1
|
Pfender N, Rosner J, Zipser CM, Friedl S, Schubert M, Sutter R, Klarhoefer M, Spirig JM, Betz M, Freund P, Farshad M, Curt A, Hupp M. Increased cranio-caudal spinal cord oscillations are the cardinal pathophysiological change in degenerative cervical myelopathy. Front Neurol 2023; 14:1217526. [PMID: 38020663 PMCID: PMC10663304 DOI: 10.3389/fneur.2023.1217526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Degenerative cervical myelopathy (DCM) is the most common cause of non-traumatic incomplete spinal cord injury, but its pathophysiology is poorly understood. As spinal cord compression observed in standard MRI often fails to explain a patient's status, new diagnostic techniques to assess DCM are one of the research priorities. Minor cardiac-related cranio-caudal oscillations of the cervical spinal cord are observed by phase-contrast MRI (PC-MRI) in healthy controls (HCs), while they become pathologically increased in patients suffering from degenerative cervical myelopathy. Whether transversal oscillations (i.e., anterior-posterior and right-left) also change in DCM patients is not known. Methods We assessed spinal cord motion simultaneously in all three spatial directions (i.e., cranio-caudal, anterior-posterior, and right-left) using sagittal PC-MRI and compared physiological oscillations in 18 HCs to pathological changes in 72 DCM patients with spinal canal stenosis. The parameter of interest was the amplitude of the velocity signal (i.e., maximum positive to maximum negative peak) during the cardiac cycle. Results Most patients suffered from mild DCM (mJOA score 16 (14-18) points), and the majority (68.1%) presented with multisegmental stenosis. The spinal canal was considerably constricted in DCM patients in all segments compared to HCs. Under physiological conditions in HCs, the cervical spinal cord oscillates in the cranio-caudal and anterior-posterior directions, while right-left motion was marginal [e.g., segment C5 amplitudes: cranio-caudal: 0.40 (0.27-0.48) cm/s; anterior-posterior: 0.18 (0.16-0.29) cm/s; right-left: 0.10 (0.08-0.13) cm/s]. Compared to HCs, DCM patients presented with considerably increased cranio-caudal oscillations due to the cardinal pathophysiologic change in non-stenotic [e.g., segment C5 amplitudes: 0.79 (0.49-1.32) cm/s] and stenotic segments [.g., segment C5 amplitudes: 0.99 (0.69-1.42) cm/s]). In contrast, right-left [e.g., segment C5 amplitudes: non-stenotic segment: 0.20 (0.13-0.32) cm/s; stenotic segment: 0.11 (0.09-0.18) cm/s] and anterior-posterior oscillations [e.g., segment C5 amplitudes: non-stenotic segment: 0.26 (0.15-0.45) cm/s; stenotic segment: 0.11 (0.09-0.18) cm/s] remained on low magnitudes comparable to HCs. Conclusion Increased cranio-caudal oscillations of the cervical cord are the cardinal pathophysiologic change and can be quantified using PC-MRI in DCM patients. This study addresses spinal cord oscillations as a relevant biomarker reflecting dynamic mechanical cord stress in DCM patients, potentially contributing to a loss of function.
