1
|
Zhang Z, Wang X, Dai Q, Qin Y, Sun X, Suzuki M, Ying X, Han M, Wei Q. Peptide-functionalized gold nanoparticles for boron neutron capture therapy with the potential to use in Glioblastoma treatment. Pharm Dev Technol 2024; 29:862-873. [PMID: 39286881 DOI: 10.1080/10837450.2024.2406044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/19/2024]
Abstract
Glioblastoma is a highly aggressive glioma with limited treatment options. Boron neutron capture therapy (BNCT) offers a promising approach for refractory cancers, utilizing boron-10 (10B) and thermal neutrons to generate cytotoxic particles. Effective BNCT depends on selective targeting and retention of 10B in tumors. Current BNCT drugs face issues with rapid clearance and poor tumor accumulation. To address this, we developed gold nanoparticles (AuNPs) functionalized with cyclic arginine-glycine-aspartic acid (cRGD) peptides as a nanocarrier for Sodium Mercaptododecaborate (BSH), resulting in AuNPs-BSH&PEG-cRGD. In vitro, AuNPs-BSH&PEG-cRGD increased 10B content in GL261 glioma cells by approximately 2.5-fold compared to unmodified AuNPs-BSH&PEG, indicating enhanced targeting due to cRGD's affinity for integrin receptor αvβ3. In a subcutaneous glioma mouse model, 6 h post-intratumoral administration, the 10B concentration in tumors was 17.98 μg/g for AuNPs-BSH&PEG-cRGD, significantly higher than 0.45 μg/g for BSH. The tumor-to-blood (T/B) and tumor-to-normal tissue (T/N) ratios were also higher for AuNPs-BSH&PEG-cRGD, suggesting improved targeting and retention. This indicates that AuNPs-BSH&PEG-cRGD may enhance BNCT efficacy and minimize normal tissue toxicity. In summary, this study provides a novel strategy for BSH delivery and may broaden the design vision of BNCT nano-boron capture agents.
Collapse
Affiliation(s)
- Zhicheng Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xin Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qi Dai
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yaxin Qin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyan Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Minoru Suzuki
- Division of Particle Radiation Oncology, Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Sennan-gun, Osaka, Japan
| | - Xiaoying Ying
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Min Han
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, China
- Division of Particle Radiation Oncology, Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Sennan-gun, Osaka, Japan
| | - Qichun Wei
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Barth RF, Gupta N, Kawabata S. Evaluation of sodium borocaptate (BSH) and boronophenylalanine (BPA) as boron delivery agents for neutron capture therapy (NCT) of cancer: an update and a guide for the future clinical evaluation of new boron delivery agents for NCT. Cancer Commun (Lond) 2024; 44:893-909. [PMID: 38973634 PMCID: PMC11337926 DOI: 10.1002/cac2.12582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/24/2024] [Accepted: 06/13/2024] [Indexed: 07/09/2024] Open
Abstract
Boron neutron capture therapy (BNCT) is a cancer treatment modality based on the nuclear capture and fission reactions that occur when boron-10, a stable isotope, is irradiated with neutrons of the appropriate energy to produce boron-11 in an unstable form, which undergoes instantaneous nuclear fission to produce high-energy, tumoricidal alpha particles. The primary purpose of this review is to provide an update on the first drug used clinically, sodium borocaptate (BSH), by the Japanese neurosurgeon Hiroshi Hatanaka to treat patients with brain tumors and the second drug, boronophenylalanine (BPA), which first was used clinically by the Japanese dermatologist Yutaka Mishima to treat patients with cutaneous melanomas. Subsequently, BPA has become the primary drug used as a boron delivery agent to treat patients with several types of cancers, specifically brain tumors and recurrent tumors of the head and neck region. The focus of this review will be on the initial studies that were carried out to define the pharmacokinetics and pharmacodynamics of BSH and BPA and their biodistribution in tumor and normal tissues following administration to patients with high-grade gliomas and their subsequent clinical use to treat patients with high-grade gliomas. First, we will summarize the studies that were carried out in Japan with BSH and subsequently at our own institution, The Ohio State University, and those of several other groups. Second, we will describe studies carried out in Japan with BPA and then in the United States that have led to its use as the primary drug that is being used clinically for BNCT. Third, although there have been intense efforts to develop new and better boron delivery agents for BNCT, none of these have yet been evaluated clinically. The present report will provide a guide to the future clinical evaluation of new boron delivery agents prior to their clinical use for BNCT.
