1
|
Zhang X, Wang X, Wang S, Peng W, Ullah R, Fu J, Zhou Y, Shen Y. Trilogy Development of Proopiomelanocortin Neurons From Embryonic to Adult Stages in the Mice Retina. Front Cell Dev Biol 2021; 9:718851. [PMID: 34676208 PMCID: PMC8523858 DOI: 10.3389/fcell.2021.718851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Proopiomelanocortin-positive amacrine cells (POMC ACs) were first discovered in adult mouse retinas in 2010; however, the development of POMC-ACs has not been studied. We bred POMC-EGFP mice to label POMC-positive cells and investigated the development of POMC neurons from embryonic to adult stages. We found that POMC neuron development is mainly divided into three stages: the embryonic stage, the closed-eye stage, and the open-eye stage. Each stage has unique characteristics. In the embryonic stage, POMC neurons appeared in the retina at about E13. There was a cell number developmental peak at E15, followed by a steep decline at E16. POMC neurons showed a large soma and increased spine numbers at the closed-eye stage, and two dendritic sublaminas formed in the inner plexiform layer (IPL). The appearance and increased soma size and dendrite numbers did not occur continuously in space. We found that the soma number was asymmetric between the superior and inferior retinas according to the developmental topographic map. Density peaked in the superior retina, which existed persistently in the retinal ganglion cell layer (GCL), but disappeared from the inner nuclear layer (INL) at about P6. At the same time, the soma distribution in the INL was the most regular. At the open-eye stage, the development of POMC neurons was nearly stable only with only an increase in the IPL width, which increased the soma–dendrite distance.
Collapse
Affiliation(s)
- Xuhong Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Xiaoyu Wang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, China.,Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Senjie Wang
- Department of Endocrinology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Peng
- Department of Endocrinology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rahim Ullah
- Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.,Department of Endocrinology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junfen Fu
- Department of Endocrinology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yudong Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, China.,Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Ye Shen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Flores-Bastías O, Adriasola-Carrasco A, Karahanian E. Activation of Melanocortin-4 Receptor Inhibits Both Neuroinflammation Induced by Early Exposure to Ethanol and Subsequent Voluntary Alcohol Intake in Adulthood in Animal Models: Is BDNF the Key Mediator? Front Cell Neurosci 2020; 14:5. [PMID: 32063838 PMCID: PMC6997842 DOI: 10.3389/fncel.2020.00005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/10/2020] [Indexed: 12/31/2022] Open
Abstract
The concept that neuroinflammation induced by excessive alcohol intake in adolescence triggers brain mechanisms that perpetuate consumption has strengthened in recent years. The melanocortin system, composed of the melanocortin 4 receptor (MC4R) and its ligand α-melanocyte-stimulating hormone (α-MSH), has been implicated both in modulation of alcohol consumption and in ethanol-induced neuroinflammation decrease. Chronic alcohol consumption in adolescent rats causes a decrease in an α-MSH release by the hypothalamus, while the administration of synthetic agonists of MC4R causes a decrease in neuroinflammation and a decrease in voluntary alcohol consumption. However, the mechanism that connects the activation of MC4R with the decrease of both neuroinflammation and voluntary alcohol consumption has not been elucidated. Brain-derived neurotrophic factor (BDNF) has been implicated in alcohol drinking motivation, dependence and withdrawal, and its levels are reduced in alcoholics. Deficiencies in BDNF levels increased ethanol self-administration in rats. Further, BDNF triggers important anti-inflammatory effects in the brain, and this could be one of the mechanisms by which BDNF reduces chronic alcohol intake. Interestingly, MC4R signaling induces BDNF expression through the activation of the cAMP-responsive element-binding protein (CREB). We hypothesize that ethanol exposure during adolescence decreases the expression of α-MSH and hence MC4R signaling in the hippocampus, leading to a lower BDNF activity that causes dramatic changes in the brain (e.g., neuroinflammation and decreased neurogenesis) that predispose to maintain alcohol abuse until adulthood. The activation of MC4R either by α-MSH or by synthetic agonist peptides can induce the expression of BDNF, which would trigger several processes that lead to lower alcohol consumption.
