1
|
Tyler B, Wadsworth S, Recinos V, Mehta V, Vellimana A, Li K, Rosenblatt J, Do H, Gallia GL, Siu IM, Wicks RT, Rudek MA, Zhao M, Brem H. Local delivery of rapamycin: a toxicity and efficacy study in an experimental malignant glioma model in rats. Neuro Oncol 2011; 13:700-9. [PMID: 21727209 DOI: 10.1093/neuonc/nor050] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rapamycin, an anti-proliferative agent, is effective in the treatment of renal cell carcinoma and recurrent breast cancers. We proposed that this potent mammalian target of rapamycin inhibitor may be useful for the treatment of gliomas as well. We examined the cytotoxicity of rapamycin against a rodent glioma cell line, determined the toxicity of rapamycin when delivered intracranially, and investigated the efficacy of local delivery of rapamycin for the treatment of experimental malignant glioma in vivo. We also examined the dose-dependent efficacy of rapamycin and the effect when locally delivered rapamycin was combined with radiation therapy. Rapamycin was cytotoxic to 9L cells, causing 34% growth inhibition at a concentration of 0.01 µg/mL. No in vivo toxicity was observed when rapamycin was incorporated into biodegradable caprolactone-glycolide (35:65) polymer beads at 0.3%, 3%, and 30% loading doses and implanted intracranially. Three separate efficacy studies were performed to test the reproducibility of the effect of the rapamycin beads as well as the validity of this treatment approach. Animals treated with the highest dose of rapamycin beads tested (30%) consistently demonstrated significantly longer survival durations than the control and placebo groups. All dose-escalating rapamycin bead treatment groups (0.3%, 3% and 30%), treated both concurrently with tumor and in a delayed manner after tumor placement, experienced a significant increase in survival, compared with controls. Radiation therapy in addition to the simultaneous treatment with 30% rapamycin beads led to significantly longer survival duration than either therapy alone. These results suggest that the local delivery of rapamycin for the treatment of gliomas should be further investigated.
Collapse
Affiliation(s)
- Betty Tyler
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Lawson HC, Sampath P, Bohan E, Park MC, Hussain N, Olivi A, Weingart J, Kleinberg L, Brem H. Interstitial chemotherapy for malignant gliomas: the Johns Hopkins experience. J Neurooncol 2006; 83:61-70. [PMID: 17171441 PMCID: PMC4086528 DOI: 10.1007/s11060-006-9303-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Accepted: 11/16/2006] [Indexed: 10/23/2022]
Abstract
Malignant gliomas are very difficult neoplasms for clinicians to treat. The reason for this is multifaceted. Many treatments that are effective for systemic cancer are unable to cross the blood-brain barrier and/or have unacceptable systemic toxicities. Consequently, in recent years an effort has been placed on trying to develop innovative local treatments that bypass the blood-brain barrier and allow for direct treatment in the central nervous system (CNS)-interstitial treatment. In this paper, we present our extensive experience in using interstitial chemotherapy as a strategy to treat malignant brain tumors at a single institution (The Johns Hopkins Hospital). We provide a comprehensive summary of our preclinical work on interstitial chemotherapy at the Hunterian Neurosurgery Laboratory, reviewing data on rat, rabbit, and monkey studies. Additionally, we present our clinical experience with randomized placebo-controlled studies for the treatment of malignant gliomas. We compare survival statistics for those patients who received placebo versus Gliadel as initial therapy (11.6 months vs. 13.9 months, respectively) and at the time of tumor recurrence (23 weeks vs. and 31 weeks, respectively). We also discuss the positive impact of local therapy in avoiding the toxicities associated with systemic treatments. Furthermore, we provide an overview of newer chemotherapeutic agents and other strategies used in interstitial treatment. Finally, we offer insight into some of the lessons we have learned from our unique perspective.
