1
|
Li L, Al‐Jallad H, Sun A, Georgiopoulos M, Bokhari R, Ouellet J, Jarzem P, Cherif H, Haglund L. The proteomic landscape of extracellular vesicles derived from human intervertebral disc cells. JOR Spine 2024; 7:e70007. [PMID: 39507593 PMCID: PMC11538033 DOI: 10.1002/jsp2.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/17/2024] [Accepted: 10/05/2024] [Indexed: 11/08/2024] Open
Abstract
Background Extracellular vesicles (EVs) function as biomarkers and are crucial in cell communication and regulation, with therapeutic potential for intervertebral disc (IVD)-related low back pain (LBP). EV cargo is often affected by tissue health, which may affect the therapeutic potential. There is currently limited knowledge of how the cargo of IVD cell-derived EVs varies with tissue health and how differences in proteomic profile affect the predicted biological functions. Methods Our study purified EVs from human IVD cell conditioned media by size-exclusion chromatography. Nanoparticle tracking analysis was conducted to measure EV size and concentration. Transmission electron microscopy and Western blot were performed to examine EV structure and markers. Tandem mass tag-mass spectrometry was conducted to determine protein cargo. Results Most EVs were exosomes and intermediate microvesicles with an increasing amount linked to disease progression. Of the proteins detected, 88.6% were shared across the non-degenerate, mildly-degenerate, and degenerate samples. GO and KEGG analyses revealed that cargo from the mildly-degenerate samples was the most distinct, with the proteins in high abundance strongly associated with extracellular matrix (ECM) organization and structure. Shared proteins, highly expressed in the non-degenerate and degenerate samples, showed strong associations with cell adhesion, ECM-receptor interaction, and vesicle-mediated transport, respectively. Conclusions Our findings indicate that EVs from IVD cells from tissue with different degrees of degeneration share a majority of the cargo proteins. However, the level of expression differs with degeneration grade. Cargo from the mildly-degenerate samples exhibits the most differences. A better understanding of changes in EV cargo in the degenerative process may provide novel information related to molecular mechanisms underlying IVD degeneration and suggest new potential treatment modalities for IVD-related LBP.
Collapse
Affiliation(s)
- Li Li
- Department of Surgery, Division of OrthopaedicsMcGill UniversityMontrealQuebecCanada
- The McGill Scoliosis and Spine Group, McGill University Health CentreMontrealQuebecCanada
- The Orthopaedic Research Laboratory, Research Institute of the McGill University Health CentreMontrealQuebecCanada
| | | | - Aiwei Sun
- Department of Anatomy and Cell BiologyMcGill UniversityMontrealQuebecCanada
| | - Miltiadis Georgiopoulos
- Department of Surgery, Division of OrthopaedicsMcGill UniversityMontrealQuebecCanada
- The McGill Scoliosis and Spine Group, McGill University Health CentreMontrealQuebecCanada
| | - Rakan Bokhari
- Department of Surgery, Division of OrthopaedicsMcGill UniversityMontrealQuebecCanada
- Department of Surgery, Division of NeurosurgeryFaculty of Medicine, King Abdulaziz UniversityJeddahSaudi Arabia
| | - Jean Ouellet
- Department of Surgery, Division of OrthopaedicsMcGill UniversityMontrealQuebecCanada
- The McGill Scoliosis and Spine Group, McGill University Health CentreMontrealQuebecCanada
- Shriners Hospital for ChildrenMontrealQuebecCanada
| | - Peter Jarzem
- Department of Surgery, Division of OrthopaedicsMcGill UniversityMontrealQuebecCanada
- The McGill Scoliosis and Spine Group, McGill University Health CentreMontrealQuebecCanada
| | - Hosni Cherif
- Department of Surgery, Division of OrthopaedicsMcGill UniversityMontrealQuebecCanada
- The McGill Scoliosis and Spine Group, McGill University Health CentreMontrealQuebecCanada
- The Orthopaedic Research Laboratory, Research Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Lisbet Haglund
- Department of Surgery, Division of OrthopaedicsMcGill UniversityMontrealQuebecCanada
- The McGill Scoliosis and Spine Group, McGill University Health CentreMontrealQuebecCanada
- The Orthopaedic Research Laboratory, Research Institute of the McGill University Health CentreMontrealQuebecCanada
- Shriners Hospital for ChildrenMontrealQuebecCanada
| |
Collapse
|
2
|
Ma T, Wu J, Chen S, Bian J, Gao G, Nong L. pH-Responsive Modified HAMA Microspheres Regulate the Inflammatory Microenvironment of Intervertebral Discs. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63295-63305. [PMID: 39529398 PMCID: PMC11583120 DOI: 10.1021/acsami.4c14475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Currently, intervertebral disc (IVD) degeneration is believed to lead to local accumulation of lactic acid in the IVD, a decrease in pH, activation of the inflammatory pathway, and continued destruction of homeostasis of the IVD. To address these issues, the intelligent and accurate release of drugs is particularly important. In this study, acid-sensitive release methacrylated hyaluronic acid (HAMA) microspheres were constructed by using microfluidic technology, which can be used as a targeted drug delivery system for intervertebral disc degeneration (IVDD) through Schiff base chemical bonding on the surface of the microspheres to achieve intelligent drug release. Interleukin-1 receptor antagonist (IL-1 Ra) is a naturally occurring anti-inflammatory antagonist of the interleukin-1 family of pro-inflammatory cytokines. Despite its outstanding broad-spectrum anti-inflammatory effects, IL-1 Ra has a short biological half-life (4-6 h). The slow-release performance of IL-1 Ra can be greatly improved using bovine serum albumin nanoparticles (BNP). In addition, the modified HAMA microspheres exhibited good injectability and porosity, and efficient and uniform loading of nanoparticles was achieved via the Schiff base bond. The inflammatory microenvironment can be significantly reversed by transporting the modified HAMA microspheres-BNPs (Modified MS) to the degenerative nucleus pulposus.
Collapse
Affiliation(s)
- Tao Ma
- Department
of Orthopedics, The Affiliated Changzhou
No. 2 People’s Hospital with Nanjing Medical University, Changzhou 213003, China
- Department
of Orthopedics, Nanjing Medical University, Jiangsu 211166, China
- Changzhou
Medical Center, Nanjing Medical University, Changzhou 213003, China
| | - Jingwei Wu
- Department
of Orthopedics, The Affiliated Changzhou
No. 2 People’s Hospital with Nanjing Medical University, Changzhou 213003, China
- Department
of Orthopedics, Nanjing Medical University, Jiangsu 211166, China
- Changzhou
Medical Center, Nanjing Medical University, Changzhou 213003, China
| | - Senlin Chen
- Department
of Orthopedics, The Affiliated Changzhou
No. 2 People’s Hospital with Nanjing Medical University, Changzhou 213003, China
- Department
of Orthopedics, Nanjing Medical University, Jiangsu 211166, China
- Changzhou
Medical Center, Nanjing Medical University, Changzhou 213003, China
| | - Jiang Bian
- Department
of Orthopedics, The Affiliated Changzhou
No. 2 People’s Hospital with Nanjing Medical University, Changzhou 213003, China
- Changzhou
Medical Center, Nanjing Medical University, Changzhou 213003, China
| | - Gongming Gao
- Department
of Orthopedics, The Affiliated Changzhou
No. 2 People’s Hospital with Nanjing Medical University, Changzhou 213003, China
- Changzhou
Medical Center, Nanjing Medical University, Changzhou 213003, China
| | - Luming Nong
- Department
of Orthopedics, The Affiliated Changzhou
No. 2 People’s Hospital with Nanjing Medical University, Changzhou 213003, China
- Changzhou
Medical Center, Nanjing Medical University, Changzhou 213003, China
| |
Collapse
|
3
|
Lama P, Tiwari J, Mutreja P, Chauhan S, Harding IJ, Dolan T, Adams MA, Maitre CL. Cell clusters in intervertebral disc degeneration: an attempted repair mechanism aborted via apoptosis. Anat Cell Biol 2023; 56:382-393. [PMID: 37503630 PMCID: PMC10520859 DOI: 10.5115/acb.23.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 07/29/2023] Open
Abstract
Cell clusters are a histological hallmark feature of intervertebral disc degeneration. Clusters arise from cell proliferation, are associated with replicative senescence, and remain metabolically, but their precise role in various stages of disc degeneration remain obscure. The aim of this study was therefore to investigate small, medium, and large size cell-clusters. For this purpose, human disc samples were collected from 55 subjects, aged 37-72 years, 21 patients had disc herniation, 10 had degenerated non-herniated discs, and 9 had degenerative scoliosis with spinal curvature <45°. 15 non-degenerated control discs were from cadavers. Clusters and matrix changes were investigated with histology, immunohistochemistry, and Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Data obtained were analyzed with spearman rank correlation and ANOVA. Results revealed, small and medium-sized clusters were positive for cell proliferation markers Ki-67 and proliferating cell nuclear antigen (PCNA) in control and slightly degenerated human discs, while large cell clusters were typically more abundant in severely degenerated and herniated discs. Large clusters associated with matrix fissures, proteoglycan loss, matrix metalloproteinase-1 (MMP-1), and Caspase-3. Spatial association findings were reconfirmed with SDS-PAGE that showed presence to these target markers based on its molecular weight. Controls, slightly degenerated discs showed smaller clusters, less proteoglycan loss, MMP-1, and Caspase-3. In conclusion, cell clusters in the early stages of degeneration could be indicative of repair, however sustained loading increases large cell clusters especially around microscopic fissures that accelerates inflammatory catabolism and alters cellular metabolism, thus attempted repair process initiated by cell clusters fails and is aborted at least in part via apoptosis.