Collapse
Affiliation(s)
- Rolf F. Barth
- Department of PathologyThe Ohio State UniversityColumbusOhioUSA
| | - Nilendu Gupta
- Department of Radiation OncologyThe Ohio State UniversityColumbusOhioUSA
| | - Shinji Kawabata
- Department of NeurosurgeryOsaka Medical and Pharmaceutical UniversityTakatsukiOsakaJapan
| |
Collapse
|
3
|
Fu WY, Chiu YL, Huang SC, Huang WY, Hsu FT, Lee HY, Wang TW, Keng PY. Boron Neutron Capture Therapy Enhanced by Boronate Ester Polymer Micelles: Synthesis, Stability, and Tumor Inhibition Studies. Biomacromolecules 2024; 25:4215-4232. [PMID: 38845149 PMCID: PMC11238341 DOI: 10.1021/acs.biomac.4c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 07/09/2024]
Abstract
Boron neutron capture therapy (BNCT) targets invasive, radioresistant cancers but requires a selective and high B-10 loading boron drug. This manuscript investigates boron-rich poly(ethylene glycol)-block-(poly(4-vinylphenyl boronate ester)) polymer micelles synthesized via atom transfer radical polymerization for their potential application in BNCT. Transmission electron microscopy (TEM) revealed spherical micelles with a uniform size of 43 ± 10 nm, ideal for drug delivery. Additionally, probe sonication proved effective in maintaining the micelles' size and morphology postlyophilization and reconstitution. In vitro studies with B16-F10 melanoma cells demonstrated a 38-fold increase in boron accumulation compared to the borophenylalanine drug for BNCT. In vivo studies in a B16-F10 tumor-bearing mouse model confirmed enhanced tumor selectivity and accumulation, with a tumor-to-blood (T/B) ratio of 2.5, surpassing BPA's T/B ratio of 1.8. As a result, mice treated with these micelles experienced a significant delay in tumor growth, highlighting their potential for BNCT and warranting further research.
Collapse
Affiliation(s)
- Wan Yun Fu
- Department of Material Science
and Engineering, National Tsing Hua University, Hsinchu City 300, Taiwan
| | - Yi-Lin Chiu
- Department of Material Science
and Engineering, National Tsing Hua University, Hsinchu City 300, Taiwan
| | - Shi-Chih Huang
- Department of Material Science
and Engineering, National Tsing Hua University, Hsinchu City 300, Taiwan
| | - Wei-Yuan Huang
- Department of Material Science
and Engineering, National Tsing Hua University, Hsinchu City 300, Taiwan
| | - Fang-Tzu Hsu
- Department of Material Science
and Engineering, National Tsing Hua University, Hsinchu City 300, Taiwan
| | - Han Yu Lee
- Department of Material Science
and Engineering, National Tsing Hua University, Hsinchu City 300, Taiwan
| | - Tzu-Wei Wang
- Department of Material Science
and Engineering, National Tsing Hua University, Hsinchu City 300, Taiwan
| | - Pei Yuin Keng
- Department of Material Science
and Engineering, National Tsing Hua University, Hsinchu City 300, Taiwan
| |
Collapse
|
4
|
Zavestovskaya IN, Kasatova AI, Kasatov DA, Babkova JS, Zelepukin IV, Kuzmina KS, Tikhonowski GV, Pastukhov AI, Aiyyzhy KO, Barmina EV, Popov AA, Razumov IA, Zavjalov EL, Grigoryeva MS, Klimentov SM, Ryabov VA, Deyev SM, Taskaev SY, Kabashin AV. Laser-Synthesized Elemental Boron Nanoparticles for Efficient Boron Neutron Capture Therapy. Int J Mol Sci 2023; 24:17088. [PMID: 38069412 PMCID: PMC10707216 DOI: 10.3390/ijms242317088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Boron neutron capture therapy (BNCT) is one of the most appealing radiotherapy modalities, whose localization can be further improved by the employment of boron-containing nanoformulations, but the fabrication of biologically friendly, water-dispersible nanoparticles (NPs) with high boron content and favorable physicochemical characteristics still presents a great challenge. Here, we explore the use of elemental boron (B) NPs (BNPs) fabricated using the methods of pulsed laser ablation in liquids as sensitizers of BNCT. Depending on the conditions of laser-ablative synthesis, the used NPs were amorphous (a-BNPs) or partially crystallized (pc-BNPs) with a mean size of 20 nm or 50 nm, respectively. Both types of BNPs were functionalized with polyethylene glycol polymer to improve colloidal stability and biocompatibility. The NPs did not initiate any toxicity effects up to concentrations of 500 µg/mL, based on the results of MTT and clonogenic assay tests. The cells with BNPs incubated at a 10B concentration of 40 µg/mL were then irradiated with a thermal neutron beam for 30 min. We found that the presence of BNPs led to a radical enhancement in cancer cell death, namely a drop in colony forming capacity of SW-620 cells down to 12.6% and 1.6% for a-BNPs and pc-BNPs, respectively, while the relevant colony-forming capacity for U87 cells dropped down to 17%. The effect of cell irradiation by neutron beam uniquely was negligible under these conditions. Finally, to estimate the dose and regimes of irradiation for future BNCT in vivo tests, we studied the biodistribution of boron under intratumoral administration of BNPs in immunodeficient SCID mice and recorded excellent retention of boron in tumors. The obtained data unambiguously evidenced the effect of a neutron therapy enhancement, which can be attributed to efficient BNP-mediated generation of α-particles.
