1
|
Impact of Trail Running Races on Blood Viscosity and Its Determinants: Effects of Distance. Int J Mol Sci 2020; 21:ijms21228531. [PMID: 33198320 PMCID: PMC7696476 DOI: 10.3390/ijms21228531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022] Open
Abstract
Blood rheology is a key determinant of tissue perfusion at rest and during exercise. The present study investigated the effects of race distance on hematological, blood rheological, and red blood cell (RBC) senescence parameters. Eleven runners participated in the Martigny–Combes à Chamonix 40 km race (MCC, elevation gain: 2300 m) and 12 others in the Ultra-Trail du Mont Blanc (UTMB, 171 km, elevation gain: 10,000 m). Blood samples were collected before and after the races. After the UTMB, the percentage of RBC phosphatidylserine (PS) exposure was not affected while RBC CD235a levels decreased and RBC-derived microparticles increased. In contrast, after the MCC, RBC PS exposure increased, while RBC CD235a and RBC-derived microparticles levels were not affected. The free hemoglobin and hemolysis rate did not change during the races. RBC aggregation and blood viscosity at moderate shear rates increased after the MCC. RBC deformability, blood viscosity at a high shear rate, and hematocrit decreased after the UTMB but not after the MCC. Our results indicate that blood rheology behavior is different between a 40 km and a 171 km mountain race. The low blood viscosity after the ultra-marathon might facilitate blood flow to the muscles and optimize aerobic performance.
Collapse
|
2
|
Physiological Responses and Nutritional Intake during a 7-Day Treadmill Running World Record. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17165962. [PMID: 32824531 PMCID: PMC7459626 DOI: 10.3390/ijerph17165962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/06/2020] [Accepted: 08/13/2020] [Indexed: 12/28/2022]
Abstract
Ultra-running comprises running events longer than a marathon (>42.2 km). The prolonged duration of ultra-running leads to decrements in most or all physiological parameters and considerable energy expenditure (EE) and energy deficits. SG, 47 years, 162.5 cm, 49 kg, VO2max 4 mL/kg/min−1/2.37 L/min−1, ran continuously for 7 days on a treadmill in 3 h blocks followed by 30 min breaks and slept from 1–5 a.m. Heart rate (HR) oxygen uptake (VO2), rating of perceived exertion, weight, blood lactate (mmol·L−1), haemoglobin (g·dL), haematocrit (%) and glucose (mmol·L−1), and nutrition and hydration were recorded. SG ran for 17.5 h/day, covering ~120 km/day at ~7 km/h. Energy expenditure for each 24 h period was 6878 kcal/day and energy intake (EI) was 2701 kcal/day. EE was 382 kcal/h, with 66.6% from fat and 33.4% from carbohydrate oxidation. 7 day EI was 26,989 kcal and EE was 48,147 kcal, with a total energy deficit (ED) of 21,158 kcal. Average VO2 was 1.2 L·min−1/24.7 mL·kg·min−1, Respriatory echange ratio (RER) 0.80 ± 0.03, HR 120–125 b·min−1. Weight increased from 48.6 to 49.5 kg. Haemoglobin decreased from 13.7 to 11 g·dL and haematocrit decreased from 40% to 33%. SG ran 833.05 km. SG exhibits an enhanced fat metabolism through which she had a large daily ED. Her success can be attributed to a combination of physiological and psychological factors.
