1
|
Shihan M, Novoyatleva T, Lehmeyer T, Sydykov A, Schermuly RT. Role of the Purinergic P2Y2 Receptor in Pulmonary Hypertension. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111009. [PMID: 34769531 PMCID: PMC8582672 DOI: 10.3390/ijerph182111009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/29/2022]
Abstract
Pulmonary arterial hypertension (PAH), group 1 pulmonary hypertension (PH), is a fatal disease that is characterized by vasoconstriction, increased pressure in the pulmonary arteries, and right heart failure. PAH can be described by abnormal vascular remodeling, hyperproliferation in the vasculature, endothelial cell dysfunction, and vascular tone dysregulation. The disease pathomechanisms, however, are as yet not fully understood at the molecular level. Purinergic receptors P2Y within the G-protein-coupled receptor family play a major role in fluid shear stress transduction, proliferation, migration, and vascular tone regulation in systemic circulation, but less is known about their contribution in PAH. Hence, studies that focus on purinergic signaling are of great importance for the identification of new therapeutic targets in PAH. Interestingly, the role of P2Y2 receptors has not yet been sufficiently studied in PAH, whereas the relevance of other P2Ys as drug targets for PAH was shown using specific agonists or antagonists. In this review, we will shed light on P2Y receptors and focus more on the P2Y2 receptor as a potential novel player in PAH and as a new therapeutic target for disease management.
Collapse
|
2
|
Olschewski A, Papp R, Nagaraj C, Olschewski H. Ion channels and transporters as therapeutic targets in the pulmonary circulation. Pharmacol Ther 2014; 144:349-68. [PMID: 25108211 DOI: 10.1016/j.pharmthera.2014.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 07/22/2014] [Indexed: 10/24/2022]
Abstract
Pulmonary circulation is a low pressure, low resistance, high flow system. The low resting vascular tone is maintained by the concerted action of ion channels, exchangers and pumps. Under physiological as well as pathophysiological conditions, they are targets of locally secreted or circulating vasodilators and/or vasoconstrictors, leading to changes in expression or to posttranslational modifications. Both structural changes in the pulmonary arteries and a sustained increase in pulmonary vascular tone result in pulmonary vascular remodeling contributing to morbidity and mortality in pediatric and adult patients. There is increasing evidence demonstrating the pivotal role of ion channels such as K(+) and Cl(-) or transient receptor potential channels in different cell types which are thought to play a key role in vasoconstrictive remodeling. This review focuses on ion channels, exchangers and pumps in the pulmonary circulation and summarizes their putative pathophysiological as well as therapeutic role in pulmonary vascular remodeling. A better understanding of the mechanisms of their actions may allow for the development of new options for attenuating acute and chronic pulmonary vasoconstriction and remodeling treating the devastating disease pulmonary hypertension.
Collapse
Affiliation(s)
- Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Experimental Anesthesiology, Department of Anesthesia and Intensive Care Medicine, Medical University of Graz, Austria.
| | - Rita Papp
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Chandran Nagaraj
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Austria
| |
Collapse
|
3
|
Burnstock G, Ralevic V. Purinergic signaling and blood vessels in health and disease. Pharmacol Rev 2013; 66:102-92. [PMID: 24335194 DOI: 10.1124/pr.113.008029] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purinergic signaling plays important roles in control of vascular tone and remodeling. There is dual control of vascular tone by ATP released as a cotransmitter with noradrenaline from perivascular sympathetic nerves to cause vasoconstriction via P2X1 receptors, whereas ATP released from endothelial cells in response to changes in blood flow (producing shear stress) or hypoxia acts on P2X and P2Y receptors on endothelial cells to produce nitric oxide and endothelium-derived hyperpolarizing factor, which dilates vessels. ATP is also released from sensory-motor nerves during antidromic reflex activity to produce relaxation of some blood vessels. In this review, we stress the differences in neural and endothelial factors in purinergic control of different blood vessels. The long-term (trophic) actions of purine and pyrimidine nucleosides and nucleotides in promoting migration and proliferation of both vascular smooth muscle and endothelial cells via P1 and P2Y receptors during angiogenesis and vessel remodeling during restenosis after angioplasty are described. The pathophysiology of blood vessels and therapeutic potential of purinergic agents in diseases, including hypertension, atherosclerosis, ischemia, thrombosis and stroke, diabetes, and migraine, is discussed.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London NW3 2PF, UK; and Department of Pharmacology, The University of Melbourne, Australia.
