samples after 10 years of HAART had a replication capacity that was similar to or better than IN recombinant viruses from baseline samples. Conclusions HIV-1 IN from longitudinal samples taken from patients treated with IN inhibitor-sparing regimens showed no evidence of genotypic or phenotypic resistance to raltegravir. Additionally, long-term pressure with PR and RT inhibitors did not impair the fitness of HIV-1 IN. These data suggest that current antiretroviral regimens do not diminish the fitness of IN or influence raltegravir efficacy.
Collapse
Affiliation(s)
- Maria José Buzón
- IrsiCaixa Foundation, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Silvia Marfil
- IrsiCaixa Foundation, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Maria C Puertas
- IrsiCaixa Foundation, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Elisabet Garcia
- IrsiCaixa Foundation, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Bonaventura Clotet
- IrsiCaixa Foundation, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Lidia Ruiz
- IrsiCaixa Foundation, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Julià Blanco
- IrsiCaixa Foundation, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Javier Martinez-Picado
- IrsiCaixa Foundation, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Cecilia Cabrera
- IrsiCaixa Foundation, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| |
Collapse
|
36
|
Resistance mutations in human immunodeficiency virus type 1 integrase selected with elvitegravir confer reduced susceptibility to a wide range of integrase inhibitors. J Virol 2008; 82:10366-74. [PMID: 18715920 DOI: 10.1128/jvi.00470-08] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integration of viral DNA into the host chromosome is an essential step in the life cycle of retroviruses and is facilitated by the viral integrase enzyme. The first generation of integrase inhibitors recently approved or currently in late-stage clinical trials shows great promise for the treatment of human immunodeficiency virus (HIV) infection, but virus is expected to develop resistance to these drugs. Therefore, we used a novel resistance selection protocol to follow the emergence of resistant HIV in the presence of the integrase inhibitor elvitegravir (GS-9137). We find the primary resistance-conferring mutations to be Q148R, E92Q, and T66I and demonstrate that they confer a reduction in susceptibility not only to elvitegravir but also to raltegravir (MK-0518) and other integrase inhibitors. The locations of the mutations are highlighted in the catalytic sites of integrase, and we correlate the mutations with expected drug-protein contacts. In addition, mutations that do not confer reduced susceptibility when present alone (H114Y, L74M, R20K, A128T, E138K, and S230R) are also discussed in relation to their position in the catalytic core domain and their proximity to known structural features of integrase. These data broaden the understanding of antiviral resistance against integrase inhibitors and may give insight facilitating the discovery of second-generation compounds.
Collapse
|
37
|
Rhee SY, Liu TF, Kiuchi M, Zioni R, Gifford RJ, Holmes SP, Shafer RW. Natural variation of HIV-1 group M integrase: implications for a new class of antiretroviral inhibitors. Retrovirology 2008; 5:74. [PMID: 18687142 PMCID: PMC2546438 DOI: 10.1186/1742-4690-5-74] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2008] [Accepted: 08/07/2008] [Indexed: 11/10/2022] Open
Abstract
HIV-1 integrase is the third enzymatic target of antiretroviral (ARV) therapy. However, few data have been published on the distribution of naturally occurring amino acid variation in this enzyme. We therefore characterized the distribution of integrase variants among more than 1,800 published group M HIV-1 isolates from more than 1,500 integrase inhibitor (INI)-naïve individuals. Polymorphism rates equal or above 0.5% were found for 34% of the central core domain positions, 42% of the C-terminal domain positions, and 50% of the N-terminal domain positions. Among 727 ARV-naïve individuals in whom the complete pol gene was sequenced, integrase displayed significantly decreased inter- and intra-subtype diversity and a lower Shannon's entropy than protease or RT. All primary INI-resistance mutations with the exception of E157Q--which was present in 1.1% of sequences--were nonpolymorphic. Several accessory INI-resistance mutations including L74M, T97A, V151I, G163R, and S230N were also polymorphic with polymorphism rates ranging between 0.5% to 2.0%.