Collapse
|
3
|
Chlíbková D, Žákovská A, Rosemann T, Knechtle B, Bednář J. Body Composition Changes During a 24-h Winter Mountain Running Race Under Extremely Cold Conditions. Front Physiol 2019; 10:585. [PMID: 31139095 PMCID: PMC6527803 DOI: 10.3389/fphys.2019.00585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 04/26/2019] [Indexed: 12/20/2022] Open
Abstract
Background: To date, no study has focused on body composition characteristics and on parameters associated with skeletal muscle damage and renal function in runners participating in a 24-h winter race held under extremely cold environmental conditions (average temperature of -14.3°C). Methods: Anthropometric characteristics, plasma urea (PU), plasma creatinine (Pcr), creatine kinase (CK), plasma volume (PV) and total body water (TBW) were assessed pre- and post-race in 20 finishers (14 men and 6 women). Results: In male runners, body mass (BM) (p = 0.003) and body fat (BF) (p = 0.001) decreased [-1.1 kg (-1.4%) and -1.1 kg (-13.4%), respectively]; skeletal muscle mass (SM) and TBW remained stable (p > 0.05). In female runners, BF decreased (p = 0.036) [-1.3 kg (-7.8%)] while BM, SM and TBW remained stable (p > 0.05). The change (Δ) in BM was not related to Δ BF; however, Δ BM was related to Δ SM [r = 0.58, p = 0.007] and Δ TBW (r = 0.59, p = 0.007). Δ SM correlated with Δ TBW (r = 0.51, p = 0.021). Moreover, Δ BF was negatively associated with Δ SM (r = -0.65, p = 0.002). PV (p < 0.001), CK (p < 0.001), Pcr (p = 0.004) and PU (p < 0.001) increased and creatinine clearance (CrCl) decreased (p = 0.002). The decrease in BM was negatively related to the increase in CK (r = -0.71, p < 0.001). Δ Pcr was positively related to Δ PU (r = 0.64, p = 0.002). The decrease in CrCl was negatively associated with the increase in both PU (r = -0.72, p < 0.001) and CK (r = -0.48, p = 0.032). Conclusion: The 24-h running race under extremely cold conditions led to a significant BF decrease, whereas SM and TBW remained stable in both males and females. Nevertheless, the increase in CK, Pcr and PU was related to the damage of SM with transient impaired renal function.
Collapse
Affiliation(s)
- Daniela Chlíbková
- Centre of Sports Activities, Brno University of Technology, Brno, Czechia
| | - Alena Žákovská
- Institute of Experimental Biology, Masaryk University, Brno, Czechia
| | - Thomas Rosemann
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | - Beat Knechtle
- Institute of Primary Care, University of Zurich, Zurich, Switzerland.,Medbase St. Gallen Am Vadianplatz, St. Gallen, Switzerland
| | - Josef Bednář
- Institute of Mathematics, Brno University of Technology, Brno, Czechia
| |
Collapse
|
4
|
Nikolaidis PT, Veniamakis E, Rosemann T, Knechtle B. Nutrition in Ultra-Endurance: State of the Art. Nutrients 2018; 10:nu10121995. [PMID: 30558350 PMCID: PMC6315825 DOI: 10.3390/nu10121995] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/02/2018] [Accepted: 12/11/2018] [Indexed: 11/18/2022] Open
Abstract
Athletes competing in ultra-endurance sports should manage nutritional issues, especially with regards to energy and fluid balance. An ultra-endurance race, considered a duration of at least 6 h, might induce the energy balance (i.e., energy deficit) in levels that could reach up to ~7000 kcal per day. Such a negative energy balance is a major health and performance concern as it leads to a decrease of both fat and skeletal muscle mass in events such as 24-h swimming, 6-day cycling or 17-day running. Sport anemia caused by heavy exercise and gastrointestinal discomfort, under hot or cold environmental conditions also needs to be considered as a major factor for health and performance in ultra-endurance sports. In addition, fluid losses from sweat can reach up to 2 L/h due to increased metabolic work during prolonged exercise and exercise under hot environments that might result in hypohydration. Athletes are at an increased risk for exercise-associated hyponatremia (EAH) and limb swelling when intake of fluids is greater than the volume lost. Optimal pre-race nutritional strategies should aim to increase fat utilization during exercise, and the consumption of fat-rich foods may be considered during the race, as well as carbohydrates, electrolytes, and fluid. Moreover, to reduce the risk of EAH, fluid intake should include sodium in the amounts of 10–25 mmol to reduce the risk of EAH and should be limited to 300–600 mL per hour of the race.