Collapse
Affiliation(s)
- Osvaldo Flores-Bastías
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile.,Research Center for the Study of Alcohol Drinking Behavior in Adolescents, Universidad Autónoma de Chile, Santiago, Chile
| | - Alfredo Adriasola-Carrasco
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Eduardo Karahanian
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile.,Research Center for the Study of Alcohol Drinking Behavior in Adolescents, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
3
|
Schaible EV, Steinsträßer A, Jahn-Eimermacher A, Luh C, Sebastiani A, Kornes F, Pieter D, Schäfer MK, Engelhard K, Thal SC. Single administration of tripeptide α-MSH(11-13) attenuates brain damage by reduced inflammation and apoptosis after experimental traumatic brain injury in mice. PLoS One 2013; 8:e71056. [PMID: 23940690 PMCID: PMC3733710 DOI: 10.1371/journal.pone.0071056] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 06/24/2013] [Indexed: 12/29/2022] Open
Abstract
Following traumatic brain injury (TBI) neuroinflammatory processes promote neuronal cell loss. Alpha-melanocyte-stimulating hormone (α-MSH) is a neuropeptide with immunomodulatory properties, which may offer neuroprotection. Due to short half-life and pigmentary side-effects of α-MSH, the C-terminal tripeptide α-MSH(11-13) may be an anti-inflammatory alternative. The present study investigated the mRNA concentrations of the precursor hormone proopiomelanocortin (POMC) and of melanocortin receptors 1 and 4 (MC1R/MC4R) in naive mice and 15 min, 6, 12, 24, and 48 h after controlled cortical impact (CCI). Regulation of POMC and MC4R expression did not change after trauma, while MC1R levels increased over time with a 3-fold maximum at 12 h compared to naive brain tissue. The effect of α-MSH(11-13) on secondary lesion volume determined in cresyl violet stained sections (intraperitoneal injection 30 min after insult of 1 mg/kg α-MSH(11-13) or 0.9% NaCl) showed a considerable smaller trauma in α-MSH(11-13) injected mice. The expression of the inflammatory markers TNF-α and IL-1β as well as the total amount of Iba-1 positive cells were not reduced. However, cell branch counting of Iba-1 positive cells revealed a reduced activation of microglia. Furthermore, tripeptide injection reduced neuronal apoptosis analyzed by cleaved caspase-3 and NeuN staining. Based on the results single α-MSH(11-13) administration offers a promising neuroprotective property by modulation of inflammation and prevention of apoptosis after traumatic brain injury.
Collapse
Affiliation(s)
- Eva-Verena Schaible
- Department of Anesthesiology, Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Arne Steinsträßer
- Department of Anesthesiology, Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Antje Jahn-Eimermacher
- Institute of Medical Biostatistics, Epidemiology and Informatics, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Clara Luh
- Department of Anesthesiology, Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Anne Sebastiani
- Department of Anesthesiology, Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Frida Kornes
- Department of Anesthesiology, Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Dana Pieter
- Department of Anesthesiology, Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Michael K. Schäfer
- Department of Anesthesiology, Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Focus Program Translational Neuroscience, Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Kristin Engelhard
- Department of Anesthesiology, Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Focus Program Translational Neuroscience, Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Serge C. Thal
- Department of Anesthesiology, Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Focus Program Translational Neuroscience, Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- * E-mail:
| |
Collapse
|
4
|
Sharma HS, Skottner A, Lundstedt T, Flärdh M, Wiklund L. Neuroprotective effects of melanocortins in experimental spinal cord injury. An experimental study in the rat using topical application of compounds with varying affinity to melanocortin receptors. J Neural Transm (Vienna) 2006; 113:463-76. [PMID: 16550325 DOI: 10.1007/s00702-005-0404-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2005] [Accepted: 09/26/2005] [Indexed: 01/10/2023]
Abstract
