1
|
Morisset J. Life with the pancreas: A personal experience. Adv Med Sci 2020; 65:46-64. [PMID: 31901477 DOI: 10.1016/j.advms.2019.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/05/2019] [Accepted: 11/01/2019] [Indexed: 11/30/2022]
Abstract
This review article has primary objective to summarize pancreatic research which has been done in our laboratory since 1965, the first year of the author's registration in the Ph.D. program at the University of Sherbrooke (Canada). It covers the following major topics of pancreatic physiology: controls of pancreatic adaptation to diet, control of pancreatic enzyme secretion, control of pancreatic enzyme synthesis, control of pancreatic growth, intracellular events stimulated during pancreatic growth, pancreas regeneration after pancreatitis and pancreatectomy, the pancreatic cholecystokinin receptor types 1 and 2, growth control and cell signaling in pancreatic cancer cells and finally, cystic fibrosis.
Collapse
Affiliation(s)
- Jean Morisset
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001 12th Avenue North, Sherbrooke, Québec, J1H 5N4, Canada.
| |
Collapse
|
2
|
Luo K, Luo D, Liu H. Determination of Metabolites in the Cerebellum of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin Exposed Mice by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. ANAL LETT 2014. [DOI: 10.1080/00032719.2014.952373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
3
|
Exploring the fate of liposomes in the intestine by dynamic in vitro lipolysis. Int J Pharm 2012; 437:253-63. [PMID: 22939968 DOI: 10.1016/j.ijpharm.2012.08.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 08/06/2012] [Accepted: 08/09/2012] [Indexed: 10/28/2022]
Abstract
Liposomes are generally well tolerated drug delivery systems with a potential use for the oral route. However, little is known about the fate of liposomes during exposure to the conditions in the gastro-intestinal tract (GIT). To gain a better understanding of liposome stability in the intestine, a dynamic in vitro lipolysis model, which so far has only been used for the in vitro characterisation of other lipid-based drug delivery systems, was applied to different liposomal formulations. Liposome size and phospholipid (PL) digestion were determined as two markers for liposome stability. In addition, the effect of PL degradation on the ability to maintain liposomally incorporated danazol in solution during lipolysis was evaluated in order to address the feasibility of liposomes designed for oral administration. Rate and extend of hydrolysis of PLs mediated by pancreatic enzymes was determined by titration and HPLC. Size of liposomes was determined by dynamic light scattering during incubation in lipolysis medium (LM) and during lipolysis. SPC-based (soy phosphatidylcholine) liposomes were stable in LM, whereas for EPC-3-based (hydrated egg phosphatidylcholine) formulations the formation of aggregates of around 1 μm in diameter was observed over time. After 60 min lipolysis more than 80% of PLs of the SPC-liposomes were digested, but dependent on the liposome concentration only a slight change in size and size distribution could be observed. Although EPC-3 formulations did form aggregates during lipolysis, the lipids exhibited a higher stability compared to SPC and only 30% of the PLs were digested. No direct correlation between liposome integrity assessed by vesicle size and PL digestion was observed. Danazol content in the liposomes was around 5% (mol/mol danazol/total lipid) and hardly any precipitation was detected during the lipolysis assay, despite pronounced lipolytic degradation and change in vesicle size. In conclusion, the tested dynamic in vitro lipolysis model is suitable for the assessment of liposome stability in the intestine. Furthermore, liposomes might be a useful alternative to other lipid based delivery systems for the oral delivery of poorly soluble drugs.
Collapse
|
4
|
Gomez-Cambronero J, Henkels KM. Cloning of PLD2 from baculovirus for studies in inflammatory responses. Methods Mol Biol 2012; 861:201-25. [PMID: 22426721 DOI: 10.1007/978-1-61779-600-5_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The enzyme PLD hydrolyzes phosphodiester bonds of lipids in cell membranes. Phosphatidic acid, a chief product of PLD enzymatic activity, is a pleiotropic second messenger with key roles in membrane trafficking, cell invasion, cell growth, and anti-apoptosis. We describe in the present study molecular, cellular, and physiological methods to understand the mechanism of how the PLD2 isozyme regulates the process of inflammation. We describe here (1) a method that details phospholipase D2 (PLD2) cloning in the pBac expression vector, (2) the large-scale infection of Sf21 insect cells for protein production, (3) protein purification by TALON cobalt metal affinity matrix and subsequent assessment of PLD2 protein and lipase activity, (4) application of purified PLD2 protein for the study of Rac2 GTPase biology involving GTP binding by a pull-down assay and GTP/GDP exchange activity, (5) a method of PLD2 expression that involves mammalian cells, (6) a physiological application as relates to adhesion, chemotaxis, and phagocytosis, and (7) a model that integrates the results of a PLD-GTPase interaction from the molecular to the physiological contexts.
