1
|
Luo J, Li Y, Zhang T, Xv T, Chen C, Li M, Qiu Q, Song Y, Wan S. Extrachromosomal circular DNA in cancer drug resistance and its potential clinical implications. Front Oncol 2023; 12:1092705. [PMID: 36793345 PMCID: PMC9923117 DOI: 10.3389/fonc.2022.1092705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/28/2022] [Indexed: 01/31/2023] Open
Abstract
Chemotherapy is widely used to treat patients with cancer. However, resistance to chemotherapeutic drugs remains a major clinical concern. The mechanisms of cancer drug resistance are extremely complex and involve such factors such as genomic instability, DNA repair, and chromothripsis. A recently emerging area of interest is extrachromosomal circular DNA (eccDNA), which forms owing to genomic instability and chromothripsis. eccDNA exists widely in physiologically healthy individuals but also arises during tumorigenesis and/or treatment as a drug resistance mechanism. In this review, we summarize the recent progress in research regarding the role of eccDNA in the development of cancer drug resistance as well as the mechanisms thereof. Furthermore, we discuss the clinical applications of eccDNA and propose some novel strategies for characterizing drug-resistant biomarkers and developing potential targeted cancer therapies.
Collapse
Affiliation(s)
- Juanjuan Luo
- Center for Molecular Pathology, Department of Basic Medicine, Gannan Medical University, Ganzhou, China,China Medical University, Shenyang, China, Ganzhou, China
| | - Ying Li
- Center for Molecular Pathology, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Tangxuan Zhang
- Center for Molecular Pathology, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Tianhan Xv
- Center for Molecular Pathology, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Chao Chen
- Department of Interventional Radiology, The People’s Hospital of Ganzhou City, Ganzhou, China
| | - Mengting Li
- Center for Molecular Pathology, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Qixiang Qiu
- Center for Molecular Pathology, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Yusheng Song
- Department of Interventional Radiology, The People’s Hospital of Ganzhou City, Ganzhou, China,*Correspondence: Shaogui Wan, ; Yusheng Song,
| | - Shaogui Wan
- Center for Molecular Pathology, Department of Basic Medicine, Gannan Medical University, Ganzhou, China,China Medical University, Shenyang, China, Ganzhou, China,*Correspondence: Shaogui Wan, ; Yusheng Song,
| |
Collapse
|
2
|
Ilić M, Zaalberg IC, Raaijmakers JA, Medema RH. Life of double minutes: generation, maintenance, and elimination. Chromosoma 2022; 131:107-125. [PMID: 35487993 PMCID: PMC9470669 DOI: 10.1007/s00412-022-00773-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 12/20/2022]
Abstract
Advances in genome sequencing have revealed a type of extrachromosomal DNA, historically named double minutes (also referred to as ecDNA), to be common in a wide range of cancer types, but not in healthy tissues. These cancer-associated circular DNA molecules contain one or a few genes that are amplified when double minutes accumulate. Double minutes harbor oncogenes or drug resistance genes that contribute to tumor aggressiveness through copy number amplification in combination with favorable epigenetic properties. Unequal distribution of double minutes over daughter cells contributes to intratumoral heterogeneity, thereby increasing tumor adaptability. In this review, we discuss various models delineating the mechanism of generation of double minutes. Furthermore, we highlight how double minutes are maintained, how they evolve, and discuss possible mechanisms driving their elimination.