Collapse
Affiliation(s)
- H. Christopher Lawson
- Department of Neurological Surgery, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Prakash Sampath
- Department of Clinical Neurosciences Program in Neurosurgery, Brown Medical School, Rhode Island Hospital, Providence, RI, USA
- Roger Williams Hospital, 825 Chalkstone Avenue, Providence 02908 RI, USA,
| | - Eileen Bohan
- Department of Neurological Surgery, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Michael C. Park
- Department of Clinical Neurosciences Program in Neurosurgery, Brown Medical School, Rhode Island Hospital, Providence, RI, USA
| | - Namath Hussain
- Department of Neurosurgery, University of Arizona, Tucson, AZ, USA
| | - Alessandro Olivi
- Department of Neurological Surgery, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Radiation Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Jon Weingart
- Department of Neurological Surgery, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Radiation Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Lawrence Kleinberg
- Department of Neurological Surgery, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Radiation Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Henry Brem
- Department of Neurological Surgery, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Radiation Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| |
Collapse
|
3
|
Zhang J, Tian Q, Chan SY, Duan W, Zhou S. Insights into oxazaphosphorine resistance and possible approaches to its circumvention. Drug Resist Updat 2005; 8:271-97. [PMID: 16154799 DOI: 10.1016/j.drup.2005.08.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2005] [Revised: 07/29/2005] [Accepted: 08/10/2005] [Indexed: 11/30/2022]
Abstract
The oxazaphosphorines cyclophosphamide, ifosfamide and trofosfamide remain a clinically useful class of anticancer drugs with substantial antitumour activity against a variety of solid tumors and hematological malignancies. A major limitation to their use is tumour resistance, which is due to multiple mechanisms that include increased DNA repair, increased cellular thiol levels, glutathione S-transferase and aldehyde dehydrogenase activities, and altered cell-death response to DNA damage. These mechanisms have been recently re-examined with the aid of sensitive analytical techniques, high-throughput proteomic and genomic approaches, and powerful pharmacogenetic tools. Oxazaphosphorine resistance, together with dose-limiting toxicity (mainly neutropenia and neurotoxicity), significantly hinders chemotherapy in patients, and hence, there is compelling need to find ways to overcome it. Four major approaches are currently being explored in preclinical models, some also in patients: combination with agents that modulate cellular response and disposition of oxazaphosphorines; antisense oligonucleotides directed against specific target genes; introduction of an activating gene (CYP3A4) into tumor tissue; and modification of dosing regimens. Of these approaches, antisense oligonucleotides and gene therapy are perhaps more speculative, requiring detailed safety and efficacy studies in preclinical models and in patients. A fifth approach is the design of novel oxazaphosphorines that have favourable pharmacokinetic and pharmacodynamic properties and are less vulnerable to resistance. Oxazaphosphorines not requiring hepatic CYP-mediated activation (for example, NSC 613060 and mafosfamide) or having additional targets (for example, glufosfamide that also targets glucose transport) have been synthesized and are being evaluated for safety and efficacy. Characterization of the molecular targets associated with oxazaphosphorine resistance may lead to a deeper understanding of the factors critical to the optimal use of these agents in chemotherapy and may allow the development of strategies to overcome resistance.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | | | | | | | | |
Collapse
|
4
|
Faundez M, Pino L, Letelier P, Ortiz C, López R, Seguel C, Ferreira J, Pavani M, Morello A, Maya JD. Buthionine sulfoximine increases the toxicity of nifurtimox and benznidazole to Trypanosoma cruzi. Antimicrob Agents Chemother 2005; 49:126-30. [PMID: 15616285 PMCID: PMC538915 DOI: 10.1128/aac.49.1.126-130.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 08/09/2004] [Accepted: 09/05/2004] [Indexed: 11/20/2022] Open
Abstract
l-Buthionine (S,R)-sulfoximine (BSO) increased the toxicity of nifurtimox and benznidazole toward the epimastigote, trypomastigote, and amastigote forms of Trypanosoma cruzi. BSO at 500 muM decreased total glutathione-derived thiols by 70 to 80% in 48 h. In epimastigotes, 500 muM BSO decreased the concentration of nifurtimox needed to inhibit constant growth of the parasites by 50%, from 14.0 to 9.0 muM, and decreased that of benznidazole from 43.6 to 24.1 muM. The survival of epimastigotes or trypomastigotes treated with nifurtimox or benznidazole, as measured by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) reduction, was significantly decreased by 500 muM BSO. In Vero cells infected with amastigotes, 25 muM BSO was able to potentiate the effect of nifurtimox and benznidazole as measured by the percentage of infected Vero cells multiplied by the average number of intracellular amastigotes (endocytic index). At 0.5 muM nifurtimox, the proportion of Vero cells infected decreased from 27 to 20% and the endocytic index decreased from 2,500 to 980 when 25 muM BSO was added. Similar results were obtained with benznidazole- and BSO-benznidazole-treated cells. This study indicates that potentiation of nifurtimox or benznidazole by BSO could decrease the clinical dose of both drugs and diminish the side effects or the length of therapy.