Collapse
Affiliation(s)
- Irina N. Zavestovskaya
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991, Russia; (M.S.G.); (V.A.R.)
- Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University MEPhI, Moscow 115409, Russia (I.V.Z.); (G.V.T.); (A.A.P.); (S.M.K.); (S.M.D.)
| | - Anna I. Kasatova
- Laboratory of BNCT, Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (A.I.K.); (D.A.K.); (K.S.K.); (S.Y.T.)
| | - Dmitry A. Kasatov
- Laboratory of BNCT, Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (A.I.K.); (D.A.K.); (K.S.K.); (S.Y.T.)
| | - Julia S. Babkova
- Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University MEPhI, Moscow 115409, Russia (I.V.Z.); (G.V.T.); (A.A.P.); (S.M.K.); (S.M.D.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Ivan V. Zelepukin
- Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University MEPhI, Moscow 115409, Russia (I.V.Z.); (G.V.T.); (A.A.P.); (S.M.K.); (S.M.D.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Ksenya S. Kuzmina
- Laboratory of BNCT, Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (A.I.K.); (D.A.K.); (K.S.K.); (S.Y.T.)
| | - Gleb V. Tikhonowski
- Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University MEPhI, Moscow 115409, Russia (I.V.Z.); (G.V.T.); (A.A.P.); (S.M.K.); (S.M.D.)
| | - Andrei I. Pastukhov
- LP3, Aix-Marseille University, CNRS, 13288 Marseille, France; (A.I.P.); (A.V.K.)
| | - Kuder O. Aiyyzhy
- A. M. Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia; (K.O.A.); (E.V.B.)
| | - Ekaterina V. Barmina
- A. M. Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia; (K.O.A.); (E.V.B.)
| | - Anton A. Popov
- Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University MEPhI, Moscow 115409, Russia (I.V.Z.); (G.V.T.); (A.A.P.); (S.M.K.); (S.M.D.)
| | - Ivan A. Razumov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (I.A.R.); (E.L.Z.)
| | - Evgenii L. Zavjalov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (I.A.R.); (E.L.Z.)
| | - Maria S. Grigoryeva
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991, Russia; (M.S.G.); (V.A.R.)
| | - Sergey M. Klimentov
- Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University MEPhI, Moscow 115409, Russia (I.V.Z.); (G.V.T.); (A.A.P.); (S.M.K.); (S.M.D.)
| | - Vladimir A. Ryabov
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991, Russia; (M.S.G.); (V.A.R.)
| | - Sergey M. Deyev
- Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University MEPhI, Moscow 115409, Russia (I.V.Z.); (G.V.T.); (A.A.P.); (S.M.K.); (S.M.D.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
- Laboratory of Molecular Pharmacology, Institute of Molecular Theranostics, Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
- “Biomarker” Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Sergey Yu. Taskaev
- Laboratory of BNCT, Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (A.I.K.); (D.A.K.); (K.S.K.); (S.Y.T.)
| | - Andrei V. Kabashin
- LP3, Aix-Marseille University, CNRS, 13288 Marseille, France; (A.I.P.); (A.V.K.)
| |
Collapse
|
5
|
Luo T, Huang W, Chu F, Zhu T, Feng B, Huang S, Hou J, Zhu L, Zhu S, Zeng W. The Dawn of a New Era: Tumor-Targeting Boron Agents for Neutron Capture Therapy. Mol Pharm 2023; 20:4942-4970. [PMID: 37728998 DOI: 10.1021/acs.molpharmaceut.3c00701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Cancer is widely recognized as one of the most devastating diseases, necessitating the development of intelligent diagnostic techniques, targeted treatments, and early prognosis evaluation to ensure effective and personalized therapy. Conventional treatments, unfortunately, suffer from limitations and an increased risk of severe complications. In light of these challenges, boron neutron capture therapy (BNCT) has emerged as a promising approach for cancer treatment with unprecedented precision to selectively eliminate tumor cells. The distinctive and promising characteristics of BNCT hold the potential to revolutionize the field of oncology. However, the clinical application and advancement of BNCT technology face significant hindrance due to the inherent flaws and limited availability of current clinical drugs, which pose substantial obstacles to the practical implementation and continued progress of BNCT. Consequently, there is an urgent need to develop efficient boron agents with higher boron content and specific tumor-targeting properties. Researchers aim to address this need by integrating tumor-targeting strategies with BNCT, with the ultimate goal of establishing BNCT as an effective, readily available, and cutting-edge treatment modality for cancer. This review delves into the recent advancements in integrating tumor-targeting strategies with BNCT, focusing on the progress made in developing boron agents specifically designed for BNCT. By exploring the current state of BNCT and emphasizing the prospects of tumor-targeting boron agents, this review provides a comprehensive overview of the advancements in BNCT and highlights its potential as a transformative treatment option for cancer.