| | | |
Collapse
|
4
|
Burnstock G, Brouns I, Adriaensen D, Timmermans JP. Purinergic signaling in the airways. Pharmacol Rev 2012; 64:834-68. [PMID: 22885703 DOI: 10.1124/pr.111.005389] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Evidence for a significant role and impact of purinergic signaling in normal and diseased airways is now beyond dispute. The present review intends to provide the current state of knowledge of the involvement of purinergic pathways in the upper and lower airways and lungs, thereby differentiating the involvement of different tissues, such as the epithelial lining, immune cells, airway smooth muscle, vasculature, peripheral and central innervation, and neuroendocrine system. In addition to the vast number of well illustrated functions for purinergic signaling in the healthy respiratory tract, increasing data pointing to enhanced levels of ATP and/or adenosine in airway secretions of patients with airway damage and respiratory diseases corroborates the emerging view that purines act as clinically important mediators resulting in either proinflammatory or protective responses. Purinergic signaling has been implicated in lung injury and in the pathogenesis of a wide range of respiratory disorders and diseases, including asthma, chronic obstructive pulmonary disease, inflammation, cystic fibrosis, lung cancer, and pulmonary hypertension. These ostensibly enigmatic actions are based on widely different mechanisms, which are influenced by the cellular microenvironment, but especially the subtypes of purine receptors involved and the activity of distinct members of the ectonucleotidase family, the latter being potential protein targets for therapeutic implementation.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Royal Free Campus, London, UK.
| | | | | | | |
Collapse
|
5
|
Ahmad S, Ahmad A, White CW. Purinergic signaling and kinase activation for survival in pulmonary oxidative stress and disease. Free Radic Biol Med 2006; 41:29-40. [PMID: 16781450 DOI: 10.1016/j.freeradbiomed.2006.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 02/27/2006] [Accepted: 03/02/2006] [Indexed: 10/24/2022]
Abstract
Stimulus-induced release of endogenous ATP into the extracellular milieu has been shown to occur in a variety of cells, tissues, and organs. Extracellular ATP can propagate signals via P2 receptors that are essential for growth and survival of cells. Abundance of P2 receptors, their multiple isoforms, and their ubiquitous distribution indicate that they transmit vital signals. Pulmonary epithelium and endothelium are rich in both P2X and P2Y receptors. ATP release from lung tissue and cells occurs upon stimulation both in vivo and in vitro. Extracellular ATP can activate signaling cascades composed of protein kinases including extracellular signal-regulated kinase (ERK) and phosphatidylinositol-3-kinase (PI3K). Here we summarize progress related to release of endogenous ATP and nucleotide signaling in pulmonary tissues upon exposure to oxidant stress. Hypoxic, hyperoxic, and ozone exposures cause a rapid increase of extracellular ATP in primary pulmonary endothelial and epithelial cells. Extracellular ATP is critical for survival of these cells in high oxygen and ozone concentrations. The released ATP, upon binding to its specific receptors, triggers ERK and PI3K signaling and renders cells resistant to these stresses. Impairment of ATP release and transmission of such signals could limit cellular survival under oxidative stress. This may further contribute to disease pathogenesis or exacerbation.
Collapse
Affiliation(s)
- Shama Ahmad
- Department of Pediatrics, National Jewish Medical and Research Center, 1400 Jackson Street, Denver, CO 80206, USA.
| | | | | |
Collapse
|
6
|
Glass CA, Bates DO. The role of endothelial cell Ca2+store release in the regulation of microvascular permeabilityin vivo. Exp Physiol 2004; 89:343-51. [PMID: 15123553 DOI: 10.1113/expphysiol.2003.026948] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Microvascular permeability is regulated by changes in intracellular calcium concentration. The mechanism by which this increase in calcium determines permeability under normal conditions and during stimulation with agonists remains to be elucidated. In order to determine whether calcium release from intracellular stores could contribute towards the regulation of vascular permeability, hydraulic conductivity (Lp) was measured in frog mesenteric microvessels during stimulation of the endothelial cells of these vessels with agonists that release calcium from the intracellular stores. ATP (which acts through activation of inositol 1,4,5-trisphosphate (IP3) receptors) increased Lp in the absence of calcium influx across the plasma membrane 2.3 +/- 0.3 fold (mean +/- s.e.m., P < 0.01, n = 8), which was less than the increase in the presence of calcium influx (3.1 +/- 1.1 fold). Caffeine (which acts through activation of ryanodine receptors) also increased Lp in the absence of calcium influx across the plasma membrane 3.8 +/- 1.0 fold (P < 0.01, n = 9), but by at least as much as it does in the presence of calcium influx (2.8 +/- 0.5 fold). It is surprising that there was a strong positive correlation between the size of the response during store release and the baseline permeability (r = 0.91 for ATP, r = 0.75 for caffeine). This suggests that the filling state of the stores may regulate the baseline permeability of the microvessels.