Collapse
Affiliation(s)
- Soo-Yon Rhee
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Tommy F Liu
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Mark Kiuchi
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Rafael Zioni
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Robert J Gifford
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Susan P Holmes
- Department of Statistics, Stanford University, Stanford, CA, USA
| | - Robert W Shafer
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
38
|
Roquebert B, Damond F, Collin G, Matheron S, Peytavin G, Benard A, Campa P, Chene G, Brun-Vezinet F, Descamps D. HIV-2 integrase gene polymorphism and phenotypic susceptibility of HIV-2 clinical isolates to the integrase inhibitors raltegravir and elvitegravir in vitro. J Antimicrob Chemother 2008; 62:914-20. [DOI: 10.1093/jac/dkn335] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
39
|
Analysis of natural sequence variation and covariation in human immunodeficiency virus type 1 integrase. J Virol 2008; 82:9228-35. [PMID: 18596095 DOI: 10.1128/jvi.01535-07] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) integrase inhibitors are in clinical trials, and raltegravir and elvitegravir are likely to be the first licensed drugs of this novel class of HIV antivirals. Understanding resistance to these inhibitors is important to maximize their efficacy. It has been shown that natural variation and covariation provide valuable insights into the development of resistance for established HIV inhibitors. Therefore, we have undertaken a study to fully characterize natural polymorphisms and amino acid covariation within an inhibitor-naïve sequence set spanning all defined HIV-1 subtypes. Inter- and intrasubtype variation was greatest in a 50-amino-acid segment of HIV-1 integrase incorporating the catalytic aspartic acid codon 116, suggesting that polymorphisms affect inhibitor binding and pathways to resistance. The critical mutations that determine the resistance pathways to raltegravir and elvitegravir (N155H, Q148K/R/H, and E92Q) were either rare or absent from the 1,165-sequence data set. However, 25 out of 41 mutations associated with integrase inhibitor resistance were present. These mutations were not subtype associated and were more prevalent in the subtypes that had been sampled frequently within the database. A novel modification of the Jaccard index was used to analyze amino acid covariation within HIV-1 integrase. A network of 10 covarying resistance-associated mutations was elucidated, along with a further 15 previously undescribed mutations that covaried with at least two of the resistance positions. The validation of covariation as a predictive tool will be dependent on monitoring the evolution of HIV-1 integrase under drug selection pressure.
Collapse
|
40
|
Dicker IB, Terry B, Lin Z, Li Z, Bollini S, Samanta HK, Gali V, Walker MA, Krystal MR. Biochemical analysis of HIV-1 integrase variants resistant to strand transfer inhibitors. J Biol Chem 2008; 283:23599-609. [PMID: 18577511 DOI: 10.1074/jbc.m804213200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In this study, eight different HIV-1 integrase proteins containing mutations observed in strand transfer inhibitor-resistant viruses were expressed, purified, and used for detailed enzymatic analyses. All the variants examined were impaired for strand transfer activity compared with the wild type enzyme, with relative catalytic efficiencies (k(p)/K(m)) ranging from 0.6 to 50% of wild type. The origin of the reduced strand transfer efficiencies of the variant enzymes was predominantly because of poorer catalytic turnover (k(p)) values. However, smaller second-order effects were caused by up to 4-fold increases in K(m) values for target DNA utilization in some of the variants. All the variants were less efficient than the wild type enzyme in assembling on the viral long terminal repeat, as each variant required more protein than wild type to attain maximal activity. In addition, the variant integrases displayed up to 8-fold reductions in their catalytic efficiencies for 3'-processing. The Q148R variant was the most defective enzyme. The molecular basis for resistance of these enzymes was shown to be due to lower affinity binding of the strand transfer inhibitor to the integrase complex, a consequence of faster dissociation rates. In the case of the Q148R variant, the origin of reduced compound affinity lies in alterations to the active site that reduce the binding of a catalytically essential magnesium ion. Finally, except for T66I, variant viruses harboring the resistance-inducing substitutions were defective for viral integration.