Collapse
Affiliation(s)
- Ting Luo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Wenzhi Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Feiyi Chu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Tianyu Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Bin Feng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Shuai Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Jing Hou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Liyong Zhu
- The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Shaihong Zhu
- The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| |
Collapse
|
6
|
Tang F, Wei Y, Zhang S, Wang J, Gu W, Tang F, Peng X, Wei Y, Liu J, Chen W, Zhang S, Gu L, Li Y. Evaluation of Pharmacokinetics of Boronophenylalanine and Its Uptakes in Gastric Cancer. Front Oncol 2022; 12:925671. [PMID: 35903711 PMCID: PMC9314552 DOI: 10.3389/fonc.2022.925671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/06/2022] [Indexed: 11/22/2022] Open
Abstract
Boron neutron capture therapy (BNCT), a cellular-level particle radiation therapy, combines boron compounds selectively delivered to tumor tissue with neutron irradiation. Boronophenylalanine (BPA) is a boron compound widely used in malignant melanoma, malignant brain tumors, and recurrent head and neck cancer. However, neither basic nor clinical research was reported for the treatment of gastric cancer using BPA. Selective distribution of boron in tumors rather than that in blood or normal tissue prior to neutron irradiation is required for the successful treatment of BNCT. This study evaluated the pharmacokinetics and safety of 10B-labeled BPA (10B-BPA, abbreviated as BPA) and its uptakes in gastric cancer. Pharmacokinetics and safety were evaluated in Sprague–Dawley (SD) rats intravenously injected with BPA. The uptakes of boron in gastric cancer cell line MKN45 and in cell-derived xenografts (CDX) and patient-derived xenografts (PDX) animal models were measured. The results showed that the boron concentration in the blood of rats decreased fast in the first 30 min followed by a steady decrease following the observation time, having a half-life of 44.11 ± 8.90 min and an AUC-last of 815.05 ± 62.09 min×μg/ml. The distribution of boron in different tissues (heart, liver, lung, stomach, and small intestine) of rats revealed a similar pattern in blood except for that in the brain, kidney, and bladder. In MKN45 cells, boron concentration increased in a time- and concentration-dependent manner. In both CDX and PDX animal models, the boron is preferentially distributed in tumor tissue rather than in blood or normal tissues. In addition, BPA had no significant adverse effects in rats. Taken together, the results suggested that BPA revealed a fast decrease in boron concentration in rats and is more likely to distribute in tumor cells and tissue.
Collapse
Affiliation(s)
- Futian Tang
- Key Laboratory of Digestive System Tumor of Gansu Province and Department of Cardiovascular Disease, Lanzhou University Second Hospital, Lanzhou, China
- South-East Institute of Lanzhou University, Putian, China
| | - Yujie Wei
- Key Laboratory of Digestive System Tumor of Gansu Province and Department of Cardiovascular Disease, Lanzhou University Second Hospital, Lanzhou, China
| | - Shining Zhang
- Key Laboratory of Digestive System Tumor of Gansu Province and Department of Cardiovascular Disease, Lanzhou University Second Hospital, Lanzhou, China
| | - Jianrong Wang
- Key Laboratory of Digestive System Tumor of Gansu Province and Department of Cardiovascular Disease, Lanzhou University Second Hospital, Lanzhou, China
| | - Wenjiao Gu
- Key Laboratory of Digestive System Tumor of Gansu Province and Department of Cardiovascular Disease, Lanzhou University Second Hospital, Lanzhou, China
| | - Fenxia Tang
- Key Laboratory of Digestive System Tumor of Gansu Province and Department of Cardiovascular Disease, Lanzhou University Second Hospital, Lanzhou, China
| | - Xiaohuan Peng
- Key Laboratory of Digestive System Tumor of Gansu Province and Department of Cardiovascular Disease, Lanzhou University Second Hospital, Lanzhou, China
| | - Yucai Wei
- Key Laboratory of Digestive System Tumor of Gansu Province and Department of Cardiovascular Disease, Lanzhou University Second Hospital, Lanzhou, China
| | - Jiangyan Liu
- Nuclear Medicine Department, Lanzhou University Second Hospital, Lanzhou, China
| | - Weiqiang Chen
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
- Department of Radiotherapy Technology, Lanhai Nuclear Medicine Research Center, Putian, China
| | - Shixu Zhang
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, China
| | - Long Gu
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, China
- *Correspondence: Yumin Li, ; Long Gu,
| | - Yumin Li
- Key Laboratory of Digestive System Tumor of Gansu Province and Department of Cardiovascular Disease, Lanzhou University Second Hospital, Lanzhou, China
- South-East Institute of Lanzhou University, Putian, China
- *Correspondence: Yumin Li, ; Long Gu,
| |
Collapse
|
7
|