Collapse
Affiliation(s)
- C A Glass
- Microvascular Research Laboratories, Department of Physiology, Preclinical Veterinary School, Southwell Street, University of Bristol, Bristol BS2 8EJ, UK.
| | | |
Collapse
|
7
|
Moccia F, Baruffi S, Spaggiari S, Coltrini D, Berra-Romani R, Signorelli S, Castelli L, Taglietti V, Tanzi F. P2y1 and P2y2 receptor-operated Ca2+ signals in primary cultures of cardiac microvascular endothelial cells. Microvasc Res 2001; 61:240-52. [PMID: 11336535 DOI: 10.1006/mvre.2001.2306] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intracellular Ca2+ signals elicited by nucleotide agonists were investigated in primary cultures of rat cardiac microvascular endothelial cells using the fura-2 technique. UTP increased the intracellular [Ca2+] in 94% of the cells, whereas 2MeSATP was active in 32%. The rank order of potency was ATP = UTP > 2MeSATP and the maximal response to 2MeSATP was lower compared to UTP and ATP. ATP and UTP showed strong homologous and heterologous desensitization. ATP fully inhibited the 2MeSATP response, while UTP abolished 2MeSATP-elicited transients in 25% of cells. 2MeSATP did not desensitize the UTP or ATP response. Adenosine 2',5'-diphosphate inhibited the response to 2MeSATP, while it did not modify the response to ATP and UTP. 2MeSATP was more sensitive to suramin than UTP and ATP. These results indicate that P(2Y1) and P(2Y2) receptors may be coexpressed in CMEC. Nucleotide-induced Ca2+ signals lacked a sustained plateau and were almost independent from extracellular Ca2+. ATP and UTP elicited Ca2+ transients longer than 2MeSATP-evoked transients. The kinetics of Ca2+ responses was not affected by bath solution stirring or ectonucleotidase inhibition. Furthermore, the nonhydrolyzable ATP analogue AMP-PNP induced Ca2+ signals similar to those elicited by ATP and UTP. These results suggest that the distinct kinetics of nucleotide-evoked Ca2+ responses do not depend on the activity of ectonucleotidases or ATP autocrine stimulation. The possibility that Ca2+ signals with different time courses may modulate different cellular responses is discussed.
Collapse
Affiliation(s)
- F Moccia
- Department of Physiological and Pharmacological Sciences, University of Pavia, Pavia, 27100, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
ATP, besides an intracellular energy source, is an agonist when applied to a variety of different cells including cardiomyocytes. Sources of ATP in the extracellular milieu are multiple. Extracellular ATP is rapidly degraded by ectonucleotidases. Today ionotropic P2X(1--7) receptors and metabotropic P2Y(1,2,4,6,11) receptors have been cloned and their mRNA found in cardiomyocytes. On a single cardiomyocyte, micromolar ATP induces nonspecific cationic and Cl(-) currents that depolarize the cells. ATP both increases directly via a G(s) protein and decreases Ca(2+) current. ATP activates the inward-rectifying currents (ACh- and ATP-activated K(+) currents) and outward K(+) currents. P2-purinergic stimulation increases cAMP by activating adenylyl cyclase isoform V. It also involves tyrosine kinases to activate phospholipase C-gamma to produce inositol 1,4,5-trisphosphate and Cl(-)/HCO(3)(-) exchange to induce a large transient acidosis. No clear correlation is presently possible between an effect and the activation of a given P2-receptor subtype in cardiomyocytes. ATP itself is generally a positive inotropic agent. Upon rapid application to cells, ATP induces various forms of arrhythmia. At the tissue level, arrhythmia could be due to slowing of electrical spread after both Na(+) current decrease and cell-to-cell uncoupling as well as cell depolarization and Ca(2+) current increase. In as much as the information is available, this review also reports analog effects of UTP and diadenosine polyphosphates.