Collapse
Affiliation(s)
- Polly Lama
- Department of Anatomy, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Sikkim, India
| | - Jerina Tiwari
- Department of Anatomy, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Sikkim, India
| | - Pulkit Mutreja
- Department of Anatomy, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Sikkim, India
| | - Sukirti Chauhan
- Department of Anatomy, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Sikkim, India
| | - Ian J Harding
- Centre for Clinical Anatomy, University of Bristol, Bristol, UK
| | - Trish Dolan
- Centre for Clinical Anatomy, University of Bristol, Bristol, UK
| | - Michael A Adams
- Centre for Clinical Anatomy, University of Bristol, Bristol, UK
| | | |
Collapse
|
4
|
Chen Z, Ming J, Liu Y, Hu G, Liao Q. Epigenetic modification of miR-217 promotes intervertebral disc degeneration by targeting the FBXO21-ERK signalling pathway. Arthritis Res Ther 2022; 24:261. [PMID: 36443856 PMCID: PMC9703697 DOI: 10.1186/s13075-022-02949-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 11/03/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Numerous potential therapeutic alternatives for intervertebral disc degeneration (IDD) have been investigated, the most promising of which are based on biological variables such as microRNAs (miRNAs). Therefore, we verified the hypothesis that miRNAs modulate IDD by affecting the FBXO21-ERK signalling pathway. METHODS Microarray and quantitative real-time polymerase chain reaction (RT-qPCR) tests were used to examine the expression profiles of miRNAs in nucleus pulposus (NP) cells between patients with IDD and controls. Western blotting and luciferase reporter assays were used to identify the miRNA targets. RESULTS Microarray and RT-qPCR assays confirmed that the expression level of miR-217 was significantly decreased in degenerative NP cells. CpG islands were predicted in the miR-217 promoter region. The IDD group had considerably higher methylation than the control group. Gain- and loss-of-function experiments revealed that miR-217 mimics inhibited apoptosis and extracellular matrix (ECM) breakdown in NP cells. Bioinformatic analyses and luciferase assays were used to determine the connection between miR-217 and FBXO21. In vitro tests revealed that miR-217 mimics inhibited the expression of FBXO21, pERK, MMP13, and ADAMTS5 proteins, successfully protecting the ECM from degradation. Additionally, in vivo investigation using the IDD mouse model demonstrated that the miR-217 agonist may sufficiently promote NP cell proliferation, decrease apoptosis, promote ECM synthesis, and suppress the expression of matrix-degrading enzymes in NP cells. CONCLUSIONS Overexpression of miR-217 inhibits IDD via FBXO21/ERK regulation. TRIAL REGISTRATION This study was performed in strict accordance with the NIH guidelines for the care and use of laboratory animals (NIH Publication No. 85-23 Rev. 1985) and was approved by the human research ethics committee of Wuhan University Renmin Hospital (Approval No. RMHREC-D-2020-391), and written informed consent was obtained from each participant.
Collapse
Affiliation(s)
- Zhonghui Chen
- grid.490567.9Orthopaedic Surgery, Fuzhou Second Hospital, Fuzhou, China ,grid.256112.30000 0004 1797 9307The Third Clinical Medical College, Fujian Medical University, Fuzhou, China ,grid.412632.00000 0004 1758 2270Orthopaedic Surgery, Renmin Hospital of Wuhan University, No. 9 ZhangZhiDong Street, Wuchang District, Wuhan, Hubei China
| | - Jianghua Ming
- grid.412632.00000 0004 1758 2270Orthopaedic Surgery, Renmin Hospital of Wuhan University, No. 9 ZhangZhiDong Street, Wuchang District, Wuhan, Hubei China
| | - Yajing Liu
- grid.412632.00000 0004 1758 2270Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Geliang Hu
- grid.412632.00000 0004 1758 2270Orthopaedic Surgery, Renmin Hospital of Wuhan University, No. 9 ZhangZhiDong Street, Wuchang District, Wuhan, Hubei China
| | - Qi Liao
- grid.412632.00000 0004 1758 2270Orthopaedic Surgery, Renmin Hospital of Wuhan University, No. 9 ZhangZhiDong Street, Wuchang District, Wuhan, Hubei China
| |
Collapse
|
5
|
Peredo AP, Gullbrand SE, Smith HE, Mauck RL. Putting the Pieces in Place: Mobilizing Cellular Players to Improve Annulus Fibrosus Repair. TISSUE ENGINEERING. PART B, REVIEWS 2021; 27:295-312. [PMID: 32907498 PMCID: PMC10799291 DOI: 10.1089/ten.teb.2020.0196] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The intervertebral disc (IVD) is an integral load-bearing tissue that derives its function from its composite structure and extracellular matrix composition. IVD herniations involve the failure of the annulus fibrosus (AF) and the extrusion of the nucleus pulposus beyond the disc boundary. Disc herniations can impinge the neural elements and cause debilitating pain and loss of function, posing a significant burden on individual patients and society as a whole. Patients with persistent symptoms may require surgery; however, surgical intervention fails to repair the ruptured AF and is associated with the risk for reherniation and further disc degeneration. Given the limitations of AF endogenous repair, many attempts have been made toward the development of effective repair approaches that reestablish IVD function. These methods, however, fail to recapitulate the composition and organization of the native AF, ultimately resulting in inferior tissue mechanics and function over time and high rates of reherniation. Harnessing the cellular function of cells (endogenous or exogenous) at the repair site through the provision of cell-instructive cues could enhance AF tissue regeneration and, ultimately, improve healing outcomes. In this study, we review the diverse approaches that have been developed for AF repair and emphasize the potential for mobilizing the appropriate cellular players at the site of injury to improve AF healing. Impact statement Conventional treatments for intervertebral disc herniation fail to repair the annulus fibrosus (AF), increasing the risk for recurrent herniation. The lack of repair devices in the market has spurred the development of regenerative approaches, yet most of these rely on a scarce endogenous cell population to repair large injuries, resulting in inadequate regeneration. This review identifies current and developing strategies for AF repair and highlights the potential for harnessing cellular function to improve AF regeneration. Ideal cell sources, differentiation strategies, and delivery methods are discussed to guide the design of repair systems that leverage specialized cells to achieve superior outcomes.
Collapse
Affiliation(s)
- Ana P. Peredo
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Sarah E. Gullbrand
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Harvey E. Smith
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Robert L. Mauck
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Hydrostatic Pressure Modulates Intervertebral Disc Cell Survival and Extracellular Matrix Homeostasis via Regulating Hippo-YAP/TAZ Pathway. Stem Cells Int 2021; 2021:5626487. [PMID: 34221023 PMCID: PMC8221882 DOI: 10.1155/2021/5626487] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/05/2021] [Indexed: 01/14/2023] Open
Abstract
Established studies proved that hydrostatic pressure had multiple effects on the biological behavior of the intervertebral disc (IVD). However, the conclusions of the previous studies were inconsistent, due to the difference in hydrostatic loading devices and observing methods used in these studies. The current study is aimed at investigating the role of dynamic hydrostatic pressure in regulating biological behavior of the notochordal nucleus pulposus (NP) and fibrocartilaginous inner annulus fibrosus (AF) and its possible mechanism using our novel self-developed hydrostatic pressure bioreactor. The differences in the biological behavior of the rabbit IVD tissues under different degree of hydrostatic pressure were evaluated via histological analysis. Results revealed that low-loading dynamic hydrostatic pressure was beneficial for cell survival and extracellular matrix (ECM) homeostasis in notochordal NP and fibrocartilaginous inner AF via upregulating N-cadherin (N-CDH) and integrin β1. In comparison, high-magnitude dynamic hydrostatic pressure aggravated the breakdown of ECM homeostasis in NP and inner AF via enhancing the Hippo-YAP/TAZ pathway-mediated cell apoptosis. Moreover, inner AF exhibited greater tolerance to physiological medium-loading degree of hydrostatic pressure than notochordal NP. The potential mechanism was related to the differential expression of mechanosensing factors in notochordal NP and fibrocartilaginous inner AF, which affects the fate of the cells under hydrostatic pressure. Our findings may provide a better understanding of the regulatory role of hydrostatic pressure on the cellular fate commitment and matrix metabolism of the IVD and more substantial evidence for using hydrostatic pressure bioreactor in exploring the IVD degeneration mechanism as well as regeneration strategies.