Clinical Viability of Boron Neutron Capture Therapy for Personalized Radiation Treatment. Cancers (Basel) 2022; 14:cancers14122865. [PMID: 35740531 PMCID: PMC9221296 DOI: 10.3390/cancers14122865] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Usually, for dose planning in radiotherapy, the tumor is delimited as a volume on the image of the patient together with other clinical considerations based on populational evidence. However, the same prescription dose can provide different results, depending on the patient. Unfortunately, the biological aspects of the tumor are hardly considered in dose planning. Boron Neutron Capture Radiotherapy enables targeted treatment by incorporating boron-10 at the cellular level and irradiating with neutrons of a certain energy so that they produce nuclear reactions locally and almost exclusively damage the tumor cell. This technique is not new, but modern neutron generators and more efficient boron carriers have reactivated the clinical interest of this technique in the pursuit of more precise treatments. In this work, we review the latest technological facilities and future possibilities for the clinical implementation of BNCT and for turning it into a personalized therapy. Abstract Boron Neutron Capture Therapy (BNCT) is a promising binary disease-targeted therapy, as neutrons preferentially kill cells labeled with boron (10B), which makes it a precision medicine treatment modality that provides a therapeutic effect exclusively on patient-specific tumor spread. Contrary to what is usual in radiotherapy, BNCT proposes cell-tailored treatment planning rather than to the tumor mass. The success of BNCT depends mainly on the sufficient spatial biodistribution of 10B located around or within neoplastic cells to produce a high-dose gradient between the tumor and healthy tissue. However, it is not yet possible to precisely determine the concentration of 10B in a specific tissue in real-time using non-invasive methods. Critical issues remain to be resolved if BNCT is to become a valuable, minimally invasive, and efficient treatment. In addition, functional imaging technologies, such as PET, can be applied to determine biological information that can be used for the combined-modality radiotherapy protocol for each specific patient. Regardless, not only imaging methods but also proteomics and gene expression methods will facilitate BNCT becoming a modality of personalized medicine. This work provides an overview of the fundamental principles, recent advances, and future directions of BNCT as cell-targeted cancer therapy for personalized radiation treatment.
Collapse
|
8
|
Wang S, Zhang Z, Miao L, Li Y. Boron Neutron Capture Therapy: Current Status and Challenges. Front Oncol 2022; 12:788770. [PMID: 35433432 PMCID: PMC9009440 DOI: 10.3389/fonc.2022.788770] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Boron neutron capture therapy (BNCT) is a re-emerging therapy with the ability to selectively kill tumor cells. After the boron delivery agents enter the tumor tissue and enrich the tumor cells, the thermal neutrons trigger the fission of the boron atoms, leading to the release of boron atoms and then leading to the release of the α particles (4He) and recoil lithium particles (7Li), along with the production of large amounts of energy in the narrow region. With the advantages of targeted therapy and low toxicity, BNCT has become a unique method in the field of radiotherapy. Since the beginning of the last century, BNCT has been emerging worldwide and gradually developed into a technology for the treatment of glioblastoma multiforme, head and neck cancer, malignant melanoma, and other cancers. At present, how to develop and innovate more efficient boron delivery agents and establish a more accurate boron-dose measurement system have become the problem faced by the development of BNCT. We discuss the use of boron delivery agents over the past several decades and the corresponding clinical trials and preclinical outcomes. Furthermore, the discussion brings recommendations on the future of boron delivery agents and this therapy.
Collapse
Affiliation(s)
- Song Wang
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Zhengchao Zhang
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Lele Miao
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Yumin Li
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
9
|
Gubanova NV, Tsygankova AR, Zavjalov EL, Romashchenko AV, Orlov YL. Biodistribution of 10B in Glioma Orthotopic Xenograft Mouse Model after Injection of L-para-Boronophenylalanine and Sodium Borocaptate. Biomedicines 2021; 9:biomedicines9070722. [PMID: 34201895 PMCID: PMC8301403 DOI: 10.3390/biomedicines9070722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Boron neutron capture therapy (BNCT) is based on the ability of the boron-10 (10B) isotope to capture epithermal neutrons, as a result of which the isotope becomes unstable and decays into kinetically active elements that destroy cells where the nuclear reaction has occurred. The boron-carrying compounds—L-para-boronophenylalanine (BPA) and sodium mercaptoundecahydro-closo-dodecaborate (BSH)—have low toxicity and, today, are the only representatives of such compounds approved for clinical trials. For the effectiveness and safety of BNCT, a low boron content in normal tissues and substantially higher content in tumor tissue are required. This study evaluated the boron concentration in intracranial grafts of human glioma U87MG cells and normal tissues of the brain and other organs of mice at 1, 2.5 and 5 h after administration of the boron-carrying compounds. A detailed statistical analysis of the boron biodistribution dynamics was performed to find a ‘window of opportunity’ for BNCT. The data demonstrate variations in boron accumulation in different tissues depending on the compound used, as well as significant inter-animal variation. The protocol of administration of BPA and BSH compounds used did not allow achieving the parameters necessary for the successful course of BNCT in a glioma orthotopic xenograft mouse model.