Collapse
Affiliation(s)
- G Vassort
- Institut National de la Santé et de la Recherche Médicale U. 390, Centre Hospitalier Universitaire Arnaud de Villeneuve, Montpellier, France.
| |
Collapse
|
9
|
Moerenhout M, Himpens B, Vereecke J. Intercellular communication upon mechanical stimulation of CPAE- endothelial cells is mediated by nucleotides. Cell Calcium 2001; 29:125-36. [PMID: 11162850 DOI: 10.1054/ceca.2000.0165] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Intercellular Ca(2+)-signaling, after mechanical stimulation of calf pulmonary artery endothelial cells (CPAE), was investigated with fluorescence video imaging. Mechanical stimulation evoked an intracellular Ca(2+)-response in the mechanically stimulated (MS) cell, proceeding to the neighboring (NB) cells as a Ca(2+)-wave. The intercellular propagation of the Ca(2+)-wave was unaffected by the gap junction blockers halothane or heptanol. Therefore the intercellular communication (IC) pathway of the Ca(2+)-wave in CPAE cells does not depend on gap junctional communication but is most likely mediated by release of an extracellular mediator. Continuous unilateral flow experiments confirmed the presence of a diffusible mediator: the Ca(2+)-rise in upstream NB cells is significantly lower than in control experiments. After desensitization of purinergic receptors by pretreatment of CPAE cells with ATP (100mM), UTP (100 microM), 2MeSATP (100microM) or ADPbS (100 microM), the propagation of the intercellular Ca(2+)-wave upon mechanical stimulation was significantly inhibited. Also suramin (200 and 400 microM), a non-specific purinergic receptor blocker, reduced the IC. Application of the nucleotidase apyrase VI (10U/ml), which has a high ATPase/ADPase ratio, enhanced Ca(2+)-signaling and IC. In contrast, apyrase VII (10U/ml), which has a high ADPase/ATPase ratio, significantly depressed the propagation of the intercellular Ca(2+)-wave upon mechanical stimulation. Our experiments therefore demonstrate that the IC, evoked by a mechanical stimulus of CPAE cells, is mediated via release of nucleotides in the extracellular space. The data indicate that the diffusible messenger, responsible for the propagation of a Ca(2+)-wave, is mainly ADP or a combination of ADP/ATP.
Collapse
Affiliation(s)
- M Moerenhout
- Laboratory of Physiology, O/N Campus Gasthuisberg, KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
10
|
Vigne P, Breittmayer JP, Frelin C. Diadenosine polyphosphates as antagonists of the endogenous P2Y(1) receptor in rat brain capillary endothelial cells of the B7 and B10 clones. Br J Pharmacol 2000; 129:1506-12. [PMID: 10742308 PMCID: PMC1571980 DOI: 10.1038/sj.bjp.0703228] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Diadenosine polyphosphates (Ap(n)As, n=2 - 7) are considered as stress mediators in the cardiovascular system. They act both via identified P2 purinoceptors and via yet to be characterized receptors. This study analyses the actions of Ap(n)As in clones of rat brain capillary endothelial cells that express P2Y(1) receptors (B10 cells) or both P2Y(1) and P2Y(2) receptors (B7 cells). 2. B10 cells responded to Ap(3)A with rises in intracellular Ca(2+) concentration ([Ca(2+)](i)). This response was prevented by adenosine-3'-phosphate-5'-phosphate, an antagonist of P2Y(1) receptors. It was largely suppressed by a treatment with apyrase VII or with creatine phosphokinase/creatine phosphate to degrade contaminating ADP. 3. Ap(n)As inhibited ADP induced increases in [Ca(2+)](i) mediated by P2Y(1) receptors by shifting ADP concentration-response curves to larger concentrations. Apparent K(i) values were estimated to be 6 microM for Ap(4)A, 10 microM for Ap(5)A and 47 microM for Ap(6)A. Ap(2)A and Ap(3)A were much less active. 4. Ap(n)As were neither agonists nor antagonists of the endogenous P2Y(2) receptor in B7 cells. 5. Ap(n)As are neither agonists nor antagonists of the G(i)-coupled, ADP receptor in B10 cells. 6. The results suggest that most actions of Ap(n)As in B7 and B10 cells can be accounted for by endogenous P2Y(1) receptors. Ap(4)A, Ap(5)A and Ap(6)A are specific antagonists of endogenous Ca(2+)-coupled P2Y(1) receptors.