Collapse
Affiliation(s)
- Mila Ilić
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Irene C Zaalberg
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Universiteitsweg, 100, 3584, CG Utrecht, The Netherlands
| | - Jonne A Raaijmakers
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - René H Medema
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Kamikawa Y, Saito A, Imaizumi K. Impact of Nuclear Envelope Stress on Physiological and Pathological Processes in Central Nervous System. Neurochem Res 2022; 47:2478-2487. [PMID: 35486254 DOI: 10.1007/s11064-022-03608-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 01/10/2023]
Abstract
The nuclear envelope (NE) separates genomic DNA from the cytoplasm and provides the molecular platforms for nucleocytoplasmic transport, higher-order chromatin organization, and physical links between the nucleus and cytoskeleton. Recent studies have shown that the NE is often damaged by various stresses termed "NE stress", leading to critical cellular dysfunction. Accumulating evidence has revealed the crucial roles of NE stress in the pathology of a broad spectrum of diseases. In the central nervous system (CNS), NE dysfunction impairs neural development and is associated with several neurological disorders, such as Alzheimer's disease and autosomal dominant leukodystrophy. In this review, the structure and functions of the NE are summarized, and the concepts of NE stress and NE stress responses are introduced. Additionally, the significant roles of the NE in the development of CNS and the mechanistic connections between NE stress and neurological disorders are described.
Collapse
Affiliation(s)
- Yasunao Kamikawa
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Atsushi Saito
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Kazunori Imaizumi
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| |
Collapse
|
4
|
Chu T, Rice EJ, Booth GT, Salamanca HH, Wang Z, Core LJ, Longo SL, Corona RJ, Chin LS, Lis JT, Kwak H, Danko CG. Chromatin run-on and sequencing maps the transcriptional regulatory landscape of glioblastoma multiforme. Nat Genet 2018; 50:1553-1564. [PMID: 30349114 PMCID: PMC6204104 DOI: 10.1038/s41588-018-0244-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 08/21/2018] [Indexed: 11/09/2022]
Abstract
The human genome encodes a variety of poorly understood RNA species that remain challenging to identify using existing genomic tools. We developed chromatin run-on and sequencing (ChRO-seq) to map the location of RNA polymerase for almost any input sample, including samples with degraded RNA that are intractable to RNA sequencing. We used ChRO-seq to map nascent transcription in primary human glioblastoma (GBM) brain tumors. Enhancers identified in primary GBMs resemble open chromatin in the normal human brain. Rare enhancers that are activated in malignant tissue drive regulatory programs similar to the developing nervous system. We identified enhancers that regulate groups of genes that are characteristic of each known GBM subtype and transcription factors that drive them. Finally we discovered a core group of transcription factors that control the expression of genes associated with clinical outcomes. This study characterizes the transcriptional landscape of GBM and introduces ChRO-seq as a method to map regulatory programs that contribute to complex diseases.
Collapse
Affiliation(s)
- Tinyi Chu
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Graduate field of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Edward J Rice
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Gregory T Booth
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - H Hans Salamanca
- Department of Anesthesiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Zhong Wang
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Leighton J Core
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Sharon L Longo
- Department of Neurological Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Robert J Corona
- Department of Pathology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Lawrence S Chin
- Department of Neurological Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Hojoong Kwak
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| | - Charles G Danko
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
5
|
Eller JL, Longo SL, Hicklin DJ, Canute GW. Activity of Anti-epidermal Growth Factor Receptor Monoclonal Antibody C225 against Glioblastoma Multiforme. Neurosurgery 2002. [DOI: 10.1227/00006123-200210000-00028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
6
|
Tchirkov A, Rolhion C, Bertrand S, Doré JF, Dubost JJ, Verrelle P. IL-6 gene amplification and expression in human glioblastomas. Br J Cancer 2001; 85:518-22. [PMID: 11506489 PMCID: PMC2364101 DOI: 10.1054/bjoc.2001.1942] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aggressiveness of human gliomas appears to be correlated with the upregulation of interleukin 6 (IL-6) gene. Using quantitative PCR methods, we detected amplification and expression of the IL-6 gene in 5 of 5 primary glioblastoma samples and in 4 of 5 glioblastoma cell lines. This finding suggests that the amplification of IL-6 gene may be a common feature in glioblastomas and may contribute to the IL-6 over-expression.