Collapse
Affiliation(s)
- Nikolai Pfender
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
- University Spine Center Zurich, Balgrist University Hospital, Zurich, Switzerland
| | - Jan Rosner
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
- Department of Neurology, University Hospital Bern, Inselspital, Bern, Switzerland
| | - Carl M. Zipser
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
- University Spine Center Zurich, Balgrist University Hospital, Zurich, Switzerland
| | - Susanne Friedl
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
- University Spine Center Zurich, Balgrist University Hospital, Zurich, Switzerland
| | - Martin Schubert
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
- University Spine Center Zurich, Balgrist University Hospital, Zurich, Switzerland
| | - Reto Sutter
- Radiology, Balgrist University Hospital, Zurich, Switzerland
| | | | - José M. Spirig
- University Spine Center Zurich, Balgrist University Hospital, Zurich, Switzerland
| | - Michael Betz
- University Spine Center Zurich, Balgrist University Hospital, Zurich, Switzerland
| | - Patrick Freund
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Mazda Farshad
- University Spine Center Zurich, Balgrist University Hospital, Zurich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
- University Spine Center Zurich, Balgrist University Hospital, Zurich, Switzerland
| | - Markus Hupp
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| |
Collapse
|
2
|
Pfender N, Rosner J, Zipser CM, Friedl S, Vallotton K, Sutter R, Klarhoefer M, Schubert M, Betz M, Spirig JM, Seif M, Hubli M, Freund P, Farshad M, Curt A, Hupp M. Comparison of axial and sagittal spinal cord motion measurements in degenerative cervical myelopathy. J Neuroimaging 2022; 32:1121-1133. [PMID: 35962464 PMCID: PMC9805009 DOI: 10.1111/jon.13035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE The timing of decision-making for a surgical intervention in patients with mild degenerative cervical myelopathy (DCM) is challenging. Spinal cord motion phase contrast MRI (PC-MRI) measurements can reveal the extent of dynamic mechanical strain on the spinal cord to potentially identify high-risk patients. This study aims to determine the comparability of axial and sagittal PC-MRI measurements of spinal cord motion with the prospect of improving the clinical workup. METHODS Sixty-four DCM patients underwent a PC-MRI scan assessing spinal cord motion. The agreement of axial and sagittal measurements was determined by means of intraclass correlation coefficients (ICCs) and Bland-Altman analyses. RESULTS The comparability of axial and sagittal PC-MRI measurements was good to excellent at all cervical levels (ICCs motion amplitude: .810-.940; p < .001). Significant differences between axial and sagittal amplitude values could be found at segments C3 and C4, while its magnitude was low (C3: 0.07 ± 0.19 cm/second; C4: -0.12 ± 0.30 cm/second). Bland-Altman analysis showed a good agreement between axial and sagittal PC-MRI scans (coefficients of repeatability: minimum -0.23 cm/second at C2; maximum -0.58 cm/second at C4). Subgroup analysis regarding anatomic conditions (stenotic vs. nonstenotic segments) and different velocity encoding (2 vs. 3 cm/second) showed comparable results. CONCLUSIONS This study demonstrates good comparability between axial and sagittal spinal cord motion measurements in DCM patients. To this end, axial and sagittal PC-MRI are both accurate and sensitive in detecting pathologic cord motion. Therefore, such measures could identify high-risk patients and improve clinical decision-making (ie, timing of decompression).
Collapse
Affiliation(s)
- Nikolai Pfender
- Spinal Cord Injury CenterBalgrist University HospitalUniversity of ZurichZurichSwitzerland
| | - Jan Rosner
- Spinal Cord Injury CenterBalgrist University HospitalUniversity of ZurichZurichSwitzerland,Department of NeurologyBern University HospitalInselspitalUniversity of BernBernSwitzerland
| | - Carl Moritz Zipser
- Spinal Cord Injury CenterBalgrist University HospitalUniversity of ZurichZurichSwitzerland
| | - Susanne Friedl
- Spinal Cord Injury CenterBalgrist University HospitalUniversity of ZurichZurichSwitzerland
| | - Kevin Vallotton
- Spinal Cord Injury CenterBalgrist University HospitalUniversity of ZurichZurichSwitzerland
| | - Reto Sutter
- RadiologyBalgrist University HospitalUniversity of ZurichZurichSwitzerland
| | | | - Martin Schubert
- Spinal Cord Injury CenterBalgrist University HospitalUniversity of ZurichZurichSwitzerland
| | - Michael Betz
- University Spine Centre ZurichBalgrist University HospitalUniversity of ZurichZurichSwitzerland
| | - José Miguel Spirig
- University Spine Centre ZurichBalgrist University HospitalUniversity of ZurichZurichSwitzerland
| | - Maryam Seif