Collapse
|
7
|
Campos MF, Silva MDBRD, Pinhal MAS, Salati T, Rodrigues LMR, Melo CM. CELL THERAPY IN THE TREATMENT OF INTERVERTEBRAL DISC DEGENERATION. COLUNA/COLUMNA 2021. [DOI: 10.1590/s1808-185120212002229178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT Approximately 80% of the world population experiences some type of back pain at some point in their life, and in 10% of this population the pain causes chronic disability resulting in a high cost for the treatment of these patients, in addition to compromising their work and social interaction abilities. Current treatment strategies include the surgical procedure for degenerated intervertebral disc resection, the nerve root block and physiotherapy. However, such treatments only relieve symptoms and do not prevent the degeneration of intervertebral discs. Therefore, new therapeutic strategies have emerged and include manipulating cells to recover the degenerated disc. This article will discuss the possible cell therapy alternatives used in the disc regeneration process, featuring a descriptive study of translational medicine that involves clinical aspects of new treatment alternatives and knowledge of basic research areas, such as cellular and molecular biology. Level of evidence V; Expert Opinion.
Collapse
Affiliation(s)
| | | | | | - Thiago Salati
- Universidade Federal de São Paulo, Brasil; Universidade Federal de São, Brasil
| | | | | |
Collapse
|
8
|
Jacobsen T, Hernandez P, Chahine N. Inhibition of toll-like receptor 4 protects against inflammation-induced mechanobiological alterations to intervertebral disc cells. Eur Cell Mater 2021; 41:576-591. [PMID: 34013512 PMCID: PMC8329983 DOI: 10.22203/ecm.v041a37] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Intervertebral disc (IVD) degeneration is associated with elevated levels of inflammatory cytokines implicated in disease aetiology and matrix degradation. Toll-like receptor-4 (TLR4) has been shown to participate in the inflammatory responses of the nucleus pulposus (NP) and its levels are upregulated in disc degeneration. Activation of TLR4 in NP cells leads to significant, persistent changes in cell biophysical properties, including hydraulic permeability and osmotically active water content, as well as alterations to the actin cytoskeleton. The study hypothesis was that inflammation-induced changes to cellular biomechanical properties and actin cytoskeleton of NP cells could be prevented by inhibiting TLR4 signalling. Isolated NP cells from bovine discs were treated with lipopolysaccharide (LPS), the best studied TLR4 agonist, with or without treatment with the TLR4 inhibitor TAK-242. Cellular volume regulation responses to step osmotic loading were measured and the transient volume-response was captured by time-lapse microscopy. Volume-responses were analysed using mixture theory framework to investigate hydraulic permeability and osmotically active intracellular water content. Hydraulic permeability and cell radius were significantly increased with LPS treatment and these changes were blocked in cells treated with TAK-242. LPS-induced remodelling of cortical actin and IL-6 upregulation were also mitigated by TAK-242 treatment. These findings indicated that TLR4 signalling participated in NP cell biophysical regulation and may be an important target for mitigating altered cell responses observed in IVD inflammation and degeneration.
Collapse
Affiliation(s)
- T.D. Jacobsen
- Department of Biomedical Engineering, Columbia University,
New York, NY
| | - P.A. Hernandez
- Department of Orthopaedic Surgery, University of Texas
Southwestern Medical Centre, Dallas, TX
| | - N.O. Chahine
- Department of Biomedical Engineering, Columbia University,
New York, NY,Department of Orthopaedic Surgery, Columbia University, New
York, NY,Address for correspondence: Nadeen
Chahine, 650 W 168th St, William Black Building, 14th
Floor Room 14-1408E, New York, NY 10032, USA. Telephone number: +1 2123051515,
| |
Collapse
|
9
|
Zhou Y, Deng M, Su J, Zhang W, Liu D, Wang Z. The Role of miR-31-5p in the Development of Intervertebral Disc Degeneration and Its Therapeutic Potential. Front Cell Dev Biol 2021; 9:633974. [PMID: 33816484 PMCID: PMC8012912 DOI: 10.3389/fcell.2021.633974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/17/2021] [Indexed: 01/08/2023] Open
Abstract
Intervertebral disc degeneration (IDD) refers to the abnormal response of cell-mediated progressive structural failure. In order to understand the molecular mechanism of the maintenance and destruction of the intervertebral disc, new IDD treatment methods are developed. Here, we first analyzed the key regulators of IDD through microRNAs microarrays. Then, the level of miR-31-5p was evaluated by qRT-PCR. The association between miR-31-5p and Stromal cell-derived factor 1 (SDF-1)/CXCR7 axis was assessed by 3′-untranslated region (UTR) cloning and luciferase assay. The apoptosis of cells under different treatments was evaluated by flow cytometer. The cell proliferation was assessed by EdU assay. After IDD model establishment, the discs of mice tail were harvested for histological and radiographic evaluation in each group. Finally, the protein levels of SDF-1, CXCR7, ADAMTS-5, Col II, Aggrecan, and MMP13 were assessed by western blot. The results show that miR-31-5p is a key regulator of IDD and its level is down-regulated in IDD. Overexpression of miR-31-5p facilitates nucleus pulposus cell proliferation, inhibits apoptosis, facilitates ECM formation, and inhibits the level of matrix degrading enzymes in NP cells. The SDF-1/CXCR7 axis is the direct target of miR-31-5p. miR-31-5p acts on IDD by regulating SDF-1/CXCR7. In vitro experiments further verified that the up-regulation of miR-31-5p prevented the development of IDD. In conclusion, overexpression of miR-31-5p can inhibit IDD by regulating SDF-1/CXCR7.
Collapse
Affiliation(s)
- Yong Zhou
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Mingsi Deng
- Department of Stomatology, Changsha Stomatological Hospital, Changsha, China
| | - Jiqing Su
- Department of Oncology, Changsha Central Hospital Affiliated to Nanhua University, Changsha, China
| | - Wei Zhang
- Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Dongbiao Liu
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhengguang Wang
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
10
|
Long Noncoding RNA ANPODRT Overexpression Protects Nucleus Pulposus Cells from Oxidative Stress and Apoptosis by Activating Keap1-Nrf2 Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6645005. [PMID: 33603950 PMCID: PMC7872767 DOI: 10.1155/2021/6645005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/21/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022]
Abstract
Oxidative stress and subsequent nucleus pulposus (NP) cell apoptosis are important contributors to the development of intervertebral disc degeneration (IDD). Emerging evidences show that long noncoding RNAs (lncRNAs) play a role in the pathogenesis of IDD. In this study, we investigated the role of lncRNA ANPODRT (anti-NP cell oxidative damage-related transcript) in oxidative stress and apoptosis in human NP cells. We found that ANPODRT was downregulated in degenerative NP tissues and in NP cells treated with tert-butyl hydroperoxide (TBHP, the oxidative stress inducer). ANPODRT overexpression alleviated oxidative stress and apoptosis in NP cells exposed to TBHP, while ANPODRT knockdown exerted opposing effects. Mechanistically, ANPODRT facilitated nuclear factor E2-related factor 2 (Nrf2) accumulation and nuclear translocation and activated its target genes by disrupting the kelch-like ECH-associated protein 1- (Keap1-) Nrf2 association in NP cells. Nrf2 knockdown abolished the antioxidative stress and antiapoptotic effects of ANPODRT in NP cells treated with TBHP. Collectively, our findings suggest that ANPODRT protects NP cells from oxidative stress and apoptosis, at least partially, by activating Nrf2 signaling, implying that ANPODRT may be a potential therapeutic target for IDD.