Collapse
Affiliation(s)
- Pantelis T Nikolaidis
- Laboratory of Exercise Testing, Hellenic Air Force Academy, 13671 Dekelia, Greece.
- Exercise Physiology Laboratory, 18450 Nikaia, Greece.
| | - Eleftherios Veniamakis
- Department of Nutrition and Dietetics, Technological Educational Institute, 72300 Sitia, Greece.
| | - Thomas Rosemann
- Institute of General Practice and for Health Services Research, University of Zurich, 8091 Zurich, Switzerland.
| | - Beat Knechtle
- Institute of General Practice and for Health Services Research, University of Zurich, 8091 Zurich, Switzerland.
- Medbase St. Gallen Am Vadianplatz, 9001 St. Gallen, Switzerland.
| |
Collapse
|
5
|
Saugy J, Place N, Millet GY, Degache F, Schena F, Millet GP. Alterations of Neuromuscular Function after the World's Most Challenging Mountain Ultra-Marathon. PLoS One 2013; 8:e65596. [PMID: 23840345 PMCID: PMC3694082 DOI: 10.1371/journal.pone.0065596] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 04/29/2013] [Indexed: 11/19/2022] Open
Abstract
We investigated the physiological consequences of the most challenging mountain ultra-marathon (MUM) in the world: a 330-km trail run with 24000 m of positive and negative elevation change. Neuromuscular fatigue (NMF) was assessed before (Pre-), during (Mid-) and after (Post-) the MUM in experienced ultra-marathon runners (n = 15; finish time = 122.43 hours ±17.21 hours) and in Pre- and Post- in a control group with a similar level of sleep deprivation (n = 8). Blood markers of muscle inflammation and damage were analyzed at Pre- and Post-. Mean ± SD maximal voluntary contraction force declined significantly at Mid- (−13±17% and −10±16%, P<0.05 for knee extensor, KE, and plantar flexor muscles, PF, respectively), and further decreased at Post- (−24±13% and −26±19%, P<0.01) with alteration of the central activation ratio (−24±24% and −28±34% between Pre- and Post-, P<0.05) in runners whereas these parameters did not change in the control group. Peripheral NMF markers such as 100 Hz doublet (KE: −18±18% and PF: −20±15%, P<0.01) and peak twitch (KE: −33±12%, P<0.001 and PF: −19±14%, P<0.01) were also altered in runners but not in controls. Post-MUM blood concentrations of creatine kinase (3719±3045 Ul·1), lactate dehydrogenase (1145±511 UI·L−1), C-Reactive Protein (13.1±7.5 mg·L−1) and myoglobin (449.3±338.2 µg·L−1) were higher (P<0.001) than at Pre- in runners but not in controls. Our findings revealed less neuromuscular fatigue, muscle damage and inflammation than in shorter MUMs. In conclusion, paradoxically, such extreme exercise seems to induce a relative muscle preservation process due likely to a protective anticipatory pacing strategy during the first half of MUM and sleep deprivation in the second half.