- Spinal Cord Injury CenterBalgrist University HospitalUniversity of ZurichZurichSwitzerland,Department of NeurophysicsMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Michèle Hubli
- Spinal Cord Injury CenterBalgrist University HospitalUniversity of ZurichZurichSwitzerland
| | - Patrick Freund
- Spinal Cord Injury CenterBalgrist University HospitalUniversity of ZurichZurichSwitzerland
| | - Mazda Farshad
- University Spine Centre ZurichBalgrist University HospitalUniversity of ZurichZurichSwitzerland
| | - Armin Curt
- Spinal Cord Injury CenterBalgrist University HospitalUniversity of ZurichZurichSwitzerland,University Spine Centre ZurichBalgrist University HospitalUniversity of ZurichZurichSwitzerland
| | - Markus Hupp
- Spinal Cord Injury CenterBalgrist University HospitalUniversity of ZurichZurichSwitzerland
| |
Collapse
|
3
|
Spinal Cord Motion in Degenerative Cervical Myelopathy: The Level of the Stenotic Segment and Gender Cause Altered Pathodynamics. J Clin Med 2021; 10:jcm10173788. [PMID: 34501236 PMCID: PMC8432264 DOI: 10.3390/jcm10173788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/28/2022] Open
Abstract
In degenerative cervical myelopathy (DCM), focally increased spinal cord motion has been observed for C5/C6, but whether stenoses at other cervical segments lead to similar pathodynamics and how severity of stenosis, age, and gender affect them is still unclear. We report a prospective matched-pair controlled trial on 65 DCM patients. A high-resolution 3D T2 sampling perfection with application-optimized contrasts using different flip angle evolution (SPACE) and a phase-contrast magnetic resonance imaging (MRI) sequence were performed and automatically segmented. Anatomical and spinal cord motion data were assessed per segment from C2/C3 to C7/T1. Spinal cord motion was focally increased at a level of stenosis among patients with stenosis at C4/C5 (n = 14), C5/C6 (n = 33), and C6/C7 (n = 10) (p < 0.033). Patients with stenosis at C2/C3 (n = 2) and C3/C4 (n = 6) presented a similar pattern, not reaching significance. Gender was a significant predictor of higher spinal cord dynamics among men with stenosis at C5/C6 (p = 0.048) and C6/C7 (p = 0.033). Age and severity of stenosis did not relate to spinal cord motion. Thus, the data demonstrates focally increased spinal cord motion depending on the specific level of stenosis. Gender-related effects lead to dynamic alterations among men with stenosis at C5/C6 and C6/C7. The missing relation of motion to severity of stenosis underlines a possible additive diagnostic value of spinal cord motion analysis in DCM.
Collapse
|
4
|
Hupp M, Pfender N, Vallotton K, Rosner J, Friedl S, Zipser CM, Sutter R, Klarhöfer M, Spirig JM, Betz M, Schubert M, Freund P, Farshad M, Curt A. The Restless Spinal Cord in Degenerative Cervical Myelopathy. AJNR Am J Neuroradiol 2021; 42:597-609. [PMID: 33541903 DOI: 10.3174/ajnr.a6958] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 10/12/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE The spinal cord is subject to a periodic, cardiac-related movement, which is increased at the level of a cervical stenosis. Increased oscillations may exert mechanical stress on spinal cord tissue causing intramedullary damage. Motion analysis thus holds promise as a biomarker related to disease progression in degenerative cervical myelopathy. Our aim was characterization of the cervical spinal cord motion in patients with degenerative cervical myelopathy. MATERIALS AND METHODS Phase-contrast MR imaging data were analyzed in 55 patients (37 men; mean age, 56.2 [SD,12.0] years; 36 multisegmental stenoses) and 18 controls (9 men, P = .368; mean age, 62.2 [SD, 6.5] years; P = .024). Parameters of interest included the displacement and motion pattern. Motion data were pooled on the segmental level for comparison between groups. RESULTS In patients, mean craniocaudal oscillations were increased manifold at any level of a cervical stenosis (eg, C5 displacement: controls [n = 18], 0.54 [SD, 0.16] mm; patients [n = 29], monosegmental stenosis [n = 10], 1.86 [SD, 0.92] mm; P < .001) and even in segments remote from the level of the stenosis (eg, C2 displacement: controls [n = 18], 0.36 [SD, 0.09] mm; patients [n = 52]; stenosis: C3, n = 21; C4, n = 11; C5, n = 18; C6, n = 2; 0.85 [SD, 0.46] mm; P < .001). Motion at C2 differed with the distance to the next stenotic segment and the number of stenotic segments. The motion pattern in most patients showed continuous spinal cord motion throughout the cardiac cycle. CONCLUSIONS Patients with degenerative cervical myelopathy show altered spinal cord motion with increased and ongoing oscillations at and also beyond the focal level of stenosis. Phase-contrast MR imaging has promise as a biomarker to reveal mechanical stress to the cord and may be applicable to predict disease progression and the impact of surgical interventions.