Collapse
|
11
|
Spheroid-Like Cultures for Expanding Angiopoietin Receptor-1 (aka. Tie2) Positive Cells from the Human Intervertebral Disc. Int J Mol Sci 2020; 21:ijms21249423. [PMID: 33322051 PMCID: PMC7763454 DOI: 10.3390/ijms21249423] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Lower back pain is a leading cause of disability worldwide. The recovery of nucleus pulposus (NP) progenitor cells (NPPCs) from the intervertebral disc (IVD) holds high promise for future cell therapy. NPPCs are positive for the angiopoietin-1 receptor (Tie2) and possess stemness capacity. However, the limited Tie2+ NPC yield has been a challenge for their use in cell-based therapy for regenerative medicine. In this study, we attempted to expand NPPCs from the whole NP cell population by spheroid-formation assay. Flow cytometry was used to quantify the percentage of NPPCs with Tie2-antibody in human primary NP cells (NPCs). Cell proliferation was assessed using the population doublings level (PDL) measurement. Synthesis and presence of extracellular matrix (ECM) from NPC spheroids were confirmed by quantitative Polymerase Chain Reaction (qPCR), immunostaining, and microscopy. Compared with monolayer, the spheroid-formation assay enriched the percentage of Tie2+ in NPCs’ population from ~10% to ~36%. Moreover, the spheroid-formation assay also inhibited the proliferation of the Tie2- NPCs with nearly no PDL. After one additional passage (P) using the spheroid-formation assay, NPC spheroids presented a Tie2+ percentage even further by ~10% in the NPC population. Our study concludes that the use of a spheroid culture system could be successfully applied to the culture and expansion of tissue-specific progenitors.
Collapse
|
12
|
Duclos SE, Denning SK, Towler C, Michalek AJ. Level-wise differences in in vivo lateral bending moment are associated with microstructural alterations in bovine caudal intervertebral discs. J Exp Biol 2020; 223:jeb229971. [PMID: 32958522 DOI: 10.1242/jeb.229971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/07/2020] [Indexed: 11/20/2022]
Abstract
Despite its common use as a laboratory model, little is known about the in vivo forces and moments applied to the bovine caudal intervertebral disc. Such aspects are crucial, as intervertebral disc tissue is known to remodel in response to repeated loading. We hypothesized that the magnitude of loading from muscle contraction during a typical lateral bending motion varies between caudal levels and is accompanied by variations in tissue microstructure. This hypothesis was tested by estimating level-wise forces and bending moments using two independent approaches: a dynamic analytical model of the motion and analysis of muscle cross-sections obtained via computed tomography. Microstructure was assessed by measuring the collagen fiber crimp period in the annulus fibrosus, and composition was assessed via quantitative histology. Both the analytical model and muscle cross-sections indicated peak bending moments of over 3 N m and peak compressive force of over 125 N at the c1c2 level, decreasing distally. There was a significant downward trend from proximal to distal in the outer annulus fibrosus collagen crimp period in the anterior and posterior regions only, suggesting remodeling in response to the highest lateral bending moments. There were no observed trends in composition. Our results suggest that although the proximal discs in the bovine tail are subjected to forces and moments from muscle contraction that are comparable (relative to disc size) to those acting on human lumbar discs, the distal discs are not. The resulting pattern of microstructural alterations suggests that level-wise differences should be considered when using bovine discs as a research model.
Collapse
Affiliation(s)
- Sarah E Duclos
- Department of Mechanical & Aeronautical Engineering, Clarkson University, Potsdam, NY 13699, USA
| | - Samantha K Denning
- Department of Mechanical & Aeronautical Engineering, Clarkson University, Potsdam, NY 13699, USA
| | - Christopher Towler
- Department of Physical Therapy, Clarkson University, Potsdam, NY 13699, USA
| | - Arthur J Michalek
- Department of Mechanical & Aeronautical Engineering, Clarkson University, Potsdam, NY 13699, USA
| |
Collapse
|
13
|
Molladavoodi S, McMorran J, Gregory D. Mechanobiology of annulus fibrosus and nucleus pulposus cells in intervertebral discs. Cell Tissue Res 2019; 379:429-444. [PMID: 31844969 DOI: 10.1007/s00441-019-03136-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 11/03/2019] [Indexed: 02/07/2023]
Abstract
Low back pain (LBP) is a chronic condition that can affect up to 80% of the global population. It is the number one cause of disability worldwide and has enormous socioeconomic consequences. One of the main causes of this condition is intervertebral disc (IVD) degeneration. IVD degenerative processes and inflammation associated with it has been the subject of many studies in both tissue and cell level. It is believed that the phenotype of the resident cells within the IVD directly affects homeostasis of the tissue. At the same time, IVDs located between vertebral bodies of spine are under various mechanical loading conditions in vivo. Therefore, investigating how mechanical loading can affect the behaviour of IVD cells has been a subject of many research articles. In this review paper, following a brief explanation of the anatomy of the IVD and its resident cells, we compiled mechanobiological studies of IVD cells (specifically, annulus fibrosus and nucleus pulposus cells) and synthesized and discussed the key findings of the field.
Collapse
Affiliation(s)
- Sara Molladavoodi
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, ON, Canada.,Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
| | - John McMorran
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Diane Gregory
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, ON, Canada. .,Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada.
| |
Collapse
|
14
|
Stem Cells for the Treatment of Intervertebral Disk Degeneration. Tech Orthop 2019. [DOI: 10.1097/bto.0000000000000346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Nutrient supply and nucleus pulposus cell function: effects of the transport properties of the cartilage endplate and potential implications for intradiscal biologic therapy. Osteoarthritis Cartilage 2019; 27:956-964. [PMID: 30721733 PMCID: PMC6536352 DOI: 10.1016/j.joca.2019.01.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/19/2019] [Accepted: 01/25/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Intradiscal biologic therapy is a promising strategy for managing intervertebral disc degeneration. However, these therapies require a rich nutrient supply, which may be limited by the transport properties of the cartilage endplate (CEP). This study investigated how fluctuations in CEP transport properties impact nutrient diffusion and disc cell survival and function. DESIGN Human CEP tissues harvested from six fresh cadaveric lumbar spines (38-66 years old) were placed at the open sides of diffusion chambers. Bovine nucleus pulposus (NP) cells cultured inside the chambers were nourished exclusively by nutrients diffusing through the CEP tissues. After 72 h in culture, depth-dependent NP cell viability and gene expression were measured, and related to CEP transport properties and biochemical composition determined using fluorescence recovery after photobleaching and Fourier transform infrared (FTIR) spectroscopy. RESULTS Solute diffusivity varied nearly 4-fold amongst the CEPs studied, and chambers with the least permeable CEPs appeared to have lower aggrecan, collagen-2, and matrix metalloproteinase-2 gene expression, as well as a significantly shorter viable distance from the CEP/nutrient interface. Increasing chamber cell density shortened the viable distance; however, this effect was lost for low-diffusivity CEPs, which suggests that these CEPs may not provide enough nutrient diffusion to satisfy cell demands. Solute diffusivity in the CEP was associated with biochemical composition: low-diffusivity CEPs had greater amounts of collagen and aggrecan, more mineral, and lower cross-link maturity. CONCLUSIONS CEP transport properties dramatically affect NP cell survival/function. Degeneration-related CEP matrix changes could hinder the success of biologic therapies that require increased nutrient supply.
Collapse
|
16
|
Saggese T, Teixeira GQ, Wade K, Moll L, Ignatius A, Wilke HJ, Goncalves RM, Neidlinger-Wilke C. GEORG SCHMORL PRIZE OF THE GERMAN SPINE SOCIETY (DWG) 2018: combined inflammatory and mechanical stress weakens the annulus fibrosus: evidences from a loaded bovine AF organ culture. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2019; 28:922-933. [PMID: 30689044 DOI: 10.1007/s00586-019-05901-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE The pathomechanism of annulus fibrosus (AF) failure is still unknown. We hypothesise that mechanical overload and an inflammatory microenvironment contribute to AF structural weakening. Therefore, the objective of this study was to investigate the influence of these factors on the AF, particularly the translamellar bridging network (TLBN) which connects the AF lamellae. METHODS A bovine AF organ culture (AF-OC) model of standardised AF rings was used to study the individual and combined effects of cyclic tensile strain (CTS) and IL-1β (1 ng/mL) culture medium supplementation. AF-OCs were analysed for PGE2 production (ELISA) and deposition of IL-6, COX-2, fibrillin, and MMP3 in the tissue (immunohistochemistry, IHC). The mechanical strength of the TLBN was evaluated using a peel test to measure the strength required to separate an AF segment along a lamellar bound. RESULTS The combination of CTS + IL-1β led to a significant increase in PGE2 production compared to Control (p < 0.01). IHC evaluations showed that the CTS + IL-1β group exhibited higher production of COX-2 and MMP3 within the TLBN regions compared to the adjacent lamellae and a significant increase in IL-6 ratio compared to Control (p < 0.05). A significant decrease in the annular peel strength was observed in the CTS + IL1β group compared to Control (p < 0.05). CONCLUSION Our findings suggest that CTS and IL-1β act synergistically to increase pro-inflammatory and catabolic molecules within the AF, particularly the TLBN, leading to a weakening of the tissue. This standardised model enables the investigation of AF/TLBN structure-function relationship and is a platform to test AF-focused therapeutics. These slides can be retrieved under Electronic Supplementary Material.