The possibility that local administration of low molecular weight non-peptide compounds with varying affinities at melanocortin receptors in the spinal cord will influence pathophysiological outcome of spinal cord injury (SCI) was examined in a rat model. Five new Melacure compounds ME10092, ME10354, ME10393, ME10431 and ME10501 were used in this investigation. Each compound was dissolved in saline and tested at 3 different doses, i.e. 1 microg, 5 microg and 10 microg total dose in 10 microl applied topically 5 min after SCI. The animals were allowed to survive 5 h and trauma induced edema formation, breakdown of the blood-spinal cord barrier (BSCB) and cell injuries were examined and compared with untreated injured rats. A focal SCI inflicted by an incision into the right dorsal horn of the T10-11 segments resulted in marked edema formation, breakdown of the BSCB to Evans blue albumin and caused profound nerve cell injury in the T9 and the T12 segments. Topical application of ME10501 (a compound with high affinity at melanocortin, MC-4 receptors) in high doses (10 microg) resulted in most marked neuroprotection in the perifocal spinal cord (T9 and T12) segments. On the other hand, only a mild or no effect on spinal cord pathology was observed in the traumatized animals that received ME10092, ME10354, ME10393 and ME10431 at 3 different doses. These observations suggest that non-peptide compounds with varying affinity to melanocortin receptors are able to influence the pathophysiology of SCI. Furthermore, compounds acting at melanocortin, MCR4 receptors are capable to induce neuroprotection in spinal cord following trauma.
Collapse
Affiliation(s)
- H S Sharma
- Laboratory of Cerebrovascular Research, Department of Surgical Sciences, Division of Anaesthesiology and Intensive Care Medicine, University Hospital, Uppsala University, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
5
|
Catania A, Gatti S, Colombo G, Lipton JM. Targeting Melanocortin Receptors as a Novel Strategy to Control Inflammation. Pharmacol Rev 2004; 56:1-29. [PMID: 15001661 DOI: 10.1124/pr.56.1.1] [Citation(s) in RCA: 337] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Adrenocorticotropic hormone and alpha-, beta-, and gamma-melanocyte-stimulating hormones, collectively called melanocortin peptides, exert multiple effects upon the host. These effects range from modulation of fever and inflammation to control of food intake, autonomic functions, and exocrine secretions. Recognition and cloning of five melanocortin receptors (MCRs) has greatly improved understanding of peptide-target cell interactions. Preclinical investigations indicate that activation of certain MCR subtypes, primarily MC1R and MC3R, could be a novel strategy to control inflammatory disorders. As a consequence of reduced translocation of the nuclear factor kappaB to the nucleus, MCR activation causes a collective reduction of the major molecules involved in the inflammatory process. Therefore, anti-inflammatory influences are broad and are not restricted to a specific mediator. Short half-life and lack of selectivity could be an obstacle to the use of the natural melanocortins. However, design and synthesis of new MCR ligands with selective chemical properties are already in progress. This review examines how marshaling MCR could control inflammation.
Collapse
Affiliation(s)
- Anna Catania
- Division of Internal Medicine, Ospedale Maggiore di Milano, Instituto di Ricovero e Cura a Caraterre Scientifico, Milano, Italy.
| | | | | | | |
Collapse
|
6
|
Abstract
The natural ability of the adult central nervous system of higher vertebrates to recover from injury is highly limited. This limitation is most likely due to an inhospitable environment and/or intrinsic incapacities of the neurons to re-extend their neurites after injury or axotomy. The rat corticospinal tract is the largest tract leading from brain to spinal cord and is often used as a model in developmental and regeneration studies. The extensive know-how of factors involved in the development of the corticospinal tract did provide the foundation for many studies on corticospinal tract regrowth after injury in the adult spinal cord. The results of these experiments, as discussed in this review, have led to important contributions to the further understanding of central nervous system regeneration.
Collapse
Affiliation(s)
- E A Joosten
- Department of Neurology, Rudolf Magnus Institute for Neurosciences, University of Utrecht, The Netherlands
| |
Collapse
|