Collapse
Affiliation(s)
- M Hupp
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.)
| | - N Pfender
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.)
| | - K Vallotton
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.)
| | - J Rosner
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.).,Department of Neurology (J.R.), University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - S Friedl
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.)
| | - C M Zipser
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.)
| | | | - M Klarhöfer
- Siemens Healthcare AG (M.K.), Zurich, Switzerland
| | - J M Spirig
- University Spine Center Zurich (J.M.S., M.B., M.F., A.C.), Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - M Betz
- University Spine Center Zurich (J.M.S., M.B., M.F., A.C.), Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - M Schubert
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.)
| | - P Freund
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.)
| | - M Farshad
- University Spine Center Zurich (J.M.S., M.B., M.F., A.C.), Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - A Curt
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.).,University Spine Center Zurich (J.M.S., M.B., M.F., A.C.), Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Wolf K, Reisert M, Beltrán SF, Klingler JH, Hubbe U, Krafft AJ, Egger K, Hohenhaus M. Focal cervical spinal stenosis causes mechanical strain on the entire cervical spinal cord tissue - A prospective controlled, matched-pair analysis based on phase-contrast MRI. NEUROIMAGE-CLINICAL 2021; 30:102580. [PMID: 33578322 PMCID: PMC7875814 DOI: 10.1016/j.nicl.2021.102580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/30/2020] [Accepted: 01/21/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Focally increased spinal cord motion at the level of cervical spinal stenosis has been revealed by phase-contrast MRI (PC-MRI). OBJECTIVE To investigate spinal cord motion among patients suffering of degenerative cervical myelopathy (DCM) across the entire cervical spine applying automated segmentation and standardized PC-MRI post-processing protocols. METHODS Prospective, matched-pair controlled trial on 29 patients with stenosis at C5/C6. MRI-protocol covering all cervical segments: 3D T2-SPACE, prospectively ECG-triggered sagittal PC-MRI. Segmentation by trained 3D hierarchical deep convolutional neural network and data processing were conducted via in-house software pipeline. Parameters per segment: maximum velocity, peak-to-peak (PTP)-amplitude, total displacement, PTP-amplitudeHB (PTP-amplitude per duration of heartbeat), and, for characterization of intraindividual alterations, the PTP-amplitude index between the cervical segments C3/C4-C7/T1 and C2/C3. RESULTS Spinal cord motion was increased at C4/C5, C5/C6 and C6/C7 among patients (all parameters, p < 0.001-0.025). The PTP-amplitude index revealed an increase from C3/C4 to C4/C5 (p = 0.002), C4/C5 to C5/C6 (p = 0.037) and a decrease from C5/C6 to C6/C7 and C6/C7 to C7/T1 (p < 0.001, each). This implied an up-building stretch on spinal cord tissue cranial and a mechanical compression caudal of the stenotic level. Furthermore, significant far range effects across the entire cervical spinal cord were observed (e.g. PTP-amplitude C2/C3 vs. C6/C7, p = 0.026) in contrast to controls (p = 1.00). CONCLUSION This study revealed the nature and extends of mechanical stress on the entire cervical spinal cord tissue due to focal stenosis. These pathophysiological alterations of spinal cord motion can be expected to be clinically relevant.
Collapse
Affiliation(s)
- Katharina Wolf
- Department of Neurology and Neurophysiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.
| | - Marco Reisert
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Saúl Felipe Beltrán
- Department of Neurology and Neurophysiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Jan-Helge Klingler
- Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Ulrich Hubbe
- Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Axel J Krafft
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Karl Egger
- Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Department of Radiology, Tauernklinikum Zell am See/Mittersill, Salzburg, Austria
| | - Marc Hohenhaus
- Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
6
|
Wolf K, Krafft AJ, Egger K, Klingler JH, Hubbe U, Reisert M, Hohenhaus M. Assessment of spinal cord motion as a new diagnostic MRI-parameter in cervical spinal canal stenosis: study protocol on a prospective longitudinal trial. J Orthop Surg Res 2019; 14:321. [PMID: 31606049 PMCID: PMC6790032 DOI: 10.1186/s13018-019-1381-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/16/2019] [Indexed: 01/28/2023] Open
Abstract
Background Increased spinal cord motion has been proven to be a relevant finding within spinal canal stenosis disclosed by phase-contrast MRI (PC-MRI). Adapted PC-MRI is a suitable and reliable method within the well deliberated setting. As the decision between conservative and operative treatment can be challenging in some cases, further diagnostic marker would facilitate the diagnostic process. We hypothesize that increased spinal cord motion will correlate to clinical course and functional impairment and will contribute as a new diagnostic marker. Methods A monocentric, prospective longitudinal observational trial on cervical spinal canal stenosis will be conducted at the University Medical Center Freiburg. Patients (n = 130) with relevant cervical spinal canal stenosis, being defined by at least contact to the spinal cord, will be included. Also, we will examine a control group of healthy volunteers (n = 20) as proof-of-principle. We will observe two openly assigned branches of participants undergoing conservative and surgical decompressive treatment (based on current German Guidelines) over a time course of 12 month, including a total of 4 visits. We will conduct a broad assessment of clinical parameters, standard scores and gradings, electrophysiological measurements, standard MRI, and adapted functional PC-MRI of spinal cord motion. Primary endpoint is the evaluation of an expected negative correlation of absolute spinal cord displacement to clinical impairment. Secondary endpoints are the evaluation of positive correlation of increased absolute spinal cord displacement to prolonged evoked potentials, prediction of clinical course by absolute spinal cord displacement, and demonstration of normalized spinal cord motion after decompressive surgery. Discussion With the use of adapted, non-invasive PC-MRI as a quantitative method for assessment of spinal cord motion, further objective diagnostic information can be gained, that might improve the therapeutic decision-making process. This study will offer the needed data in order to establish PC-MRI on spinal cord motion within the diagnostic work-up of patients suffering from spinal canal stenosis. Trial registration German Clinical Trials Register, ID: DRKS00012962, Register date 2018/01/17
Collapse
Affiliation(s)
- Katharina Wolf
- Department of Neurology and Neurophysiology, Faculty of Medicine, University of Freiburg, Breisacher Straße 64, 79106, Freiburg, Germany.