Collapse
Affiliation(s)
- Jonas Saugy
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| | - Nicolas Place
- Institute of Movement Sciences and Sports Medicine, University of Geneva, Geneva, Switzerland
| | - Guillaume Y. Millet
- Universite de Lyon, Saint-Etienne, France and Exercise Physiology Laboratory, Jean Monnet University, Saint-Etienne, France
| | - Francis Degache
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Federico Schena
- Faculty of Motor Sciences, University of Verona, Verona, Italy
| | - Grégoire P. Millet
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
6
|
Meyer M, Knechtle B, Bürge J, Knechtle P, Mrazek C, Wirth A, Ellenrieder B, Rüst CA, Rosemann T. Ad libitum fluid intake leads to no leg swelling in male Ironman triathletes - an observational field study. J Int Soc Sports Nutr 2012; 9:40. [PMID: 22937792 PMCID: PMC3524467 DOI: 10.1186/1550-2783-9-40] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 08/30/2012] [Indexed: 11/10/2022] Open
Abstract
UNLABELLED BACKGROUND An association between fluid intake and limb swelling has been described for 100-km ultra-marathoners. We investigated a potential development of peripheral oedemata in Ironman triathletes competing over 3.8 km swimming, 180 km cycling and 42.2 km running. METHODS In 15 male Ironman triathletes, fluid intake, changes in body mass, fat mass, skeletal muscle mass, limb volumes and skinfold thickness were measured. Changes in renal function, parameters of skeletal muscle damage, hematologic parameters and osmolality in both serum and urine were determined. Skinfold thicknesses at hands and feet were measured using LIPOMETER® and changes of limb volumes were measured using plethysmography. RESULTS The athletes consumed a total of 8.6 ± 4.4 L of fluids, equal to 0.79 ± 0.43 L/h. Body mass, skeletal muscle mass and the volume of the lower leg decreased (p <0.05), fat mass, skinfold thicknesses and the volume of the arm remained unchanged (p >0.05). The decrease in skeletal muscle mass was associated with the decrease in body mass (p <0.05). The decrease in the lower leg volume was unrelated to fluid intake (p >0.05). Haemoglobin, haematocrit and serum sodium remained unchanged (p >0.05). Osmolality in serum and urine increased (p <0.05). The change in body mass was related to post-race serum sodium concentration ([Na+]) (r = -0.52, p <0.05) and post-race serum osmolality (r = -0.60, p <0.05). CONCLUSIONS In these Ironman triathletes, ad libitum fluid intake maintained plasma [Na+] and plasma osmolality and led to no peripheral oedemata. The volume of the lower leg decreased and the decrease was unrelated to fluid intake. Future studies may investigate ultra-triathletes competing in a Triple Iron triathlon over 11.4 km swimming, 540 km cycling and 126.6 km running to find an association between fluid intake and the development of peripheral oedemata.
Collapse
Affiliation(s)
- Michael Meyer
- Institute of Primary Care and Health Services Research, University of Zurich, Zurich, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Robach P, Boisson RC, Vincent L, Lundby C, Moutereau S, Gergelé L, Michel N, Duthil E, Féasson L, Millet GY. Hemolysis induced by an extreme mountain ultra-marathon is not associated with a decrease in total red blood cell volume. Scand J Med Sci Sports 2012; 24:18-27. [PMID: 22672635 DOI: 10.1111/j.1600-0838.2012.01481.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2012] [Indexed: 12/14/2022]
Abstract
Prolonged running is known to induce hemolysis. It has been suggested that hemolysis may lead to a significant loss of red blood cells; however, its actual impact on the erythrocyte pool is unknown. Here, we test the hypothesis that prolonged running with high hemolytic potential decreases total red blood cell volume (RCV). Hemolysis (n = 22) and RCV (n = 19) were quantified in ultra-marathon runners before and after a 166-km long mountain ultra-endurance marathon (RUN) with 9500 m of altitude gain/loss. Assessment of total hemoglobin mass (Hbmass) and RCV was performed using a carbon monoxide rebreathing technique. RUN induced a marked acute-phase response and promoted hemolysis, as shown by a decrease in serum haptoglobin (P < 0.05). Elevated serum erythropoietin concentration and reticulocyte count after RUN were indicative of erythropoietic stimulation. Following RUN, runners experienced hemodilution, mediated by a large plasma volume expansion and associated with a large increase in plasma aldosterone. However, neither Hbmass nor RCV were found to be altered after RUN. Our findings indicate that mechanical/physiological stress associated with RUN promotes hemolysis but this has no impact on total erythrocyte volume. We therefore suggest that exercise 'anemia' is entirely due to plasma volume expansion and not to a concomitant decrease in RCV.