Collapse
Affiliation(s)
- Mario Faundez
- University of Chile, Faculty of Medicine, Molecular and Clinical Pharmacology Program, P.O. Box 70000, Santiago 7, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Goto H, Takahashi H, Fujii H, Ikuta K, Yokota S. N-(4-Hydroxyphenyl)retinamide (4-HPR) induces leukemia cell death via generation of reactive oxygen species. Int J Hematol 2004; 78:219-25. [PMID: 14604280 DOI: 10.1007/bf02983798] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The role of reactive oxygen species (ROS) in the cytotoxicity of N-(4-hydroxyphenyl)retinamide (4-HPR) was studied with use of the B-precursor lymphoblastic leukemia cell line YCUB-2. The increase in intracellular ROS measured with 2'-7'-dichlorodihydrofluorescein diacetate after 3 hours' incubation was 3.7-fold with 1 microM 4-HPR and 5.8-fold with 5 microM 4-HPR. The rate of apoptosis after 48 hours' incubation was 9.8% and 56.4% in comparison with untreated cells. Hydroethidine, which is a more specific indicator of superoxide anion radical level, did not effectively detect 4-HPR-induced ROS. The antioxidant 3-methyl-1-phenyl-2-pyrazolin-5-one suppressed 4-HPR-induced ROS production and apoptosis. The cytotoxicity of 4-HPR was analyzed in 4 other leukemia/lymphoma lines (CCRF-HSB2, Molt-4, KG-1, HL-60). We found that the cytotoxicity of 4-HPR correlated with the amount of ROS produced in cell lines, except in HL-60 cells. The intracellular glutathione level varied among the 5 cell lines, the highest levels occurring in Molt-4 and KG-1, which were less sensitive to 4-HPR. Suppression of glutathione by buthionine sulfoximine enhanced the level of 4-HPR-induced ROS production and apoptosis in Molt-4. Our findings suggest that ROS play a significant role in the antileukemia effect of 4-HPR and that the glutathione level in leukemias may be associated the sensitivity of the cells to 4-HPR.
Collapse
Affiliation(s)
- Hiroaki Goto
- Department of Pediatrics, Yokohama City University School of Medicine, Yokohama, Japan
| | | | | | | | | |
Collapse
|
6
|
Abstract
The controlled local delivery of antineoplastic agents by biodegradable polymers is a technique that allows for exposure of tumor cells to therapeutic doses of an active agent for prolonged periods of time while avoiding high systemic doses associated with debilitating toxicities. The use of polymers for chemotherapy delivery expands the spectrum of available treatment of neoplasms in the central nervous system, and facilitates new approaches for the treatment of malignant gliomas. In this article, we discuss the rationale and history of the development and use of these polymers, and review the various agents that have used this technology to treat malignant brain tumors.
Collapse
Affiliation(s)
- Paul P Wang
- Department of Neurological Surgery, The Johns Hopkins Hospital, Hunterian 817, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | |
Collapse
|