| | - Axel J Krafft
- Department of Radiology, Medical Physics, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Karl Egger
- Department of Neuroradiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jan-Helge Klingler
- Department of Neurosurgery, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ulrich Hubbe
- Department of Neurosurgery, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marco Reisert
- Department of Radiology, Medical Physics, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marc Hohenhaus
- Department of Neurosurgery, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
7
|
Segmental differences of cervical spinal cord motion: advancing from confounders to a diagnostic tool. Sci Rep 2019; 9:7415. [PMID: 31092891 PMCID: PMC6520379 DOI: 10.1038/s41598-019-43908-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/02/2019] [Indexed: 01/01/2023] Open
Abstract
Increased cranio-caudal spinal cord motion is associated with clinical impairment in degenerative cervical myelopathy. However, whether spinal cord motion holds potential as a neuroimaging biomarker requires further validation. Different confounders (i.e. subject characteristics, methodological problems such as phase drift, etc.) on spinal cord motion readouts have to be considered. Twenty-two healthy subjects underwent phase contrast MRI, a subset of subjects (N = 9) had repeated scans. Parameters of interest included amplitude of velocity signal, maximum cranial respectively maximum caudal velocity, displacement (=area under curve of the velocity signal). The cervical spinal cord showed pulse synchronic oscillatory motions with significant differences in all readouts across cervical segments, with a maximum at C5. The Inter-rater reliability was excellent for all readouts. The test-retest reliability was excellent for all parameters at C2 to C6, but not for maximum cranial velocity at C6 and all readouts at C7. Spinal cord motion was correlated with spinal canal size, heart rate and body size. This is the first study to propose a standardized MRI measurement of spinal cord motion for further clinical implementation based on satisfactory phase drift correction and excellent reliability. Understanding the influence of confounders (e.g. structural conditions of the spine) is essential for introducing cord motion into the diagnostic work up.
Collapse
|
8
|
Wolf K, Hupp M, Friedl S, Sutter R, Klarhöfer M, Grabher P, Freund P, Curt A. In cervical spondylotic myelopathy spinal cord motion is focally increased at the level of stenosis: a controlled cross-sectional study. Spinal Cord 2018; 56:769-776. [PMID: 29497178 DOI: 10.1038/s41393-018-0075-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/22/2018] [Accepted: 02/01/2018] [Indexed: 02/08/2023]
Abstract
STUDY DESIGN Level-, age-, and gender-matched controlled cross-sectional cohort study. OBJECTIVES To investigate alterations of spinal cord (SC) motion within cervical spondylotic myelopathy (CSM) across the cervical spinal segments and its relation to cerebrospinal fluid (CSF)-flow, anatomic conditions, and clinical parameters. SETTING University Hospital Balgrist, Zurich, Switzerland. METHODS Overall, 12 patients suffering from CSM at level C5 and 12 controls underwent cardiac-gated 2D phase-contrast-MRI at level C2 and C5 and standard MRI sequences. Parameters of interest: Velocity measurements of SC and CSF (area under the curve = total displacement (normalization for duration of the heart cycle), total displacement ratio (C5/C2; intraindividual normalization for confounders)), spinal canal diameters, clinical motor- and sensory scores, and performance measures. RESULTS Interrater reliability was excellent for SC motion at both levels and for CSF flow at C2, but not reliable for CSF flow at C5. Within controls, SC motion at C2 positively correlated with SC motion at C5 (p = 0.000); this correlation diminished in patients (p = 0.860). SC total displacement ratio was significantly increased in patients (p = 0.029) and correlated with clinical impairment (p = 0.017). Morphometric measures of the extent of stenosis were not related to SC motion or clinical symptoms. CONCLUSION The findings revealed physiological interactions of CSF flow and SC motion across the cervical spine in healthy controls while being diminished in CSM patients. Findings of focally increased SC motion at the level of stenosis were related to clinical impairment and might be promising as a diagnostic and prognostic marker in CSM. SPONSORSHIP CRPP Neurorehab of the University of Zurich, Switzerland.
