Baker JA, Rosen EL, Lo JY, Gimenez EI, Walsh R, Soo MS. Computer-Aided Detection (CAD) in Screening Mammography:Sensitivity of Commercial CAD Systems for Detecting Architectural Distortion.
AJR Am J Roentgenol 2003;
181:1083-8. [PMID:
14500236 DOI:
10.2214/ajr.181.4.1811083]
[Citation(s) in RCA: 167] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE
Computer-aided detection (CAD) algorithms have successfully revealed breast masses and microcalcifications on screening mammography. The purpose of our study was to evaluate the sensitivity of commercially available CAD systems for revealing architectural distortion, the third most common appearance of breast cancer.
MATERIALS AND METHODS
Two commercially available CAD systems were used to evaluate screening mammograms obtained in 43 patients with 45 mammographically detected regions of architectural distortion. For each CAD system, we determined the sensitivity for revealing architectural distortion on at least one image of the two-view mammographic examination (case sensitivity) and for each individual mammogram (image sensitivity). Surgical biopsy results were available for each case of architectural distortion.
RESULTS
Architectural distortion was deemed present and actionable by a panel of expert breast imagers in 80 views of the 45 cases. One CAD system detected distortion in 22 of 45 cases of distortion (case sensitivity, 49%) and in 30 of 80 mammograms (image sensitivity, 38%); it displayed 0.7 false-positive marks per image. Another CAD system identified distortion in 15 of 45 cases (case sensitivity, 33%) and 17 of 80 mammograms (image sensitivity, 21%); it displayed 1.27 false-positive marks per image. Sensitivity for malignancy-caused distortion was similar to or lower than sensitivity for all causes of distortion.
CONCLUSION
Fewer than one half of the cases of architectural distortion were detected by the two most widely available CAD systems used for interpretations of screening mammograms. Considerable improvement in the sensitivity of CAD systems is needed for detecting this type of lesion. Practicing breast imagers who use CAD systems should remain vigilant for architectural distortion.
Collapse