Collapse
Affiliation(s)
- P Robach
- Medical Department, National School for Skiing and Mountaineering, Site of the National School for Mountain Sports, Chamonix, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Cejka C, Knechtle B, Knechtle P, Rüst CA, Rosemann T. An increased fluid intake leads to feet swelling in 100-km ultra-marathoners - an observational field study. J Int Soc Sports Nutr 2012; 9:11. [PMID: 22472466 PMCID: PMC3366912 DOI: 10.1186/1550-2783-9-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 04/03/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND An association between fluid intake and changes in volumes of the upper and lower limb has been described in 100-km ultra-marathoners. The purpose of the present study was (i) to investigate the association between fluid intake and a potential development of peripheral oedemas leading to an increase of the feet volume in 100-km ultra-marathoners and (ii) to evaluate a possible association between the changes in plasma sodium concentration ([Na+]) and changes in feet volume. METHODS In seventy-six 100-km ultra-marathoners, body mass, plasma [Na+], haematocrit and urine specific gravity were determined pre- and post-race. Fluid intake and the changes of volume of the feet were measured where the changes of volume of the feet were estimated using plethysmography. RESULTS Body mass decreased by 1.8 kg (2.4%) (p < 0.0001); plasma [Na+] increased by 1.2% (p < 0.0001). Haematocrit decreased (p = 0.0005). The volume of the feet remained unchanged (p > 0.05). Plasma volume and urine specific gravity increased (p < 0.0001). Fluid intake was positively related to the change in the volume of the feet (r = 0.54, p < 0.0001) and negatively to post-race plasma [Na+] (r = -0.28, p = 0.0142). Running speed was negatively related to both fluid intake (r = -0.33, p = 0.0036) and the change in feet volume (r = -0.23, p = 0.0236). The change in the volume of the feet was negatively related to the change in plasma [Na+] (r = -0.26, p = 0.0227). The change in body mass was negatively related to both post-race plasma [Na+] (r = -0.28, p = 0.0129) and running speed (r = -0.34, p = 0.0028). CONCLUSIONS An increase in feet volume after a 100-km ultra-marathon was due to an increased fluid intake.
Collapse
Affiliation(s)
- Caroline Cejka
- Institute of General Practice and for Health Services Research, University of Zurich, Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
9
|
Fluid intake and changes in limb volumes in male ultra-marathoners: does fluid overload lead to peripheral oedema? Eur J Appl Physiol 2011; 112:991-1003. [DOI: 10.1007/s00421-011-2056-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Accepted: 06/18/2011] [Indexed: 11/25/2022]
|
10
|
Knechtle B, Senn O, Imoberdorf R, Joleska I, Wirth A, Knechtle P, Rosemann T. No Fluid Overload in Male Ultra-Runners During a 100 km Ultra-Run. Res Sports Med 2011; 19:14-27. [DOI: 10.1080/15438627.2010.510039] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Beat Knechtle
- a Gesundheitszentrum St. Gallen , St. Gallen, Switzerland
- b Institute of General Practice and for Health Services Research , University Hospital , Zurich, Switzerland
| | - Oliver Senn
- b Institute of General Practice and for Health Services Research , University Hospital , Zurich, Switzerland
| | | | - Irena Joleska
- a Gesundheitszentrum St. Gallen , St. Gallen, Switzerland
| | - Andrea Wirth
- a Gesundheitszentrum St. Gallen , St. Gallen, Switzerland
| | | | - Thomas Rosemann
- b Institute of General Practice and for Health Services Research , University Hospital , Zurich, Switzerland
| |
Collapse
|
11
|
Knechtle B, Kiouplidis K, Knechtle P, Kohler G, Imoberdorf R, Ballmer P. DOES A MULTI-STAGE ULTRA-ENDURANCE RUN CAUSE DE- OR HYPER HYDRATION? JOURNAL OF HUMAN SPORT AND EXERCISE 2010. [DOI: 10.4100/jhse.2010.51.07] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