Collapse
Affiliation(s)
- Julian Gomez-Cambronero
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, OH, USA.
| | | |
Collapse
|
5
|
Su W, Chardin P, Yamazaki M, Kanaho Y, Du G. RhoA-mediated Phospholipase D1 signaling is not required for the formation of stress fibers and focal adhesions. Cell Signal 2005; 18:469-78. [PMID: 15993039 DOI: 10.1016/j.cellsig.2005.05.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 05/11/2005] [Accepted: 05/17/2005] [Indexed: 11/29/2022]
Abstract
The small GTPase RhoA regulates a wide spectrum of cellular functions including transformation and cytoskeletal reorganization. A large number of proteins have been identified as targets of RhoA, but their specific roles in these processes are not clear. Phospholipase D (PLD) was shown to be one such target several years ago; more recent work from our laboratory and others has demonstrated that of the two mammalian PLD isozymes, PLD1 but not PLD2 is activated by RhoA and this activation proceeds through direct binding both in vitro and in vivo. In this study, using a series of RhoA mutants, we have defined a PLD1-specific interacting site on RhoA composed of the residues Asn41, Trp58 and Asp76, using the yeast two-hybrid system, co-immunoprecipitation, and a PLD in vivo assay. The results further substantiate our previous finding that RhoA activates PLD1 through direct interaction. These mutants were then used to investigate the role of PLD1 in the cytoskeletal reorganization stimulated by RhoA signaling. Our results show that PLD1 is not required for the RhoA-mediated stress fiber and focal adhesion formation. The lack of importance of PLD1 signaling in RhoA-mediated cytoskeletal reorganization is further supported by the observation that PLD1 depletion using an shRNA approach and tetracycline-induced overexpression of the wild-type and the catalytically inactive mutant of PLD1 in stable cell lines do not alter stress fiber and focal adhesion formation.
Collapse
Affiliation(s)
- Wenjuan Su
- Department of Pharmacology and the Center for Developmental Genetics, State University of New York at Stony Brook, Stony Brook, NY 11794-5140, USA
| | | | | | | | | |
Collapse
|
6
|
Sarri E, Pardo R, Fensome-Green A, Cockcroft S. Endogenous phospholipase D2 localizes to the plasma membrane of RBL-2H3 mast cells and can be distinguished from ADP ribosylation factor-stimulated phospholipase D1 activity by its specific sensitivity to oleic acid. Biochem J 2003; 369:319-29. [PMID: 12374567 PMCID: PMC1223086 DOI: 10.1042/bj20021347] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2002] [Revised: 10/02/2002] [Accepted: 10/09/2002] [Indexed: 11/17/2022]
Abstract
We have examined the specificity of oleate as an activator of phospholipase D2 (PLD2) and whether it can be used to study PLD2 localization and its involvement in cell function. Oleate stimulates PLD activity in intact RBL-2H3 mast cells. Comparing PLD1- with PLD2-overexpressing cells, oleate enhanced PLD activity only in PLD2-overexpressing cells. Membranes were also sensitive to oleate and when membranes prepared from PLD1- and PLD2-overexpressing cells were examined, oleate further increased PLD activity only in membranes from PLD2-overexpressing cells. Overexpressed green fluorescent protein (GFP)-PLD2 fusion protein was localized at the plasma membrane and GFP-PLD1 was found in an intracellular vesicular compartment. Oleate was used to examine whether overexpressed PLD2 co-localized with endogenous PLD2. RBL-2H3 mast cell homogenates were fractionated on a linear sucrose gradient and analysed for both oleate-stimulated activity and ADP ribosylation factor 1-stimulated PLD1 activity. The oleate-stimulated activity co-localized with markers of the plasma membrane including the beta-subunit of the FcepsilonRI and linker for activation of T cells. Fractionation of homogenates from PLD2-overexpressing cells demonstrated that the overexpressed PLD2 fractionated in an identical location to the endogenous oleate-stimulated activity and this activity was greatly enhanced in comparison with control membranes. Examination of membranes prepared from COS-7, Jurkat and HL60 cells indicated a relationship between oleate-stimulated PLD2 activity and PLD2 immunoreactivity. We examined whether oleate could be used to activate secretion and membrane ruffling in adherent RBL-2H3 mast cells. Oleate did not stimulate secretion but did stimulate membrane ruffling, which was short-lived. We conclude that oleic acid is a selective activator of PLD2 and can be used for localization studies, but its use as an activator of PLD2 in intact cells to study function is limited due to toxicity.