Collapse
Affiliation(s)
- A Tchirkov
- Centre Jean Perrin, 58 rue Montalembert, 63011 Clermont-Ferrand, France
| | | | | | | | | | | |
Collapse
|
7
|
Frankel B, Longo SL, Kyle M, Canute GW, Ryken TC. Tumor Fas (APO-1/CD95) Up-regulation Results in Increased Apoptosis and Survival Times for Rats with Intracranial Malignant Gliomas. Neurosurgery 2001. [DOI: 10.1227/00006123-200107000-00026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
8
|
Valent A, Bénard J, Clausse B, Barrois M, Valteau-Couanet D, Terrier-Lacombe MJ, Spengler B, Bernheim A. In vivo elimination of acentric double minutes containing amplified MYCN from neuroblastoma tumor cells through the formation of micronuclei. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 158:1579-84. [PMID: 11337354 PMCID: PMC1891958 DOI: 10.1016/s0002-9440(10)64112-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Neuroblastoma, the most common solid extracranial neoplasm in children, shows an appreciable variability in clinical evolution. Amplification of the MYCN oncogene in this tumor is detected in 25 to 30% of cases and is associated with poor clinical outcome. In this study, quantitative polymerase chain reaction and fluorescence in situ hybridization were used to determine MYCN amplification status in 46 neuroblastoma tumors. MYCN amplification was detected in tumors from 11 patients. Fluorescence in situ hybridization revealed the presence of micronuclei containing amplified MYCN sequences in 8 of the 11 tumors. Micronuclei are indicative of spontaneous elimination or loss of amplified sequences by tumor cells. Because the elimination of amplified sequences can be enhanced in vitro by specific drugs such as hydroxyurea, our observations suggest a new therapeutic strategy specifically targeted to cells with amplified genes.
Collapse
|
9
|
Frankel B, Longo SL, Canute GW. Soluble Fas-ligand (sFasL) in human astrocytoma cyst fluid is cytotoxic to T-cells: another potential means of immune evasion. J Neurooncol 2000; 48:21-6. [PMID: 11026693 DOI: 10.1023/a:1006473800589] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gliomas of all grades have been shown to express FasL, an apoptosis-inducing protein. Because of the ability of FasL to be cleaved from cell surfaces by metalloproteinases, soluble FasL can be released by FasL bearing cells into surrounding tissues. In the present study, we demonstrate the presence of sFasL in the cyst fluids of astrocytomas. Additionally, a human T-cell line, Jurkat, exposed to astrocytoma cyst fluid resulted in significantly increased cytotoxicity as compared to controls, an effect blocked by FasL neutralizing antibodies. This suggests that sFasL, may be utilized as a means of escaping immune surveillance by these tumors.
Collapse
Affiliation(s)
- B Frankel
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| | | | | |
Collapse
|
10
|
Shimizu N, Itoh N, Utiyama H, Wahl GM. Selective entrapment of extrachromosomally amplified DNA by nuclear budding and micronucleation during S phase. J Cell Biol 1998; 140:1307-20. [PMID: 9508765 PMCID: PMC2132668 DOI: 10.1083/jcb.140.6.1307] [Citation(s) in RCA: 229] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/1997] [Revised: 12/16/1997] [Indexed: 02/06/2023] Open
Abstract
Acentric, autonomously replicating extrachromosomal structures called double-minute chromosomes (DMs) frequently mediate oncogene amplification in human tumors. We show that DMs can be removed from the nucleus by a novel micronucleation mechanism that is initiated by budding of the nuclear membrane during S phase. DMs containing c-myc oncogenes in a colon cancer cell line localized to and replicated at the nuclear periphery. Replication inhibitors increased micronucleation; cell synchronization and bromodeoxyuridine-pulse labeling demonstrated de novo formation of buds and micronuclei during S phase. The frequencies of S-phase nuclear budding and micronucleation were increased dramatically in normal human cells by inactivating p53, suggesting that an S-phase function of p53 minimizes the probability of producing the broken chromosome fragments that induce budding and micronucleation. These data have implications for understanding the behavior of acentric DNA in interphase nuclei and for developing chemotherapeutic strategies based on this new mechanism for DM elimination.
Collapse
Affiliation(s)
- N Shimizu
- Faculty of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, 724, Japan
| | | | | | | |
Collapse
|