12
|
Knechtle B, Wirth A, Knechtle P, Rosemann T. Increase of total body water with decrease of body mass while running 100 km nonstop--formation of edema? RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2009; 80:593-603. [PMID: 19791646 DOI: 10.1080/02701367.2009.10599598] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We investigated whether ultraendurance runners in a 100-km run suffer a decrease of body mass and whether this loss consists of fat mass, skeletal muscle mass, or total body water. Male ultrarunners were measured pre- and postrace to determine body mass, fat mass, and skeletal muscle mass by using the anthropometric method. In addition, bioelectrical impedance analysis was used to determine total body water, and urinary (urinary specific gravity) and hematological parameters (hematocrit and plasma sodium) were measured in order to determine hydration status. Body mass decreased by 1.6 kg (p < .01), fat mass by 0.4 kg (p < .01), and skeletal muscle mass by 0.7 kg (p < .01), whereas total body water increased by 0.8 L (p < .05). Hematocrit and plasma sodium decreased significantly (p < .01), whereas plasma urea and urinary specific gravity (USG) increased significantly (p < .01). The decrease of 2.2% body mass and a USG of 1.020 refer to a minimal dehydration. Our athletes seem to have been relatively overhydrated (increase in total body water and plasma sodium) and dehydrated (decrease in body mass and increase in USG) during the race, as evidenced by the increased total body water and the fact that plasma sodium and hematocrit were lower postrace than prerace. The change of body mass was associated with the change of total body water (p < .05), and we presume the development of.
Collapse
|
13
|
Knechtle B, Knechtle P, Andonie JL, Kohler G. Body Composition, Energy, and Fluid Turnover in a Five-Day Multistage Ultratriathlon: A Case Study. Res Sports Med 2009; 17:104-20. [DOI: 10.1080/15438620902900260] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Beat Knechtle
- a Gesundheitszentrum St. Gallen , St. Gallen, Switzerland
- b Institute of General Practice and for Health Services Research, University of Zurich , Zurich, Switzerland
| | | | | | - Götz Kohler
- d Division of Biophysical Chemistry, Biozentrum , University of Basel , Basel, Switzerland
- e Radio-Oncology , University Hospital , Basel, Switzerland
| |
Collapse
|
14
|
Knechtle B, Duff B, Schulze I, Kohler G. The effects of running 1,200 km within 17 days on body composition in a female ultrarunner-Deutschlandlauf 2007. Res Sports Med 2008; 16:167-88. [PMID: 18785060 DOI: 10.1080/15438620802104120] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We describe the changes of body composition in the female overall winner of the Deutschlandlauf 2007 over 17 stages from the northeast to the southwest of Germany with average daily running stages of 70.9 km to cover the total distance of 1,200 km. Determined by bioelectrical impedance analysis, body mass (BM) increased, percent body fat (% BF) decreased, and percent body water as well as lean body mass (LBM) increased. Skeletal muscle mass and % BF as determined by an anthropometric method showed no changes. This data show, that this female runner achieved an excellent performance and that it is possible for a woman to beat all the men. This type of analysis provides a unique opportunity to gain insight into the physiological changes during multiday running in ultraendurance athletes.
Collapse
Affiliation(s)
- Beat Knechtle
- Gesundheitszentrum St. Gallen, St. Gallen, Switzerland.
| | | | | | | |
Collapse
|
15
|
Lucas SJE, Anglem N, Roberts WS, Anson JG, Palmer CD, Walker RJ, Cook CJ, Cotter JD. Intensity and physiological strain of competitive ultra-endurance exercise in humans. J Sports Sci 2008; 26:477-89. [DOI: 10.1080/02640410701552872] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|