Collapse
Affiliation(s)
- Katharina Wolf
- Spinal Cord Injury Center, Balgrist University Hospital, Zürich, Switzerland. .,Department of Neurology and Neurophysiology, University Hospital Freiburg, Freiburg, Germany.
| | - Markus Hupp
- Spinal Cord Injury Center, Balgrist University Hospital, Zürich, Switzerland
| | - Susanne Friedl
- Spinal Cord Injury Center, Balgrist University Hospital, Zürich, Switzerland
| | - Reto Sutter
- Department of Radiology, Balgrist University Hospital, Zürich, Switzerland
| | | | - Patrick Grabher
- Spinal Cord Injury Center, Balgrist University Hospital, Zürich, Switzerland
| | - Patrick Freund
- Spinal Cord Injury Center, Balgrist University Hospital, Zürich, Switzerland.,Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, London, UK.,Wellcome Trust Centre, University College London, London, UK.,Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, Zürich, Switzerland
| |
Collapse
|
9
|
Figley CR, Stroman PW. Investigation of human cervical and upper thoracic spinal cord motion: implications for imaging spinal cord structure and function. Magn Reson Med 2007; 58:185-189. [PMID: 17659610 DOI: 10.1002/mrm.21260] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Spinal cord (SC) motion is thought to be the dominant source of error in current diffusion and spinal functional MRI (fMRI) methods. However, until now, such motion has not been well characterized in three dimensions. While previous studies have predominantly examined motion in the superior/inferior (S/I) direction, the foci of the present study were the anterior/posterior (A/P) and right/left (R/L) components of human cervical and upper thoracic SC motion. Cardiac-gated, turbofast low-angle shot (turbo-FLASH) cinematic MRI was employed at 3T to acquire images of the cord at 24 phases throughout the cardiac cycle. Time-dependent signal fluctuations within voxels adjacent to the cord/cerebrospinal fluid (CSF) interface were then used to measure SC motion, which was found to occur predictably as a function of cardiac activity. Cord movement was largest in the A/P direction, for which principal components of motion were calculated, thereby indicating consistent patterns of SC oscillation that can potentially be used to improve SC imaging.
Collapse
Affiliation(s)
- C R Figley
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - P W Stroman
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
- Department of Diagnostic Radiology, Queen's University, Kingston, Ontario, Canada
- Department of Physics, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
10
|
Kharbanda HS, Alsop DC, Anderson AW, Filardo G, Hackney DB. Effects of cord motion on diffusion imaging of the spinal cord. Magn Reson Med 2006; 56:334-9. [PMID: 16804888 DOI: 10.1002/mrm.20959] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Measurement of diffusion and its dependence on direction has become an important tool for clinical and research studies of the brain. Diffusion imaging of the spinal cord may likewise prove useful as an indicator of tissue damage and axonal integrity; however, it is more challenging to perform diffusion imaging in the cord than in the brain. Here we report a study of the effects of motion on single-shot fast spin echo (FSE) diffusion tensor imaging (DTI) of the spinal cord. Diffusion imaging was performed at four different times in the cardiac cycle both without and with velocity compensation of the diffusion gradients. Uncompensated diffusion images demonstrated substantial signal loss artifacts in the cord that were strongly dependent on the delay after the pulse-oximeter trigger. Quantitative diffusion analysis was also strongly affected by this motion artifact. The use of flow-compensated gradients helped to restore normal signal in the cord, especially at particular trigger delays. Theoretical arguments suggest that improved spatial resolution may help eliminate this signal loss. Even with higher spatial resolution, motion-related signal attenuation may still occur in diffusion imaging of pathologies that alter the motion of the cord. However, this same cord motion may contain diagnostically valuable information when probed using appropriate diffusion imaging approaches.
Collapse
|
11
|
|