Collapse
Affiliation(s)
- Taryn Saggese
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Centre, Ulm University, Helmholtzstraße 14, 89081, Ulm, Germany
| | - Graciosa Q Teixeira
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Centre, Ulm University, Helmholtzstraße 14, 89081, Ulm, Germany
| | - Kelly Wade
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Centre, Ulm University, Helmholtzstraße 14, 89081, Ulm, Germany
| | - Lydia Moll
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Centre, Ulm University, Helmholtzstraße 14, 89081, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Centre, Ulm University, Helmholtzstraße 14, 89081, Ulm, Germany
| | - Hans-Joachim Wilke
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Centre, Ulm University, Helmholtzstraße 14, 89081, Ulm, Germany
| | - Raquel M Goncalves
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Centre, Ulm University, Helmholtzstraße 14, 89081, Ulm, Germany.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, R. Alfredo Allen, 4200-135, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, R. Alfredo Allen, 4200-135, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Cornelia Neidlinger-Wilke
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Centre, Ulm University, Helmholtzstraße 14, 89081, Ulm, Germany.
| |
Collapse
|
17
|
Ji ML, Jiang H, Zhang XJ, Shi PL, Li C, Wu H, Wu XT, Wang YT, Wang C, Lu J. Preclinical development of a microRNA-based therapy for intervertebral disc degeneration. Nat Commun 2018; 9:5051. [PMID: 30487517 PMCID: PMC6262020 DOI: 10.1038/s41467-018-07360-1] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 10/22/2018] [Indexed: 12/13/2022] Open
Abstract
Understanding the molecular mechanisms regulating the maintenance and destruction of intervertebral disc may lead to the development of new therapies for intervertebral disc degeneration (IDD). Here we present evidence from miRNA microarray analyses of clinical data sets along with in vitro and in vivo experiments that miR-141 is a key regulator of IDD. Gain- and loss-of-function studies show that miR-141 drives IDD by inducing nucleus pulposus (NP) apoptosis. Furthermore, miR-141 KO in mice attenuated spontaneous and surgically induced IDD. Mechanistically, miR-141 promotes IDD development by targeting and depleting SIRT1, a negative regulator of NF-κB pathway. Therapeutically, upregulation or downregulation of miR-141 by nanoparticle delivery in IDD model aggravated or alleviated experimental IDD, respectively. Our findings reveal a novel mechanism by which miR-141, in part, promotes IDD progression by interacting with SIRT1/NF-κB pathway. Blockade of miR-141 in vivo may serve as a potential therapeutic approach in the treatment of IDD. Intervertebral disk degeneration (IDD) is characterized by changes in the nucleus pulposus (NP) extra cellular matrix that compromise disk structural integrity. In a miRNA screen of human IDD patient NP tissue, the authors identify deregulated miR-141 and show that direct injection of nanoparticle-coupled miR-141 into the NP alleviates IDD in mice.
Collapse
Affiliation(s)
- Ming-Liang Ji
- Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, 210009, Nanjing, China
| | - Hua Jiang
- Department of Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China
| | - Xue-Jun Zhang
- Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, 210009, Nanjing, China
| | - Pei-Liang Shi
- Key Laboratory of Model Animal for Disease Study of Ministry of Education, Model Animal Research Center, Collaborative Innovation Center of Genetics and Development, Nanjing University, Nanjing, 210093, China
| | - Chao Li
- Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, 210009, Nanjing, China
| | - Hao Wu
- Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, 210009, Nanjing, China
| | - Xiao-Tao Wu
- Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, 210009, Nanjing, China
| | - Yun-Tao Wang
- Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, 210009, Nanjing, China
| | - Chen Wang
- Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, 210009, Nanjing, China
| | - Jun Lu
- Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, 210009, Nanjing, China.
| |
Collapse
|
18
|
The Differential Effects of Leukocyte-Containing and Pure Platelet-Rich Plasma on Nucleus Pulposus-Derived Mesenchymal Stem Cells: Implications for the Clinical Treatment of Intervertebral Disc Degeneration. Stem Cells Int 2018; 2018:7162084. [PMID: 30425747 PMCID: PMC6218728 DOI: 10.1155/2018/7162084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/30/2018] [Accepted: 08/09/2018] [Indexed: 12/18/2022] Open
Abstract
Background Platelet-rich plasma (PRP) is a promising strategy for intervertebral disc degeneration. However, the potential harmful effects of leukocytes in PRP on nucleus pulposus-derived mesenchymal stem cells (NPMSCs) have seldom been studied. This study aimed at comparatively evaluating effects of pure platelet-rich plasma (P-PRP) and leukocyte-containing platelet-rich plasma (L-PRP) on rabbit NPMSCs in vitro. Methods NPMSCs isolated from rabbit NP tissues were treated with L-PRP or P-PRP in vitro, and then cell proliferation and expression of stem cell markers, proinflammatory cytokines (TNF-α, IL-1β), production of ECM (extracellular matrix-related protein), and NF-κB p65 protein were validated by CCK-8 assay, real-time polymerase chain reaction, enzyme-linked immunosorbent assay, immunofluorescence, and western blot respectively. Results NPMSCs differentiate into nucleus pulposus-like cells after treatment of PRPs (P-PRP and L-PRP), and NPMSCs exhibited maximum proliferation at a 10% PRP dose. L-PRP had observably higher concentration of leukocytes, TNF-α, and IL-1β than P-PRP. Furthermore, compared to P-PRP, L-PRP induced the differentiated NPMSCs to upregulate the expression of TNF-α and IL-1β, enhanced activation of the NF-κB pathway, increased the expression of MMP-1 and MMP-13, and produced less ECM in differentiated NPMSCs. Conclusions Both P-PRP and L-PRP can induce the proliferation and NP-differentiation of NPMSCs. Compared to L-PRP, P-PRP can avoid the activation of the NF-κB pathway, thus reducing the inflammatory and catabolic responses.
Collapse
|
19
|
Alpantaki K, Zafiropoulos A, Tseliou M, Vasarmidi E, Sourvinos G. Herpes simplex virus type-1 infection affects the expression of extracellular matrix components in human nucleus pulposus cells. Virus Res 2018; 259:10-17. [PMID: 30339788 DOI: 10.1016/j.virusres.2018.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 12/22/2022]
Abstract
Intervertebral disc (IVD) degeneration has a complex multifactorial origin and it is tightly associated with changes in the secretion of proteoglycans and collagen of the Nucleus Pulposus (NP) extracellular matrix. Chronic infection by Herpes virus has been previously associated with disc degeneration after detection of Herpes Simplex Virus type-1 (HSV-1) and CMV DNA in human excised disc samples. The aim of the present study was to assess the effect of HSV-1 infection on proteoglycan synthesis employing human Nucleus Pulposus (HNPCs) cells as a model of intervertebral disc degeneration. During lytic HSV-1 infection, a significant reduction of Decorin expression was observed 8 h post infection (h.p.i) which furthered deteriorated at 24 h.p.i. Biglycan was also reduced but only 24 h.p.i. Collagen type II, although demonstrated a downward trend, it was not statistically significant, whereas both Versican and Aggrecan showed a substantial decrease at 24 h.p.i. Hyaluronan production was not significantly affected. In a non-productive HSV-1 infection, a substantial reduction of Decorin, Biglycan, Versican and Aggrecan expression was found, similarly to our findings from the lytic infection. Furthermore, collagen type II expression was completely abolished. HAS1 expression was not affected, whereas HAS 2 and 3 were found to be significantly reduced. These results indicate that HSV-1 infection of human NP cells yields a complex effect on host extracellular cell function. The viral-induced changes in proteoglycan and collagen type II concentration may affect cell-matrix interactions and lead to a dysfunctional intervertebral disc which may trigger or promote the degeneration process.