Collapse
Affiliation(s)
- Paul Vigne
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UPR 411, Université de Nice-Sophia Antipolis, 660 route des Lucioles, 06560 Valbonne, France
| | | | - Christian Frelin
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UPR 411, Université de Nice-Sophia Antipolis, 660 route des Lucioles, 06560 Valbonne, France
- Author for correspondence:
| |
Collapse
|
11
|
Chen BC, Lin WW. PKCbetaI mediates the inhibition of P2Y receptor-induced inositol phosphate formation in endothelial cells. Br J Pharmacol 1999; 127:1908-14. [PMID: 10482923 PMCID: PMC1566172 DOI: 10.1038/sj.bjp.0702727] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Bovine pulmonary artery endothelium (CPAE) expresses phospholipase C (PLC)-linked P2Y1 and P2Y2 receptors, for them 2-methylthio-ATP (2MeSATP) and UTP are respective agonists. Here, we have investigated the particular protein kinase C (PKC) isoform(s) responsible for the inhibition of P2Y1 and P2Y2 receptor-evoked inositol phosphate (IP) formation by phorbol 12-myristate 13-acetate (PMA). 2. Although short-term (20 min) pretreatment of cells with PMA attenuated 2MeSATP- and UTP-induced phosphoinositide (PI) breakdown, this inhibition was lost after 15 h. Preincubation with PMA for 24 h, on the contrary, potentiated 2MeSATP and UTP responses. The IP formation stimulated by NaF was unaltered by PMA pretreatment. 3. Western blot analysis showed that treatment of CPAE with PMA resulted in a rapid translocation of PKC isoform betaI, epsilon and mu, but not lambda, from the cytosol to the membrane fraction. 4. Pretreatment of the selective PKC inhibitor Ro 31-8220 attenuated the inhibitory effect of PMA on IP formation. Go 6976 (an inhibitor of conventional PKCalpha, beta and gamma) and LY 379196 (a selective PKCbeta inhibitor) also dose-dependently inhibited the PMA-mediated desensitization. 5. Transfection of PKCbeta-specific antisense oligonucleotide reduced PKCbetaI protein level and inhibited PMA-mediated PI reduction. 6. RT - PCR analysis showed that PMA treatment for 4 - 24 h up-regulated P2Y1 and P2Y2 receptors at the mRNA levels. 7. These results suggest that PKCbetaI may exert a negative feedback regulation on endothelial P2Y1 and P2Y2 receptor-mediated PI turnover. The down-regulation of PKCbetaI and enhanced P2Y receptor expression together might contribute to the late PI enhancing effect of PMA.
Collapse
Affiliation(s)
- Bing-C Chen
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wan-W Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Author for correspondence:
| |
Collapse
|
12
|
Chen BC, Lin LL, Lin WW. Protein kinase C epsilon-dependent pathway of extracellular signal-regulated protein kinase activation by P2Y1 and P2Y2 purinoceptors that activate cytosolic phospholipase A2 in endothelial cells. Eur J Pharmacol 1999; 373:101-10. [PMID: 10408256 DOI: 10.1016/s0014-2999(99)00238-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The aim of this study was to investigate the stimulating effects on arachidonic acid release of P2Y1 and P2Y2 receptor-selective agonists, 2-methylthio-ATP (2MeSATP) and UTP, respectively, in bovine pulmonary artery endothelial cells. Exposure of cells to 2MeSATP and UTP led to the release of arachidonic acid, a response which was abolished by the removal of extracellular Ca2+ and methyl arachidonyl fluorophosphonate. Phorbol 12-myristate 13-acetate (PMA) itself not only stimulated arachidonic acid release but also played a permissive role in the response to UTP. However, PMA failed to enhance the arachidonic acid response induced by 2MeSATP, probably due to greater attenuation of the [Ca2+]i increase caused by 2MeSATP than UTP. Inhibition of protein kinase C with Ro 31-8220 (1-[3-(amidinothio) propyl-1H-indoyl-3-yl]-3-(1-methyl-1H-indoyl-3-yl)-maleimide -methane sulphate) and staurosporine, but not with Go 6976 (12-(-2-cyanoethyl)-6,7,12,13-tetrahydro-13-methyl-5-oxo-indolo(2, 3-a)pyrrolo(3,4-c)carbazole), reduced the arachidonic acid response of 2MeSATP, UTP and PMA. PMA-induced potentiation of the UTP response reached a maximum after a 1-h preincubation, then declined and eventually lost its effect when the preincubation lasted up to 8 h. Among the protein kinase C isoforms present in endothelial cells, betaI and epsilon could be down-regulated by treatment with PMA for 4-24 h. PD 098059 (2-(2-Amino-3-methoxyphenyl)-4H-1-benzopyran-4-one) inhibited extracellular signal-regulated protein kinase activation, cytosolic phospholipase A2 phosphorylation and arachidonic acid release caused by 2MeSATP, UTP and PMA. Taken together, our results demonstrate that P2Y1 and P2Y2 purinoceptors mediate arachidonic acid release by activating cytosolic phospholipase A2 through an elevation of [Ca2+]i and protein kinase C epsilon-, extracellular signal-regulated protein kinase-dependent phosphorylation.
