Guérit JM. Neuromonitoring in the operating room: why, when, and how to monitor?
ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY 1998;
106:1-21. [PMID:
9680160 DOI:
10.1016/s0013-4694(97)00077-1]
[Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This review considers the main principles and indications of EEG and evoked potential (EP) neuromonitoring in the operating room. Neuromonitoring has a threefold purpose: to warn the surgeon that he has to adjust his strategy, to confirm his decision, and to help him improve subsequent procedures. The pathophysiology of intraoperative events liable to alter the EEG or the EPs is first considered. The usefulness of neuromonitoring in preventing neurological complication relies on its ability to detect neurological dysfunction at a reversible stage. This applies especially to ischemia and compressive damage. The anesthetic influences on EEG and EPs are then considered. Knowledge of them is essential to disentangle these neurophysiological alterations due to intraoperative events from those merely due to anesthesia and to use neurophysiological parameters to evaluate the depth of anesthesia. Third, the main indications and limitations of neuromonitoring are considered: prevention of ischemic brain or spinal cord damage, prevention of mechanical injuries of the brain, spinal cord or peripheral nerve, and localization of the motor cortex in cortical neurosurgery or of cranial nerves in posterior fossa surgery. Finally, the 3 levels of neuromonitoring (neurophysiological feature extraction, neurophysiological pattern recognition, clinical integration of the neurophysiological patterns) are discussed together with the rules that should guide the dialogue between the surgeon, the anesthesiologist, and the neurophysiologist.
Collapse