Collapse
Affiliation(s)
- Kalliopi Alpantaki
- Laboratory of Clinical Virology, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Alexandros Zafiropoulos
- Laboratory of Clinical Virology, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Melpomeni Tseliou
- Laboratory of Clinical Virology, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Eirini Vasarmidi
- Laboratory of Clinical Virology, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - George Sourvinos
- Laboratory of Clinical Virology, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece.
| |
Collapse
|
20
|
Leptin and the intervertebral disc: a biochemical link exists between obesity, intervertebral disc degeneration and low back pain-an in vitro study in a bovine model. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2018; 28:214-223. [PMID: 30324498 DOI: 10.1007/s00586-018-5778-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022]
Abstract
PURPOSE The aim of this study was to identify the effects of leptin upon the intervertebral disc (IVD) and to determine whether these responses are potentiated within an environment of existing degeneration. Obesity is a significant risk factor for low back pain (LBP) and IVD degeneration. Adipokines, such as leptin, are novel cytokines produced primarily by adipose tissue and have been implicated in degradative and inflammatory processes. Obese individuals are known to have higher concentrations of serum leptin, and IVD cells express leptin receptors. We hypothesise that adipokines, such as leptin, mediate a biochemical link between obesity, IVD degeneration and LBP. METHODS The bovine intervertebral disc was used as a model system to investigate the biochemical effects of obesity, mediated by leptin, upon the intervertebral disc. Freshly isolated cells, embedded in 3D alginate beads, were subsequently cultured under varying concentrations of leptin, alone or together with the pro-inflammatory cytokines TNF-α, IL-1β or IL-6. Responses in relation to production of nitric oxide, lactate, glycosaminoglycans and expression of anabolic and catabolic genes were analysed. RESULTS Leptin influenced the cellular metabolism leading particularly to greater production of proteases and NO. Addition of leptin to an inflammatory environment demonstrated a marked deleterious synergistic effect with greater production of NO, MMPs and potentiation of pro-inflammatory cytokine production. CONCLUSIONS Leptin can initiate processes involved in IVD degeneration. This effect is potentiated in an environment of existing degeneration and inflammation. Hence, a biochemical mechanism may underlie the link between obesity, intervertebral disc degeneration and low back pain. These slides can be retrieved under Electronic Supplementary Material.
Collapse
|
21
|
Humphreys MD, Ward L, Richardson SM, Hoyland JA. An optimized culture system for notochordal cell expansion with retention of phenotype. JOR Spine 2018; 1:e1028. [PMID: 31463448 PMCID: PMC6686815 DOI: 10.1002/jsp2.1028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Notochordal (NC) cells display therapeutic potential in treating degeneration of the intervertebral disc. However, research on their phenotype and function is limited by low-cell yields and a lack of appropriate methodology for cell expansion. Utilizing porcine cells, this study aimed to develop an optimized culture system which allows expansion of NC cell populations with retention of phenotype. METHODS Post-natal porcine and foetal human nucleus pulposus tissue was compared histologically and expression of known NC cell marker genes by porcine NC cells was analyzed. Porcine NC cells were isolated from six-week post-natal discs and cultured in vitro under varied conditions: (1) DMEM vs αMEM; (2) laminin-521, fibronectin, gelatin and uncoated tissue culture-treated polystyrene (TCP); (3) 2% O2 vs normoxia; (4) αMEM (300 mOsm/L) vs αMEM (400 mOsm/L); (5) surface stiffness of 0.5 and 4 kPa and standard TCP. Adherence, proliferation, morphology and expression of NC cell markers were assessed over a 14-day culture period. RESULTS Native porcine nucleus pulposus tissue demonstrated similar morphology to human foetal tissue and porcine NC cells expressed known notochordal markers (CD24, KRT8, KRT18, KRT19, and T). Use of αMEM media and laminin-521-coated surfaces showed the greatest cell adherence, proliferation and retention of NC cell morphology and phenotype. Proliferation of NC cell populations was further enhanced in hypoxia (2%) and phenotypic retention was improved on 0.5 kPa culture surfaces. DISCUSSION Our model has demonstrated an optimized system in which NC cell populations may be expanded while retaining a notochordal phenotype. Application of this optimized culture system will enable NC cell expansion for detailed phenotypic and functional study, a major advantage over current culture methods described in the literature. Furthermore, the similarities identified between porcine and human NC cells suggest this system will be applicable in human NC cell culture for investigation of their therapeutic potential.
Collapse
Affiliation(s)
- Matthew D. Humphreys
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Lizzy Ward
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Stephen M. Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Judith A. Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
- NIHR Manchester Musculoskeletal Biomedical Research Unit, Central Manchester Foundation Trust, Manchester Academic Health Science CentreManchesterUK
| |
Collapse
|
22
|
Schubert AK, Smink JJ, Pumberger M, Putzier M, Sittinger M, Ringe J. Standardisation of basal medium for reproducible culture of human annulus fibrosus and nucleus pulposus cells. J Orthop Surg Res 2018; 13:209. [PMID: 30134986 PMCID: PMC6106880 DOI: 10.1186/s13018-018-0914-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/15/2018] [Indexed: 11/24/2022] Open
Abstract
Background The lifetime prevalence of degenerative disc disease is dramatically high. Numerous investigations on disc degeneration have been performed on cells from annulus fibrosus (AF) and nucleus pulposus (NP) of the intervertebral disc (IVD) in cell culture experiments utilising a broad variety of basal culture media. Although the basal media differ in nutrient formulation, it is not known whether the choice of the basal media itself has an impact on the cell’s behaviour in vitro. In this study, we evaluated the most common media used for monolayer expansion of AF and NP cells to set standards for disc cell culture. Methods Human AF and NP cells were isolated from cervical discs. Cells were expanded in monolayer until passage P2 using six different common culture media containing alpha-Minimal Essential Medium (alpha-MEM), Dulbecco’s Modified Eagle’s Medium (DMEM) or Ham’s F-12 medium (Ham’s F-12) as single medium or in a mixture of two media (alpha/F-12, DMEM/alpha, DMEM/F-12). Cell morphology, cell growth, glycosaminoglycan production and quantitative gene expression of cartilage- and IVD-related markers aggrecan, collagen type II, forkhead box F1 and keratin 18 were analysed. Statistical analysis was performed with two-way ANOVA testing and Bonferroni compensation. Results AF and NP cells were expandable in all tested media. Both cell types showed similar cell morphology and characteristics of dedifferentiation known for cultured disc cells independently from the media. However, proceeding culture in Ham’s F-12 impeded cell growth of both AF and NP cells. Furthermore, the keratin 18 gene expression profile of NP cells was changed in alpha-MEM and Ham’s F-12. Conclusion The impact of the different media itself on disc cell’s behaviour in vitro was low. However, AF and NP cells were only robust, when DMEM was used as single medium or in a mixture (DMEM/alpha, DMEM/F-12). Therefore, we recommend using these media as standard medium for disc cell culture. Our findings are valuable for the harmonisation of preclinical study results and thereby push the development of cell therapies for clinical treatment of disc degeneration.
Collapse
Affiliation(s)
- Ann-Kathrin Schubert
- Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Südstraße 2, 13353, Berlin, Germany. .,CO.DON AG, Teltow, Germany.
| | | | - Matthias Pumberger
- Center for Musculoskeletal Surgery, Department of Orthopaedics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Michael Putzier
- Center for Musculoskeletal Surgery, Department of Orthopaedics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Michael Sittinger
- Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Südstraße 2, 13353, Berlin, Germany
| | - Jochen Ringe
- Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Südstraße 2, 13353, Berlin, Germany
| |
Collapse
|
23
|
Ehlicke F, Freimark D, Heil B, Dorresteijn A, Czermak P. Intervertebral Disc Regeneration: Influence of Growth Factors on Differentiation of Human Mesenchymal Stem Cells (hMSC). Int J Artif Organs 2018. [DOI: 10.1177/039139881003300409] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Introduction One common cause of disability in modern society is low back pain. The main reason for this pain is the degeneration of the intervertebral disc (IVD), particularly of the nucleus pulposus (NP). For the early degeneration stage, a cell-based therapy could constitute a minimally invasive method of treatment. Therefore, adequate cells are needed. As the usage of NP cells is limited because of their insufficient amount or vitality, a promising alternative is the application of human mesenchymal stem cells (hMSCs). Objective To investigate the potential of various growth factors to induce the differentiation of hMSCs into NP cells and thereby to obtain an alternative cell source for the treatment of IVD degeneration. Methods hMSC-TERT were cultivated three-dimensionally in a hydrogel for 21 days to form NP cells. Cell survival and proliferation were determined using SybrGreen/propidium iodide double staining and the WST-test. To investigate the ability of several growth factors to differentiate hMSCs into NP cells, fluorescence immunostaining of NP-specific marker proteins (e.g., chondroadherin (CHAD) and the recently discovered cytokeratin 19) were performed. Results Following the procedure described above, cells are able to maintain their viability and proliferation capacity throughout the cultivation time. By using a previously established immunofluorescence protocol, we were able to indicate the ability of three different growth factors for differentiating hMSCs into NP-like cells. Conclusion The expression of several marker proteins in all differentiation experiments indicates the ability of IGF-1, FGF-2 and PDGF-BB to differentiate hMSCs into NP-like cells apart from the usually applied TGF-β3. Furthermore, our findings preclude the application of Cytokeratin 19 as a specific marker protein for NP cells. Further experiments have to be done to find real specific NP marker proteins to indisputably verify the differentiation of hMSCs into NP cells. If so, application of these three growth factors would possibly be an option to obtain sufficient NP cells for minimally invasive IVD regeneration.