Collapse
Affiliation(s)
- Ira B Dicker
- Department of Virology, Bristol-Myers Squibb Research and Development, Wallingford, CT 06492, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Preclinical evaluation of 1H-benzylindole derivatives as novel human immunodeficiency virus integrase strand transfer inhibitors. Antimicrob Agents Chemother 2008; 52:2861-9. [PMID: 18541726 DOI: 10.1128/aac.00210-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have identified 1H-benzylindole analogues as a novel series of human immunodeficiency virus (HIV) integrase inhibitors with antiretroviral activities against different strains of HIV type 1 (HIV-1), HIV-2, and simian immunodeficiency virus strain MAC(251) [SIV(MAC(251))]. Molecular modeling and structure-activity relationship-based optimization resulted in the identification of CHI/1043 as the most potent congener. CHI/1043 inhibited the replication of HIV-1(III(B)) in MT-4 cells at a 50% effective concentration (EC(50)) of 0.60 microM, 70-fold below its cytotoxic concentration. Equal activities against HIV-1(NL4.3), HIV-2(ROD), HIV-2(EHO), and SIV(MAC(251)) were observed. CHI/1043 was equally active against virus strains resistant against inhibitors of reverse transcriptase or protease. Replication of both X4 and R5 strains in peripheral blood mononuclear cells was sensitive to the inhibitory effect of CHI/1043 (EC(50), 0.30 to 0.38 microM). CHI/1043 inhibited integrase strand transfer activity in oligonucleotide-based enzymatic assays at low micromolar concentrations. Time-of-addition experiments confirmed CHI/1043 to interfere with the viral replication cycle at the time of retroviral integration. Quantitative Alu PCR corroborated that the anti-HIV activity is based upon the inhibition of proviral DNA integration. An HIV-1 strain selected for 70 passages in the presence of CHI/1043 was evaluated genotypically and phenotypically. The mutations T66I and Q146K were present in integrase. Cross-resistance to other integrase strand transfer inhibitors, such as L-708,906, the naphthyridine analogue L-870,810, and the clinical drugs GS/9137 and MK-0518, was observed. In adsorption, distribution, metabolism, excretion, and toxicity studies, antiviral activity was strongly reduced by protein binding, and metabolization in human liver microsomes was observed. Transport studies with Caco cells suggest a low oral bioavailability.
Collapse
|
42
|
Adamson CS, Freed EO. Recent progress in antiretrovirals--lessons from resistance. Drug Discov Today 2008; 13:424-32. [PMID: 18468560 DOI: 10.1016/j.drudis.2008.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 02/01/2008] [Accepted: 02/01/2008] [Indexed: 12/17/2022]
Abstract
Recent failures in efforts to develop an effective vaccine against HIV-1 infection have emphasized the importance of antiretroviral therapy in treating HIV-1-infected patients. Thus far, inhibitors of two viral enzymes, reverse transcriptase and protease, have had a profoundly positive impact on the survival of HIV-1-infected patients. However, new inhibitors that act at diverse steps in the viral replication cycle are urgently needed because of the development of resistance to currently available antiretrovirals. This review summarizes recent progress in antiretroviral drug discovery and development by specifically focusing on novel inhibitors of three phases of replication: viral entry, integration of the viral DNA into the host cell genome and virus particle maturation.
Collapse
Affiliation(s)
- Catherine S Adamson
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702-1201, USA
| | | |
Collapse
|
43
|
Mutations in human immunodeficiency virus type 1 integrase confer resistance to the naphthyridine L-870,810 and cross-resistance to the clinical trial drug GS-9137. Antimicrob Agents Chemother 2008; 52:2069-78. [PMID: 18378713 DOI: 10.1128/aac.00911-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To gain further insight into the understanding of the antiviral resistance patterns and mechanisms of the integrase strand transfer inhibitor L-870,810, the prototypical naphthyridine analogue, we passaged the human immunodeficiency virus type 1 strain HIV-1(III(B)) in cell culture in the presence of increasing concentrations of L-870,810 (III(B)/L-870,810). The mutations L74M, E92Q, and S230N were successively selected in the integrase. The L74M and E92Q mutations have both been associated in the past with resistance against the diketo acid (DKA) analogues L-708,906 and S-1360 and the clinical trial drugs MK-0518 and GS-9137. After 20, 40, and 60 passages in the presence of L-870,810, III(B)/L-870,810 displayed 22-, 34-, and 110-fold reduced susceptibility to L-870,810, respectively. Phenotypic cross-resistance against the DKA analogue CHI-1043 and MK-0518 was modest but that against GS-9137 was pronounced. Recombination of the mutant integrase genes into the wild-type background reproduced the resistance profile of the resistant III(B)/L-870,810 strains. In addition, resistance against L-870,810 was accompanied by reduced viral replication kinetics and reduced enzymatic activity of integrase. In conclusion, the accumulation of L74M, E92Q, and S230N mutations in the integrase causes resistance to the naphthyridine L-870,810 and cross-resistance to GS-9137. These data may have implications for cross-resistance of different integrase inhibitors in the clinic.