Collapse
Affiliation(s)
- B C Chen
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei
| | | | | |
Collapse
|
13
|
Hüser J, Holda JR, Kockskamper J, Blatter LA. Focal agonist stimulation results in spatially restricted Ca2+ release and capacitative Ca2+ entry in bovine vascular endothelial cells. J Physiol 1999; 514 ( Pt 1):101-9. [PMID: 9831719 PMCID: PMC2269050 DOI: 10.1111/j.1469-7793.1999.101af.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. Intracellular Ca2+ ([Ca2+]i) signals were studied with spatial resolution in bovine vascular endothelial cells using the fluorescent Ca2+ indicator fluo-3 and confocal laser scanning microscopy. Single cells were stimulated with the purinergic receptor agonist ATP resulting in an increase of [Ca2+]i due to intracellular Ca2+ release from inositol 1,4,5-trisphosphate (IP3)-sensitive stores. ATP-induced Ca2+ release was quantal, i.e. submaximal concentrations mobilized only a fraction of the intracellularly stored Ca2+. 2. Focal receptor stimulation in Ca2+-free solution by pressure application of agonist-containing solution through a fine glass micropipette resulted in a spatially restricted increase in [Ca2+]i. Ca2+ release was initiated at the site of stimulation and frequently propagated some tens of micrometres into non-stimulated regions. 3. Local Ca2+ release caused activation of capacitative Ca2+ entry (CCE). CCE was initially colocalized with Ca2+ release. Following repetitive focal stimulation, however, CCE became detectable at remote sites where no Ca2+ release had been observed. In addition, the rate of Ca2+ store depletion with repetitive local activation of release in Ca2+-free solution was markedly slower than that elicited by ATP stimulation of the entire cell. 4. From these experiments it is concluded that both intracellular IP3-dependent Ca2+ release and activation of CCE are controlled locally at the subcellular level. Moreover, redistribution of intracellular Ca2+ stored within the endoplasmic reticulum efficiently counteracts local store depletion and accounts for the spatial spread of CCE activation.
Collapse
Affiliation(s)
- J Hüser
- Department of Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153,, USA.
| | | | | | | |
Collapse
|
14
|
Srinivas SP, Yeh JC, Ong A, Bonanno JA. Ca2+ mobilization in bovine corneal endothelial cells by P2 purinergic receptors. Curr Eye Res 1998; 17:994-1004. [PMID: 9788302 DOI: 10.1076/ceyr.17.10.994.5242] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE To characterize Ca2+ mobilization by P2 receptors in the bovine corneal endothelial cells (BCEC). METHODS Changes in intracellular Ca2+ ([Ca2+]i) were measured by fluorescence imaging of cultured and fresh BCEC cells loaded with the Ca2+-sensitive dye Fura-PE3. Relative rates of Ca2+ influx were measured employing Mn2+ as a surrogate for Ca2+. RESULTS Exposure of cultured cells to uridine 5'-triphosphate (UTP), 2-methyl-thio ATP (msATP) and ATP caused biphasic changes in [Ca2+]i consisting of a peak followed by a plateau phase. Based on the peak responses to 100 microM agonist, the magnitude of UTP responses were similar to that of ATP but greater than that of msATP or ADP. UTP and msATP stimulated Mn2+ influx following [Ca2+]i peak similar to that observed in response to cyclopiazonic acid (CPA), an inhibitor of ER Ca2+-ATPase. Under Ca2+-free conditions, peak responses were similar to those in the presence of external Ca2+, but reduced when the cells were pre-exposed to CPA. Reactive Blue-2 (RB2), inhibited msATP responses by 60.4 +/- 18.8% but UTP responses by only 10.6 +/- 9.5%. Repeated exposures to UTP or msATP reduced [Ca2+]i mobilization indicating homologous desensitization. Response to UTP was not affected by a prior exposure to msATP. However, response to msATP was reduced by a prior exposure to UTP indicating mixed heterologous desensitization. Fresh cells responded to UTP (50 microM) with temporal characteristics of [Ca2+]i mobilization similar to that of cultured cells. CONCLUSION BCEC express P2 receptors belonging to the P2Y subfamily. The emptying of the IP3-sensitive stores, leading to the initial peak in [Ca2+]i response, subsequently caused capacitative Ca2+ influx leading to the onset of the plateau phase. A significant homologous desensitization to UTP and msATP, selective heterologous desensitization between UTP and msATP, and selective inhibition by RB2 indicate the coexistence of multiple P2Y receptors.