Collapse
Affiliation(s)
- Natalya V. Gubanova
- Institute of Cytology and Genetics, Siberian Branch Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.L.Z.); (A.V.R.); (Y.L.O.)
- Correspondence:
| | - Alphiya R. Tsygankova
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch Russian Academy of Sciences, 630090 Novosibirsk, Russia;
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Evgenii L. Zavjalov
- Institute of Cytology and Genetics, Siberian Branch Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.L.Z.); (A.V.R.); (Y.L.O.)
| | - Alexander V. Romashchenko
- Institute of Cytology and Genetics, Siberian Branch Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.L.Z.); (A.V.R.); (Y.L.O.)
| | - Yuriy L. Orlov
- Institute of Cytology and Genetics, Siberian Branch Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.L.Z.); (A.V.R.); (Y.L.O.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Agrarian and Technological Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
- The Digital Health Institute, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, 119911 Moscow, Russia
| |
Collapse
|
10
|
Dymova MA, Taskaev SY, Richter VA, Kuligina EV. Boron neutron capture therapy: Current status and future perspectives. Cancer Commun (Lond) 2020; 40:406-421. [PMID: 32805063 PMCID: PMC7494062 DOI: 10.1002/cac2.12089] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/09/2020] [Accepted: 08/09/2020] [Indexed: 12/11/2022] Open
Abstract
The development of new accelerators has given a new impetus to the development of new drugs and treatment technologies using boron neutron capture therapy (BNCT). We analyzed the current status and future directions of BNCT for cancer treatment, as well as the main issues related to its introduction. This review highlights the principles of BNCT and the key milestones in its development: new boron delivery drugs and different types of charged particle accelerators are described; several important aspects of BNCT implementation are discussed. BCNT could be used alone or in combination with chemotherapy and radiotherapy, and it is evaluated in light of the outlined issues. For the speedy implementation of BCNT in medical practice, it is necessary to develop more selective boron delivery agents and to generate an epithermal neutron beam with definite characteristics. Pharmacological companies and research laboratories should have access to accelerators for large-scale screening of new, more specific boron delivery agents.
Collapse
Affiliation(s)
- Mayya Alexandrovna Dymova
- Laboratory of BiotechnologyInstitute of Chemical Biology and Fundamental MedicineSiberian Branch of the Russian Academy of SciencesLavrentjeva Av. 8Novosibirsk630090Russia
| | - Sergey Yurjevich Taskaev
- Budker Institute of Nuclear PhysicsSiberian Branch of the Russian Academy of SciencesLavrentjeva Av. 11Novosibirsk630090Russia
- Laboratory of Boron Neutron Capture TherapyNovosibirsk State UniversityPirogova str. 1Novosibirsk630090Russia
| | - Vladimir Alexandrovich Richter
- Laboratory of BiotechnologyInstitute of Chemical Biology and Fundamental MedicineSiberian Branch of the Russian Academy of SciencesLavrentjeva Av. 8Novosibirsk630090Russia
| | - Elena Vladimirovna Kuligina
- Laboratory of BiotechnologyInstitute of Chemical Biology and Fundamental MedicineSiberian Branch of the Russian Academy of SciencesLavrentjeva Av. 8Novosibirsk630090Russia
| |
Collapse
|
11
|
Yuan TZ, Xie SQ, Qian CN. Boron neutron capture therapy of cancer: Critical issues and future prospects. Thorac Cancer 2019; 10:2195-2199. [PMID: 31679175 PMCID: PMC6885431 DOI: 10.1111/1759-7714.13232] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 01/22/2023] Open
Affiliation(s)
- Tai-Ze Yuan
- Department of Radiation Oncology, Guangzhou Concord Cancer Center, Guangzhou, China
| | - Shu-Qing Xie
- Department of Radiation Oncology, Guangzhou Concord Cancer Center, Guangzhou, China
| | - Chao-Nan Qian
- Department of Radiation Oncology, Guangzhou Concord Cancer Center, Guangzhou, China.,Department of Nasopharyngeal carcinoma, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
12
|
Barth RF, Mi P, Yang W. Boron delivery agents for neutron capture therapy of cancer. Cancer Commun (Lond) 2018; 38:35. [PMID: 29914561 PMCID: PMC6006782 DOI: 10.1186/s40880-018-0299-7] [Citation(s) in RCA: 237] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023] Open
Abstract
Boron neutron capture therapy (BNCT) is a binary radiotherapeutic modality based on the nuclear capture and fission reactions that occur when the stable isotope, boron-10, is irradiated with neutrons to produce high energy alpha particles. This review will focus on tumor-targeting boron delivery agents that are an essential component of this binary system. Two low molecular weight boron-containing drugs currently are being used clinically, boronophenylalanine (BPA) and sodium borocaptate (BSH). Although they are far from being ideal, their therapeutic efficacy has been demonstrated in patients with high grade gliomas, recurrent tumors of the head and neck region, and a much smaller number with cutaneous and extra-cutaneous melanomas. Because of their limitations, great effort has been expended over the past 40 years to develop new boron delivery agents that have more favorable biodistribution and uptake for clinical use. These include boron-containing porphyrins, amino acids, polyamines, nucleosides, peptides, monoclonal antibodies, liposomes, nanoparticles of various types, boron cluster compounds and co-polymers. Currently, however, none of these have reached the stage where there is enough convincing data to warrant clinical biodistribution studies. Therefore, at present the best way to further improve the clinical efficacy of BNCT would be to optimize the dosing paradigms and delivery of BPA and BSH, either alone or in combination, with the hope that future research will identify new and better boron delivery agents for clinical use.