Collapse
Affiliation(s)
- Franziska Ehlicke
- Institute of Biopharmaceutical Technology, University of Applied Sciences Giessen-Friedberg, Giessen - Germany
| | - Denise Freimark
- Institute of Biopharmaceutical Technology, University of Applied Sciences Giessen-Friedberg, Giessen - Germany
| | - Birthe Heil
- Institute of Biopharmaceutical Technology, University of Applied Sciences Giessen-Friedberg, Giessen - Germany
| | | | - Peter Czermak
- Institute of Biopharmaceutical Technology, University of Applied Sciences Giessen-Friedberg, Giessen - Germany
- Department of Chemical Engineering, Kansas State University, Manhattan, Kansas - USA
| |
Collapse
|
24
|
Guo Q, Zhou P, Li B. Identification and Characterizations of Annulus Fibrosus-Derived Stem Cells. Methods Mol Biol 2018; 1842:207-216. [PMID: 30196412 DOI: 10.1007/978-1-4939-8697-2_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Annulus fibrosus (AF) injuries are common in degenerative disc disease (DDD) and can lead to substantial deterioration of the intervertebral disc. However, repair or regeneration of AF remains challenging. Recently, we have found that there exists a subpopulation of cells, which form colonies in vitro and could self-renew, in AF tissue. These cells express typical surface antigen molecules of mesenchymal stem cells, including CD29, CD44, and CD166. They also express common stem cell markers such as Oct-4, nucleostemin, and SSEA-4. In addition, they can be induced to differentiate into adipocytes, osteocytes, and chondrocytes. Being AF tissue-specific, such AF-derived stem cells may potentially be an ideal candidate for DDD treatments using stem cell-based cell therapies or tissue engineering approaches.
Collapse
Affiliation(s)
- Qianping Guo
- Biomaterials and Cell Mechanics Laboratory (BCML), Orthopedic Institute, Soochow University, Suzhou, China
| | - Pinghui Zhou
- Biomaterials and Cell Mechanics Laboratory (BCML), Orthopedic Institute, Soochow University, Suzhou, China
| | - Bin Li
- Biomaterials and Cell Mechanics Laboratory (BCML), Orthopedic Institute, Soochow University, Suzhou, China.
| |
Collapse
|
25
|
Hu B, Xu C, Cao P, Tian Y, Zhang Y, Shi C, Xu J, Yuan W, Chen H. TGF-β Stimulates Expression of Chondroitin Polymerizing Factor in Nucleus Pulposus Cells Through the Smad3, RhoA/ROCK1, and MAPK Signaling Pathways. J Cell Biochem 2017; 119:566-579. [PMID: 28608941 DOI: 10.1002/jcb.26215] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 06/12/2017] [Indexed: 01/01/2023]
Abstract
The enzyme chondroitin polymerizing factor (ChPF) is primarily involved in extension of the chondroitin sulfate backbone required for the synthesis of sulfated glycosaminoglycan (sGAG). Transforming growth factor beta (TGF-β) upregulates sGAG synthesis in nucleus pulposus cells; however, the mechanisms mediating this induction are incompletely understood. Our study demonstrated that ChPF expression was negatively correlated with the grade of degenerative intervertebral disc disease. Treatment of nucleus pulposus cells with TGF-β induced ChPF expression and enhanced Smad2/3, RhoA/ROCK activation, and the JNK, p38, and ERK1/2 MAPK signaling pathways. Selective inhibitors of Smad2/3, RhoA or ROCK1/2, and knockdown of Smad3 and ROCK1 attenuated ChPF expression and sGAG synthesis induced by TGF-β. In addition, we showed that RhoA/ROCK1 signaling upregulated ChPF via activation of the JNK pathway but not the p38 and ERK1/2 signaling pathways. Moreover, inhibitors of JNK, p38 and ERK1/2 activity also blocked ChPF expression and sGAG synthesis induced by TGF-β in a Smad3-independent manner. Collectively, our data suggest that TGF-β stimulated the expression of ChPF and sGAG synthesis in nucleus pulposus cells through Smad3, RhoA/ROCK1 and the three MAPK signaling pathways. J. Cell. Biochem. 119: 566-579, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bo Hu
- Department of Spinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Chen Xu
- Department of Spinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Peng Cao
- Department of Spinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Ye Tian
- Department of Spinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Ying Zhang
- Department of Spinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Changgui Shi
- Department of Spinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Jun Xu
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Hei Longjiang Province, 150086, China
| | - Wen Yuan
- Department of Spinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Huajiang Chen
- Department of Spinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| |
Collapse
|
26
|
Srivastava A, Isa ILM, Rooney P, Pandit A. Bioengineered three-dimensional diseased intervertebral disc model revealed inflammatory crosstalk. Biomaterials 2017; 123:127-141. [DOI: 10.1016/j.biomaterials.2017.01.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 01/11/2017] [Accepted: 01/28/2017] [Indexed: 12/29/2022]
|
27
|
Wan S, Borland S, Richardson SM, Merry CL, Saiani A, Gough JE. Self-assembling peptide hydrogel for intervertebral disc tissue engineering. Acta Biomater 2016; 46:29-40. [PMID: 27677593 DOI: 10.1016/j.actbio.2016.09.033] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 09/12/2016] [Accepted: 09/23/2016] [Indexed: 12/22/2022]
Abstract
Cell-based therapies for regeneration of intervertebral discs are regarded to hold promise for degenerative disc disease treatment, a condition that is strongly linked to lower back pain. A de novo self-assembling peptide hydrogel (SAPH), chosen for its biocompatibility, tailorable properties and nanofibrous architecture, was investigated as a cell carrier and scaffold for nucleus pulposus (NP) tissue engineering. Oscillatory rheology determined that the system would likely be deliverable via minimally invasive procedure and mechanical properties could be optimised to match the stiffness of the native human NP. After three-dimensional culture of NP cells (NPCs) in the SAPH, upregulation of NP-specific genes (KRT8, KRT18, FOXF1) confirmed that the system could restore the NP phenotype following de-differentiation during monolayer culture. Cell viability was high throughout culture whilst, similarly to NPCs in vivo, the viable cell population remained stable. Finally, the SAPH stimulated time-dependent increases in aggrecan and type II collagen deposition, two important NP extracellular matrix components. Results supported the hypothesis that the SAPH could be used as a cell delivery system and scaffold for the treatment of degenerative disc disease. STATEMENT OF SIGNIFICANCE Lower back pain (LBP) prevalence is widespread due to an aging population and the limited efficacy of current treatments. As LBP is strongly associated with intervertebral disc (IVD) degeneration, it is thought that cell-based therapies could alleviate LBP by repairing IVD tissue. Various natural and synthetic biomaterials have been investigated as potential IVD tissue engineering scaffolds. Self-assembling peptide hydrogels (SAPHs) combine advantages of both natural and synthetic biomaterials; for example they are biocompatible and have easily modifiable properties. The present study demonstrated that a de novo SAPH had comparable strength to the native tissue, was injectable, restored the IVD cell phenotype and stimulated deposition of appropriate matrix components. Results illustrated the promise of SAPHs as scaffolds for IVD tissue engineering.
Collapse
|
28
|
Gao X, Zhu Q, Gu W. Prediction of glycosaminoglycan synthesis in intervertebral disc under mechanical loading. J Biomech 2016; 49:2655-2661. [PMID: 27288332 PMCID: PMC5056134 DOI: 10.1016/j.jbiomech.2016.05.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/23/2016] [Accepted: 05/25/2016] [Indexed: 01/07/2023]
Abstract
The loss of glycosaminoglycan (GAG) content is a major biochemical change during intervertebral disc (IVD) degeneration. Abnormal mechanical loading is one of the major factors causing disc degeneration. In this study, a multiscale mathematical model was developed to quantify the effect of mechanical loading on GAG synthesis. This model was based on a recently developed cell volume dependent GAG synthesis theory that predicts the variation of GAG synthesis rate of a cell under the influence of mechanical stimuli, and the biphasic theory that describes the deformation of IVD under mechanical loading. The GAG synthesis (at the cell level) was coupled with the mechanical loading (at the tissue level) via a cell-matrix unit approach which established a relationship between the variation of cell dilatation and the local tissue dilatation. This multiscale mathematical model was used to predict the effect of static load (creep load) on GAG synthesis in bovine tail discs. The predicted results are in the range of experimental results. This model was also used to investigate the effect of static (0.2MPa) and diurnal loads (0.1/0.3MPa and 0.15/0.25MPa in 12/12 hours shift with an average of 0.2MPa over a cycle) on GAG synthesis. It was found that static load and diurnal loads have different effects on GAG synthesis in a diurnal cycle, and the diurnal load effects depend on the amplitude of the load. The model is important to understand the effect of mechanical loading at the tissue level on GAG synthesis at the cellular level, as well as to optimize the mechanical loading in growing engineered tissue.