Collapse
Affiliation(s)
- S P Srinivas
- Morton D. Sarver Center for Cornea and Contact Lens Research, University of California, School of Optometry, Berkeley 94720, USA.
| | | | | | | |
Collapse
|
15
|
Conant AR, Fisher MJ, McLennan AG, Simpson AW. Characterization of the P2 receptors on the human umbilical vein endothelial cell line ECV304. Br J Pharmacol 1998; 125:357-64. [PMID: 9786509 PMCID: PMC1565630 DOI: 10.1038/sj.bjp.0702082] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. To characterize the P2 receptors present on the human umbilical vein endothelial-derived cell line, ECV304, cytosolic Ca2+, ([Ca2+]c), responses were recorded in single cells and in cell suspensions to a series of nucleotides and nucleotide agonists. 2. Concentration response curves were obtained in fura-2-loaded ECV304 cell suspensions, with EC50 values of 4.2 microM for ATP, 2.5 microM for UTP and 14 microM for adenosine-5'-O-(3-thio)triphosphate (ATPgammaS). EC50 values for 2-methylthioATP, ADP, adenosine-5'-O-(2-thio)diphosphate (ADPbetaS) and AMP were 0.5 microM, 3.5 microM, 15 microM and 4.7 microM respectively, but maximal [Ca2+]c responses were less than those produced by a maximal addition of ATP/UTP. ECV304 cells were unresponsive to UDP and beta,gamma,methyleneATP. 3. Cross-desensitization studies on ECV304 cells suggested that ATP and UTP recognized the same receptor. However, ADP recognized a receptor distinct from the UTP-sensitive receptor and AMP recognized a third distinct receptor. 4. ECV304 [Ca2+]c responses to 2-methylthioATP were inhibited in the presence of 30 microM pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS), whereas [Ca2+]c responses to UTP were unaffected by this treatment. 5. ECV304 cells responded to the diadenosine polyphosphate Ap3A with rises in [Ca2+]c. Apparent responses to Ap4A, Ap5A and Ap6A, were shown to be due to a minor nucleotide contaminant that could be removed by pre-treatment of the diadenosine samples with either alkaline phosphatase or apyrase. 6. ECV304 cells display a pharmacology consistent with the presence of at least two P2 receptors; a P2Y2 receptor insensitive to the diadenosine polyphosphates and a P2Y1 receptor sensitive to Ap3A. In addition, ECV304 cells respond to AMP with increases in [Ca2+]c via an as yet uncharacterized receptor.
Collapse
Affiliation(s)
- A R Conant
- Department of Human Anatomy and Cell Biology, University of Liverpool
| | | | | | | |
Collapse
|
16
|
Duchêne AD, Takeda K. P2Y- and P2U-mediated increases in internal calcium in single bovine aortic endothelial cells in primary culture. ENDOTHELIUM : JOURNAL OF ENDOTHELIAL CELL RESEARCH 1998; 5:277-86. [PMID: 9588819 DOI: 10.3109/10623329709052592] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Increases in intracellular calcium ([Ca2+]i) to ATP, ADP, AMP, adenosine, UTP, 2-methylthio ATP (2-MeSATP), 2-methylthio ADP (2-MeSADP) and alpha,beta-methylene ATP (alpha,beta-meATP) were investigated in single bovine aortic endothelial cells (BAEC) in primary culture using Indo-1. Evidence was obtained for the presence of P2Y and P2U, but not P2X receptors. Normalized concentration-effect curves for ATP, UTP and 2-MeSATP were biphasic in shape. At 10 nM, the agonist rank order was UTP > ATP approximately 2-MeSATP, while above 1 microM, it was ATP > or = UTP > or = 2-MeSATP. No cross-desensitization between responses to P2U and P2Y receptors was observed in normal external solution. However, when internal Ca2+ stores were depleted by exposure to 2-MeSATP or UTP in Ca2+-free solution and agonists then re-applied in presence of external Ca2+, homologous but not heterologous desensitization was seen. In the same conditions, heterologous desensitization was observed for UTP after ATP but not for ATP after UTP. Taken together, the results are consistent with the coexistence of P2Y and P2U receptors in primary-cultured BAEC and suggest that upon activation, different intracellular signaling pathways could be involved in increasing [Ca2+]i.