Collapse
Affiliation(s)
- Rolf F. Barth
- Department of Pathology, The Ohio State University, 4132 Graves Hall, 333 W. 10th Ave, Columbus, OH 43210 USA
| | - Peng Mi
- Department of Radiology, Center for Medical Imaging, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041 P. R. China
| | - Weilian Yang
- Department of Pathology, The Ohio State University, 4132 Graves Hall, 333 W. 10th Ave, Columbus, OH 43210 USA
- Present Address: Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Suzhou University, Suzhou, Jiangsu 215004 P. R. China
| |
Collapse
|
13
|
Gupta N, Gahbauer RA, Blue TE, Albertson B. Common challenges and problems in clinical trials of boron neutron capture therapy of brain tumors. J Neurooncol 2003; 62:197-210. [PMID: 12749714 DOI: 10.1007/bf02699945] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Clinical trials for binary therapies, like boron neutron capture therapy (BNCT), pose a number of unique problems and challenges in design, performance, and interpretation of results. In neutron beam development, different groups use different optimization parameters, resulting in beams being considerably different from each other. The design, development, testing, execution of patient pharmacokinetics and the evaluation of results from these studies differ widely. Finally, the clinical trials involving patient treatments vary in many aspects such as their dose escalation strategies, treatment planning methodologies, and the reporting of data. The implications of these differences in the data accrued from these trials are discussed. The BNCT community needs to standardize each aspect of the design, implementation, and reporting of clinical trials so that the data can be used meaningfully.
Collapse
Affiliation(s)
- N Gupta
- Division of Radiation Oncology, The Ohio State University, Columbus, OH, USA.
| | | | | | | |
Collapse
|
14
|
Hideghéty K, Sauerwein W, Wittig A, Götz C, Paquis P, Grochulla F, Haselsberger K, Wolbers J, Moss R, Huiskamp R, Fankhauser H, de Vries M, Gabel D. Tissue uptake of BSH in patients with glioblastoma in the EORTC 11961 phase I BNCT trial. J Neurooncol 2003; 62:145-56. [PMID: 12749710 DOI: 10.1007/bf02699941] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE The uptake of the boron compound Na2B12H10-SH (BSH) in tumor and normal tissues was investigated in the frame of the EORTC phase I trial 'Postoperative treatment of glioblastoma with BNCT at the Petten Irradiation Facility' (protocol 11961). METHODS AND MATERIALS The boron concentration in blood, tumor, normal brain, dura, muscle, skin and bone was detected using inductively coupled plasma-atomic emission spectroscopy in 13 evaluable patients. In a first group of 10 patients 100 mg BSH/kg bodyweight (BW) were administered; a second group of 3 patients received 22.9 mg BSH/kg BW. The toxicity due to BSH was evaluated. RESULTS The average boron concentration in the tumor was 19.9 +/- 9.1 ppm (1 standard deviation (SD)) in the high dose group and 9.8 +/- 3.3 ppm in the low dose group, the tumor/blood ratios were 0.6 +/- 0.2 and 0.9 +/- 0.2, respectively. The highest boron uptake has been detected in the dura, very low uptake was found in the bone, the cerebro-spinal fluid and especially in the brain (brain/blood ratio 0.2 +/- 0.02 and 0.4 +/- 0.2). No toxicity was detected except flush-like symptoms in 2 cases during a BSH infusion at a much higher speed than prescribed. CONCLUSION BSH proved to be safe for clinical application at a dose of 100 mg BSH/kg infused and at a dose rate of 1 mg/kg/min. The study underlines the importance of a further investigation of BSH uptake in order to obtain enough data for significant statistical analysis. The boron concentration in blood seems to be a quite reliable parameter to predict the boron concentration in other tissues.