Collapse
Affiliation(s)
- Elisabeth Sarri
- Department of Physiology, University College London, University Street, London WC1E 6JJ, U.K
| | | | | | | |
Collapse
|
7
|
Ryu GR, Kim MJ, Song CH, Sim SS, Min DS, Rhie DJ, Yoon SH, Hahn SJ, Kim MS, Jo YH. Site-Specific Distribution of Phospholipase D Isoforms in the Rat Pancreas. Acta Histochem Cytochem 2003. [DOI: 10.1267/ahc.36.51] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Gyeong Ryul Ryu
- Department of Physiology, College of Medicine, The Catholic University of Korea
| | - Myung-Jun Kim
- Department of Physiology, College of Medicine, The Catholic University of Korea
| | - Chan-Hee Song
- Department of Physiology, College of Medicine, The Catholic University of Korea
| | - Sang Soo Sim
- Department of Pathophysiology, College of Pharmacy, Chung Ang University
| | - Do Sik Min
- Department of Physiology, College of Medicine, The Catholic University of Korea
| | - Duck-Joo Rhie
- Department of Physiology, College of Medicine, The Catholic University of Korea
| | - Shin Hee Yoon
- Department of Physiology, College of Medicine, The Catholic University of Korea
| | - Sang June Hahn
- Department of Physiology, College of Medicine, The Catholic University of Korea
| | - Myung-Suk Kim
- Department of Physiology, College of Medicine, The Catholic University of Korea
| | - Yang-Hyeok Jo
- Department of Physiology, College of Medicine, The Catholic University of Korea
| |
Collapse
|
8
|
O'Luanaigh N, Pardo R, Fensome A, Allen-Baume V, Jones D, Holt MR, Cockcroft S. Continual production of phosphatidic acid by phospholipase D is essential for antigen-stimulated membrane ruffling in cultured mast cells. Mol Biol Cell 2002; 13:3730-46. [PMID: 12388770 PMCID: PMC129979 DOI: 10.1091/mbc.e02-04-0213] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Phospholipase Ds (PLDs) are regulated enzymes that generate phosphatidic acid (PA), a putative second messenger implicated in the regulation of vesicular trafficking and cytoskeletal reorganization. Mast cells, when stimulated with antigen, show a dramatic alteration in their cytoskeleton and also release their secretory granules by exocytosis. Butan-1-ol, which diverts the production of PA generated by PLD to the corresponding phosphatidylalcohol, was found to inhibit membrane ruffling when added together with antigen or when added after antigen. Inhibition by butan-1-ol was completely reversible because removal of butan-1-ol restored membrane ruffling. Measurements of PLD activation by antigen indicate a requirement for continual PA production during membrane ruffling, which was maintained for at least 30 min. PLD1 and PLD2 are both expressed in mast cells and green fluorescent protein-tagged proteins were used to identify PLD2 localizing to membrane ruffles of antigen-stimulated mast cells together with endogenous ADP ribosylation factor 6 (ARF6). In contrast, green fluorescent protein-PLD1 localized to intracellular vesicles and remained in this location after stimulation with antigen. Membrane ruffling was independent of exocytosis of secretory granules because phorbol 12-myristate 13-acetate increased membrane ruffling in the absence of exocytosis. Antigen or phorbol 12-myristate 13-acetate stimulation increased both PLD1 and PLD2 activity when expressed individually in RBL-2H3 cells. Although basal activity of PLD2-overexpressing cells is very high, membrane ruffling was still dependent on antigen stimulation. In permeabilized cells, antigen-stimulated phosphatidylinositol(4,5)bisphosphate synthesis was dependent on both ARF6 and PA generated from PLD. We conclude that both activation of ARF6 by antigen and a continual PLD2 activity are essential for local phosphatidylinositol(4,5)bisphosphate generation that regulates dynamic actin cytoskeletal rearrangements.