Collapse
Affiliation(s)
- A D Duchêne
- Université Louis Pasteur de Strasbourg, Laboratoire de Pharmacologie et Physiopathologie Cellulaires, CNRS URA600, Illkirch, France
| | | |
Collapse
|
17
|
|
18
|
Chen BC, Lin WW. Inhibition of ecto-ATPase by the P2 purinoceptor agonists, ATPgammaS, alpha,beta-methylene-ATP, and AMP-PNP, in endothelial cells. Biochem Biophys Res Commun 1997; 233:442-6. [PMID: 9144554 DOI: 10.1006/bbrc.1997.6478] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ecto-ATPase is a plasma membrane-bound enzyme that sequentially dephosphorylates extracellular nucleotides such as ATP. This breakdown of ATP and other nucleotides makes it difficult to characterize and classify P2 purinoceptors. We have previously shown that the P2 purinergic antagonists, PPADS, suramin and reactive blue, act as ecto-ATPase inhibitors in various cell lines. Here, we show that the P2 purinergic agonists, ATPgammaS, alpha,beta-methylene ATP (alpha,beta-MeATP) and AMP-PNP, inhibit the ecto-ATPase of bovine pulmonary artery endothelial cells (CPAE), with pIC50 values of 5.2, 4.5 and 4.0, respectively. In CPAE, FPL67156, a selective ecto-ATPase inhibitor, also inhibits ecto-ATPase activity, with a pIC50 value of 4.0. In addition, alpha,beta-MeATP (3-100 microM), which itself does not induce phosphoinositide (PI) turnover, left-shifted the agonist-concentration effect (E/[A]) curves for ATP, 2MeS-ATP and UTP by approximate 100-300 fold, while those for ATPgammaS and AMP-PNP were only shifted approximately 2-3 fold. Moreover, in the presence of alpha,beta-MeATP, not only was the potentiation effect of PPADS on the UTP response lost, but a slight inhibition of the UTP response by PPADS was also seen. Thus, we conclude that the action of ATPgammaS, alpha,beta-MeATP and AMP-PNP as ecto-ATPase inhibitors account for their high agonist potency, and also provide information for the development of ecto-ATPase inhibitors of high selectivity and potency.
Collapse
Affiliation(s)
- B C Chen
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei
| | | |
Collapse
|
19
|
Chen BC, Lee CM, Lin WW. Inhibition of ecto-ATPase by PPADS, suramin and reactive blue in endothelial cells, C6 glioma cells and RAW 264.7 macrophages. Br J Pharmacol 1996; 119:1628-34. [PMID: 8982511 PMCID: PMC1915804 DOI: 10.1111/j.1476-5381.1996.tb16082.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. Previous studies have shown that bovine pulmonary artery endothelium (CPAE) has P2Y and P2U purinoceptors, rat C6 glioma cells have P2U purinoceptors and mouse RAW 264.7 cells have pyrimidinoceptors, all of which are coupled to phosphoinositide-specific phospholipase C (PI-PLC). The dual actions of PPADS, suramin and reactive blue as antagonists of receptor subtypes and ecto-ATPase inhibitors were studied in these three cell types. 2. In CPAE, suramin, at 3-100 microM, competitively inhibited the PI responses induced by 2MeSATP and UTP, with pA2 values of 5.5 +/- 0.3 and 4.4 +/- 0.4, respectively. Reactive blue, at 1-3 microM, produced shifts to the right of the 2MeSATP and UTP curves, but no further right shift at 10 microM. PPADS, at 10 microM, caused a 3 fold right shift of the 2MeSATP curve, but no further shift at concentrations up to 100 microM. In contrast, a dose-dependent shift to the left of the UTP curve and a weak inhibition of the ATP response were seen with PPADS. 3. In RAW 264.7 cells, suramin and reactive blue, but not PPADS, competitively inhibited the UTP response, with pA2 values of 4.8 +/- 0.5 and 5.8 +/- 0.7, respectively. 4. In C6 glioma cells, although suramin and reactive blue inhibited the ATP response, a potentiation effect on ATP and UTP responses was seen with PPADS. 5. The ecto-ATPase inhibitory activity of these three receptor antagonists were determined. All three inhibited ecto-ATPase present in CPAE, C6 and RAW 264.7 cells, with IC50 values of 4, 4.8 and 4.7 for PPADS, 4, 4.4 and > > 4 for suramin, and 4.5, 4.7 and 4.7 for reactive blue. 6. This study indicates that PPADS, suramin and reactive blue ar ecto-ATPase inhibitors. This property, combined with their antagonistic selectivity for receptor subtypes, can result in inhibition of, potentiation of, or lack of effect on agonist-mediated PI responses. Reactive blue is a more potent antagonist than suramin on P2Y, P2U and pyrimidinoceptors, and PPADS is a weak antagonist for P2Y receptors.
Collapse
Affiliation(s)
- B C Chen
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei
| | | | | |
Collapse
|