Collapse
|
15
|
Barth RF, Yang W, Coderre JA. Rat brain tumor models to assess the efficacy of boron neutron capture therapy: a critical evaluation. J Neurooncol 2003; 62:61-74. [PMID: 12749703 DOI: 10.1007/bf02699934] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Development of any therapeutic modality can be facilitated by the use of the appropriate animal models to assess its efficacy. This report primarily will focus on our studies using the F98 and 9L rat glioma models to evaluate the effectiveness of boron neutron capture therapy (BNCT) of brain tumors. Following intracerebral implantation the biological behavior of each tumor resembles that of human high grade gliomas in a number of ways. In both models, glioma cells were implanted intracerebrally into syngeneic Fischer rats and approximately 10-14 days later BNCT was initiated at the Brookhaven National Laboratory Medical Research Reactor. Two low molecular weight (M(r) < 210Da) 10B-containing drugs, boronophenylalanine (BPA) and/or sodium borocaptate (BSH) were used as capture agents, either alone or in combination with each other. The 9L gliosarcoma, which has been difficult to cure by means of either chemo- or radiotherapy alone, was readily curable by BNCT. The best survival data were obtained using BPA at a dose of 1200 mg/kg (64.8mg 10B), administered intraperitoneally (i.p.), with a 100% survival rate at 8 months. In contrast, the F98 glioma has been refractory to all therapeutic modalities. Tumor bearing animals, which had received 500 mg/kg (27 mg 10B) of BPA, or an equivalent amount of BSH i.v., had mean survival time (MST) of 37 and 33 days, respectively, compared to 29 days for irradiated controls. The best survival data with the F98 glioma model were obtained using BPA + BSH in combination, administered intra-arterially via the internal carotid artery (i.c.) with hyperosmotic mannitol induced blood-brain barrier disruption (BBB-D). The MST was 140 days with a cure rate of 25%, compared to a MST of 73 days with a 5% cure rate without BBB-D, and 41 days following i.v. administration of both drugs. A modest but significant increase in MST also was observed in rats that received intracarotid (i.c.) BPA in combination with Cereport (RMP-7), which produced a pharmacologically mediated opening of the BBB. Studies also have been carried out with the F98 glioma to determine whether an X-ray boost could enhance the efficacy of BNCT, and it was shown that there was a significant therapeutic gain. Finally, molecular targeting of the epidermal growth factor receptor (EGFR) has been investigated using F98 glioma cells, which had been transfected with the gene encoding EGFR and, intratumoral injection of boronated EGF as the delivery agent, followed by BNCT. These studies demonstrated that there was specific targeting of EGFR and provided proof of principle for the use of high molecular weight, receptor targeting-boron delivery agents. Finally, a xenograft model for melanoma metastatic to the brain has been developed using a human melanoma (MRA27), stereotactically implanted into the brains of nude rats, and these studies demonstrated that BNCT either cured or significantly prolonged the survival of tumor-bearing rats. It remains to be determined, which, if any, of these experimental approaches will be translated into clinical studies. Be that as it may, rat brain tumor models already have made a significant contribution to the design of clinical BNCT protocols, and should continue to do so in the future.
Collapse
Affiliation(s)
- Rolf F Barth
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
16
|
Gibson CR, Staubus AE, Barth RF, Yang W, Ferketich AK, Moeschberger MM. Pharmacokinetics of sodium borocaptate: a critical assessment of dosing paradigms for boron neutron capture therapy. J Neurooncol 2003; 62:157-69. [PMID: 12749711 DOI: 10.1007/bf02699942] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The pharmacokinetics of sodium borocaptate (BSH), a drug that has been used clinically for boron neutron capture therapy (BNCT) of malignant brain tumors, have been characterized by measuring boron concentrations by direct current plasma-atomic emission spectroscopy (DCP-AES) in a group of 23 patients with high-grade gliomas. The disposition of BSH following intravenous (i.v.) infusion, which was determined by measuring plasma boron concentrations by DCP-AES, was consistent with a three-compartment open model with zero-order input and first-order elimination from the central compartment. Boron disposition was linear over the dose range of 26.5-88.2 mg BSH/kg body weight (b.w.), corresponding to 15-50 mg boron/kg b.w. Mean total body boron plasma clearance was 14.4 +/- 3.5 ml/min and the harmonic mean half-lives (range) were 0.6 (0.3-3.7), 6.5 (4.8-10.1) and 77.8 (49.6-172.0) h for the alpha, beta, and gamma disposition phases, respectively. Using an empirically determined plasma: blood boron concentration ratio of 1.3 +/- 0.2, the calculated total body boron blood clearance was 18.5 +/- 4.5 ml/min. In order to develop a model for selecting the optimum dosing paradigm, a pharmacokinetic correlation was established between the boron content of normal brain, solid tumor, and infiltrating tumor to the shallow tissue pharmacokinetic compartment (C2). Based on our model, it was concluded that although multiple i.v. infusions of BSH might increase absolute tumor boron concentrations, they will not improve the tumor: plasma boron concentration ratios over those attainable by a single i.v. infusion. The results from our study are confirmatory of those previously reported by others when blood sampling has been carried out for a sufficient period of time to adequately characterize the pharmacokinetics.
Collapse
Affiliation(s)
- Christopher R Gibson
- College of Pharmacy, Division of Pharmaceutics, The Ohio State University, Columbus, OH, USA.
| | | | | | | | | | | |
Collapse
|