Collapse
|
44
|
Mutations associated with failure of raltegravir treatment affect integrase sensitivity to the inhibitor in vitro. Antimicrob Agents Chemother 2008; 52:1351-8. [PMID: 18227187 DOI: 10.1128/aac.01228-07] [Citation(s) in RCA: 227] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Raltegravir (MK-0518) is a potent inhibitor of human immunodeficiency virus (HIV) integrase and is clinically effective against viruses resistant to other classes of antiretroviral agents. However, it can select mutations in the HIV integrase gene. Nine heavily pretreated patients who received salvage therapy including raltegravir and who subsequently developed virological failure under raltegravir therapy were studied. For each patient, the sequences of the integrase-coding region were determined and compared to that at the beginning of the treatment. Four different mutation profiles were identified in these nine patients: E92Q, G140S Q148H, N155H, and E157Q mutations. For four patients, each harboring a different profile, the wild-type and mutated integrases were produced, purified, and assayed in vitro. All the mutations identified altered the activities of integrase protein: both 3' processing and strand transfer activities were moderately affected in the E92Q mutant; strand transfer was markedly impaired in the N155H mutant; both activities were strongly impaired in the G140S Q148H mutant; and the E157Q mutant was almost completely inactive. The sensitivities of wild-type and mutant integrases to raltegravir were compared. The E92Q and G140S Q148H profiles were each associated with a 7- to 8-fold decrease in sensitivity, and the N155H mutant was more than 14-fold less sensitive to raltegravir. At least four genetic profiles (E92Q, G140S Q148H, N155H, and E157Q) can be associated with in vivo treatment failure and resistance to raltegravir. These mutations led to strong impairment of enzymes in vitro in the absence of raltegravir: strand transfer activity was affected, and in some cases 3' processing was also impaired.
Collapse
|
45
|
Quiñones-Mateu ME, Moore-Dudley DM, Jegede O, Weber J, J Arts E. Viral drug resistance and fitness. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2008; 56:257-96. [PMID: 18086415 DOI: 10.1016/s1054-3589(07)56009-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
46
|
HIV‐1 Integrase Inhibitors: Update and Perspectives. HIV-1: MOLECULAR BIOLOGY AND PATHOGENESIS 2008; 56:199-228. [DOI: 10.1016/s1054-3589(07)56007-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
47
|
Barreca ML, Ortuso F, Iraci N, De Luca L, Alcaro S, Chimirri A. Tn5 transposase as a useful platform to simulate HIV-1 integrase inhibitor binding mode. Biochem Biophys Res Commun 2007; 363:554-60. [PMID: 17889829 DOI: 10.1016/j.bbrc.2007.08.199] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 08/30/2007] [Indexed: 11/22/2022]
Abstract
The targeting of HIV-1 integrase (IN) for the design of novel antiviral compounds has until now proceeded slowly, mainly due to the lack of three-dimensional structures reporting detail interactions between IN and its DNA substrates as well as the complete enzyme with its three domains. Recently, we have proposed that Tn5 transposase (Tnp) can be used as a useful surrogate model for IN in attempt to address the potential binding modes of Integrase Strand Transfer Inhibitors. In order to strengthen our hypothesis, molecular dynamics simulations of IN inhibitors bound to Tn5 Tnp active site are now reported. A comparison of the obtained results with well documented specific mutations associated with resistance to HIV-1 IN inhibitors confirmed that Tn5 Tnp can provide a valuable platform for the structure-based discovery of new ligands.
Collapse
Affiliation(s)
- Maria Letizia Barreca
- Dipartimento Farmaco-Chimico, Università di Messina,Viale Annunziata, I-98168 Messina, Italy.
| | | | | | | | | | | |
Collapse
|
48
|
Broad antiretroviral activity and resistance profile of the novel human immunodeficiency virus integrase inhibitor elvitegravir (JTK-303/GS-9137). J Virol 2007; 82:764-74. [PMID: 17977962 DOI: 10.1128/jvi.01534-07] [Citation(s) in RCA: 279] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integrase (IN), an essential enzyme of human immunodeficiency virus (HIV), is an attractive antiretroviral drug target. The antiviral activity and resistance profile in vitro of a novel IN inhibitor, elvitegravir (EVG) (also known as JTK-303/GS-9137), currently being developed for the treatment of HIV-1 infection are described. EVG blocked the integration of HIV-1 cDNA through the inhibition of DNA strand transfer. EVG inhibited the replication of HIV-1, including various subtypes and multiple-drug-resistant clinical isolates, and HIV-2 strains with a 50% effective concentration in the subnanomolar to nanomolar range. EVG-resistant variants were selected in two independent inductions, and a total of 8 amino acid substitutions in the catalytic core domain of IN were observed. Among the observed IN mutations, T66I and E92Q substitutions mainly contributed to EVG resistance. These two primary resistance mutations are located in the active site, and other secondary mutations identified are proximal to these primary mutations. The EVG-selected IN mutations, some of which represent novel IN inhibitor resistance mutations, conferred reduced susceptibility to other IN inhibitors, suggesting that a common mechanism is involved in resistance and potential cross-resistance. The replication capacity of EVG-resistant variants was significantly reduced relative to both wild-type virus and other IN inhibitor-resistant variants selected by L-870,810. EVG and L-870,810 both inhibited the replication of murine leukemia virus and simian immunodeficiency virus, suggesting that IN inhibitors bind to a conformationally conserved region of various retroviral IN enzymes and are an ideal drug for a range of retroviral infections.