Collapse
Affiliation(s)
- Niamh O'Luanaigh
- Department of Physiology, University College London, London WC1E 6JJ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
9
|
Rizzo M, Romero G. Pharmacological importance of phospholipase D and phosphatidic acid in the regulation of the mitogen-activated protein kinase cascade. Pharmacol Ther 2002; 94:35-50. [PMID: 12191592 DOI: 10.1016/s0163-7258(02)00170-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The stimulation of cells with many extracellular agonists leads to the activation of phospholipase (PL)D. PLD metabolizes phosphatidylcholine to generate phosphatidic acid (PA). Neither the mechanism through which cell surface receptors regulate PLD activation nor the functional consequences of PLD activity in mitogenic signaling are completely understood. PLD is activated by protein kinase C, phospholipids, and small GTPases of the ADP-ribosylation factor and Rho families, but the mechanisms linking cell surface receptors to the activation of PLD still require detailed analysis. Furthermore, the latest data on the functional consequences of the generation of cellular PA suggest an important role for this lipid in the regulation of membrane traffic and on the activation of the mitogen-activated protein kinase cascade. This review addresses these issues, examining some novel models for the physiological role of PLD and PA and discussing their potential usefulness as specific targets for the development of new therapies.
Collapse
Affiliation(s)
- Mark Rizzo
- Department of Pharmacology, W 1345 BSTWR, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
10
|
Ding XQ, Ding WQ, Miller LJ. Receptor biology and signal transduction. Curr Opin Gastroenterol 2001; 17:410-5. [PMID: 17031193 DOI: 10.1097/00001574-200109000-00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
This year has witnessed substantial advances in receptor biology and signal transduction that are relevant to the function and regulation of the healthy pancreas and to the pathogenesis and potential therapy of pancreatitis and pancreatic carcinoma. There has been an expansion in the cast of pancreatic regulatory molecules, now including protease-activated receptors, chemokines, and chemokine receptors. There have been new insights into the cellular distribution and signaling initiated at the classic pancreatic receptors. There have also been dramatic advances in insights into the structure of G protein-coupled receptors, with the first solution of a crystal structure of a member of this superfamily, and into the molecular basis of ligand binding and activation of these important molecules. This will clearly improve the opportunities for the rational design and refinement of receptor-active drugs. In addition to these fundamental advances, there has been renewed attention to the expression, function, and regulation of receptors and signaling pathways in pancreatic cells present in the setting of pancreatitis and pancreatic carcinoma. It is hoped that this will contribute toward earlier diagnosis, more successful therapy, and new chemopreventive strategies for these illnesses.
Collapse
Affiliation(s)
- X Q Ding
- Center for Basic Research in Digestive Diseases, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
11
|
Lucocq J, Manifava M, Bi K, Roth MG, Ktistakis NT. Immunolocalisation of phospholipase D1 on tubular vesicular membranes of endocytic and secretory origin. Eur J Cell Biol 2001; 80:508-20. [PMID: 11561902 DOI: 10.1078/0171-9335-00186] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have examined the localisation of overexpressed phospholipase D1 (PLD1) using antibodies against its amino- and carboxyl-terminal domains. PLD1 overexpressed in COS-7 cells showed variable distribution by immunofluorescence but was mainly in punctate structures in the perinuclear region and at the plasma membrane. Downregulation by an anti-sense plasmid resulted in almost exclusively perinuclear distribution in punctate structures that contained immunoreactivity for the endogenous KDEL receptor and the early endosomal antigen EEA1 protein. Influenza haemagglutinin (HA) and HA-derived mutants designed to locate primarily to secretory or endocytic membranes were present in PLD1-positive membranes. Immunofluorescence analysis in permanent CHO cell lines that express PLD1 inducibly confirmed the presence of PLD1 on both endocytic and secretory membranes. Analysis of PLD1 distribution by immunocytochemistry and electron microscopy of intact CHO cells and of isolated membranes revealed that PLD1 was present in tubulovesicular elements and multivesicular bodies. Some of these were close to the Golgi region whereas others stained positive for endocytic cargo proteins. Morphometric analysis assigned the majority of PLD1 immunoreactivity on endosomal membranes and a smaller amount on membranes of secretory origin. PLD1, via signals that are currently not understood, is capable of localising in tubulovesicular membranes of both endocytic and secretory origin.
Collapse
Affiliation(s)
- J Lucocq
- Department of Anatomy and Physiology, University of Dundee, UK
| | | | | | | | | |
Collapse
|