Collapse
|
49
|
Dicker IB, Samanta HK, Li Z, Hong Y, Tian Y, Banville J, Remillard RR, Walker MA, Langley DR, Krystal M. Changes to the HIV long terminal repeat and to HIV integrase differentially impact HIV integrase assembly, activity, and the binding of strand transfer inhibitors. J Biol Chem 2007; 282:31186-96. [PMID: 17715137 DOI: 10.1074/jbc.m704935200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus (HIV) integrase enzyme is required for the integration of viral DNA into the host cell chromosome. Integrase complex assembly and subsequent strand transfer catalysis are mediated by specific interactions between integrase and bases at the end of the viral long terminal repeat (LTR). The strand transfer reaction can be blocked by the action of small molecule inhibitors, thought to bind in the vicinity of the viral LTR termini. This study examines the contributions of the terminal four bases of the nonprocessed strand (G(2)T(1)C(-1)A(-2)) of the HIV LTR on complex assembly, specific strand transfer activity, and inhibitor binding. Base substitutions and abasic replacements at the LTR terminus provided a means to probe the importance of each nucleotide on the different functions. An approach is described wherein the specific strand transfer activity for each integrase/LTR variant is derived by normalizing strand transfer activity to the concentration of active sites. The key findings of this study are as follows. 1) The G(2):C(2) base pair is necessary for efficient assembly of the complex and for maintenance of an active site architecture, which has high affinity for strand transfer inhibitors. 2) Inhibitor-resistant enzymes exhibit greatly increased sensitivity to LTR changes. 3) The strand transfer and inhibitor binding defects of a Q148R mutant are due to a decreased affinity of the complex for magnesium. 4) Gln(148) interacts with G(2), T(1), and C(-1) at the 5' end of the viral LTR, with these four determinants playing important and overlapping roles in assembly, strand transfer catalysis and high affinity inhibitor binding.
Collapse
Affiliation(s)
- Ira B Dicker
- Department of Virology, Bristol-Myers Squibb Pharmaceutical Research Institute, Wallingford, Connecticut 06492, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lataillade M, Chiarella J, Kozal MJ. Natural Polymorphism of the HIV-1 Integrase Gene and Mutations associated with Integrase Inhibitor Resistance. Antivir Ther 2007. [DOI: 10.1177/135965350701200411] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Two inhibitors of the HIV-1 integrase enzyme (INIs) are in late stage clinical development. To date, approximately 42 mutations within the HIV-1 integrase (IN) gene have been associated with INI drug resistance. Naturally occurring IN gene polymorphisms may have important implications for INI development. In this study, we evaluated clinical HIV-1 strains from INI-naive patients to determine the prevalence of IN gene polymorphisms, and the frequency of naturally occurring amino acid (aa) substitutions at positions associated with INI resistance and at sites crucial for LEDGF/p75 binding and HIV-1 integration. Methods The IN gene from 67 INI-naive, HIV-1 clade B-infected patients were sequenced using standard population-based DNA sequencing methods. In addition, 176 unique full-length HIV-1 clade B IN gene sequences from INI-naive patients obtained from the HIV Los Alamos database were analysed. Results Analysis of 243 IN genes from HIV-1 clade B, INI-naive clinical strains revealed that 64% of the aa positions were polymorphic. Of the 42 aa substitutions currently associated with INI resistance, 21 occurred as natural polymorphisms: V72I, L74I, T97A, T112I, A128T, E138K, Q148H, V151I, S153Y/A, M154I, N155H, K156N, E157Q, G163R, V165I, V201I, I203M, T206S, S230N and R263K. IN aa positions crucial to LEDGF/P75 binding and HIV-1 integration were well conserved. Conclusion Major INI mutations within the catalytic domain and extended active sites associated with high level resistance to the compounds in late stage development, especially strand transfer inhibitors (STIs), were infrequent in our study, which may help explain the excellent virological responses demonstrated in clinical trials.
Collapse
Affiliation(s)
| | | | - Michael J Kozal
- Yale University School of Medicine, New Haven, CT, USA
- VA Connecticut Healthcare System, New Haven, CT, USA
| |
Collapse
|