Collapse
Affiliation(s)
- Xin Gao
- Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, FL, USA
| | - Qiaoqiao Zhu
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | - Weiyong Gu
- Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, FL, USA; Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| |
Collapse
|
29
|
Huang Z, Kohl B, Kokozidou M, Arens S, Schulze-Tanzil G. Establishment of a Cytocompatible Cell-Free Intervertebral Disc Matrix for Chondrogenesis with Human Bone Marrow-Derived Mesenchymal Stromal Cells. Cells Tissues Organs 2016; 201:354-65. [PMID: 27160711 DOI: 10.1159/000444521] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2016] [Indexed: 11/19/2022] Open
Abstract
Tissue-engineered intervertebral discs (IVDs) utilizing decellularized extracellular matrix (ECM) could be an option for the reconstruction of impaired IVDs due to degeneration or injury. The objective of this study was to prepare a cell-free decellularized human IVD scaffold and to compare neotissue formation in response to recellularization with human IVD cells (hIVDCs) or human bone marrow-derived (hBM) mesenchymal stromal cells (MSCs). IVDs were decellularized via freeze-thaw cycles, detergents and trypsin. Histological staining was performed to monitor cell removal and glycosaminoglycan (GAG) removal. The decellularized IVD was preconditioned using bovine serum albumin and fetal bovine serum before its cytocompatibility for dynamically cultured hBM-MSCs (chondrogenically induced or not) and hIVDCs was compared after 14 days. In addition, DNA, total collagen and GAG contents were assessed. The decellularization protocol achieved maximal cell removal, with only few remaining cell nuclei compared with native tissue, and low toxicity. The DNA content was significantly higher in scaffolds seeded with hIVDCs compared with native IVDs, cell-free and hBM-MSC-seeded scaffolds (p < 0.01). The GAG content in the native tissue was significantly higher compared to the others groups except for the scaffolds reseeded with chondrogenically induced hBM-MSCs (p < 0.05). In addition, there was a significantly increased total collagen content in the chondrogenically induced hBM-MSCs group (p < 0.01) compared with the native IVDs, cell-free and hIVDC-seeded scaffolds (p < 0.01); both recolonizing cell types were more evenly distributed on the scaffold surface, but only few cells penetrated the scaffold. The resulting decellularized ECM was cytocompatible and allowed hBM-MSCs/hIVDCs survival and ECM production.
Collapse
Affiliation(s)
- Zhao Huang
- Institute of Anatomy, General Hospital Nuremberg, Paracelsus Medical University, Nuremberg, Germany
| | | | | | | | | |
Collapse
|
30
|
Park JJ, Moon HJ, Park JH, Kwon TH, Park YK, Kim JH. Induction of proinflammatory cytokine production in intervertebral disc cells by macrophage-like THP-1 cells requires mitogen-activated protein kinase activity. J Neurosurg Spine 2016; 24:167-75. [DOI: 10.3171/2015.3.spine14729] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECT
To determine the role played by mitogen-activated protein kinase (MAPK) signaling in the interactions between macrophages and intervertebral disc (IVD) cells, it was hypothesized that MAPK inhibition would modulate the production of the proinflammatory cytokines associated with inflammatory reaction in IVD cells.
METHODS
Human annulus fibrosus (AF) and nucleus pulposus (NP) cells were cocultured with phorbol myristate acetate-stimulated macrophage-like THP-1 cells, with and without SB202190 (a p38-α and -β inhibitor), SP600125 (a c-Jun N-terminal kinase [JNK] inhibitor), and PD98059 (an extracellular signal-regulated kinase [ERK] 1/2 inhibitor). The cytokines in conditioned media from cocultured and macrophage-exposed (nemotic) cells were assayed using enzyme-linked immunosorbent assays (ELISAs).
RESULTS
Interleukin (IL)-6 and IL-8 were secreted in greater quantities by the cocultured cells compared with naive IVD cells and macrophages (MΦ) cultured alone. The tumor necrosis factor (TNF)- α and IL-6 levels produced by the NP cells cocultured with MΦs (NP-MΦ) were significantly lower than those produced by AF cells cocultured with MΦs (AF-MΦ). SB202190 dose-dependently suppressed IL-6 secretion by AF-MΦ and NP-MΦ cocultures, and 10 μM SB202190 significantly decreased IL-6 and IL-8 production in nemotic AF and NP pellets. SP600125 at 10 μM significantly suppressed the production of TNF α IL-6. and IL-8 in AF-MΦ and NP-MΦ cocultures and significantly suppressed IL-1β production in the NP-MΦ coculture. Administration of 10 μM PD98059 significantly decreased IL-6 levels in the AF-MΦ coculture, and decreased the levels of TNF α and IL-8 in both the AF-MΦ and NP-MΦ cocultures.
CONCLUSIONS
The present study shows that inhibitors of p38 MAPK effectively controlled IL-6 production during inflammatory reactions and that JNK and ERK1/2 inhibitors successfully suppressed the production of major proinflammatory cytokines during interactions between macrophages and IVD cells. Therefore, selective blockade of these signals may serve as a therapeutic approach to symptomatic IVD degeneration.
Collapse
|
31
|
Mavrogonatou E, Papadimitriou K, Urban JP, Papadopoulos V, Kletsas D. Deficiency in the α1 subunit of Na+/K+-ATPase enhances the anti-proliferative effect of high osmolality in nucleus pulposus intervertebral disc cells. J Cell Physiol 2015; 230:3037-48. [PMID: 25967398 DOI: 10.1002/jcp.25040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/05/2015] [Indexed: 12/31/2022]
Abstract
Intervertebral disc cells are constantly exposed to a hyperosmotic environment. Among cellular responses towards this stress is the inhibition of proliferation through the activation of p38 MAPK and p53. In an effort to further elucidate the biochemical pathways triggered by hyperosmotic stress, we assessed the high osmolality-induced transcriptional changes of bovine nucleus pulposus cells using whole-genome arrays. A 5- and a 24-h hyperosmotic treatment led to the differential expression of >100 and >200 genes, respectively, including nine genes encoding transporters (SLC4A11, SLC5A3, ATP1A1, SLC38A2, KCNK17, KCTD20, KCTD11, SLC7A5, and CLCA2). Differences in the transcriptional profile of these selected genes, as indicated by the microarrays experiments, were validated by qRT-PCR in 2D and 3D cell cultures, under hyperosmolar salt and sorbitol conditions, revealing the presence of a common triggering signal for osmotic adaptation. The key signaling molecules p38 MAPK and p53 were demonstrated to differently participate in the regulation of the aforementioned transporters. Finally, siRNA-mediated knocking-down of each one of the three transporters with the highest and sustained over-expression (i.e., SLC4A11, SLC5A3, and ATP1A1) had a distinct outcome on the transcriptional profile of the other transporters, on p38 MAPK and p53 phosphorylation and consequently on cell cycle progression. The inhibition of ATP1A1 had the most prominent effect on the transcription of the rest of the transporters and was found to enhance the anti-proliferative effect of hyperosmotic conditions through an increased G2/M cell cycle block, ascribing to this pump a central role in the osmoregulatory response of nucleus pulposus cells.
Collapse
Affiliation(s)
- Eleni Mavrogonatou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Konstantinos Papadimitriou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens, Greece
| | - Jill P Urban
- Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, United Kingdom
| | - Vassilios Papadopoulos
- The Research Institute of the McGill University Health Centre, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| |
Collapse
|
32
|
Molinos M, Almeida CR, Gonçalves RM, Barbosa MA. Improvement of Bovine Nucleus Pulposus Cells Isolation Leads to Identification of Three Phenotypically Distinct Cell Subpopulations. Tissue Eng Part A 2015; 21:2216-27. [DOI: 10.1089/ten.tea.2014.0461] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Maria Molinos
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Catarina R. Almeida
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Raquel M. Gonçalves
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Mário A. Barbosa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
33
|
Wu Y, Cisewski SE, Sachs BL, Pellegrini VD, Kern MJ, Slate EH, Yao H. The region-dependent biomechanical and biochemical properties of bovine cartilaginous endplate. J Biomech 2015. [PMID: 26209084 DOI: 10.1016/j.jbiomech.2015.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Regional biomechanical and biochemical properties of bovine cartilaginous endplate (CEP) and its role in disc mechanics and nutrition were determined. The equilibrium aggregate modulus and hydraulic permeability between the central and lateral regions were examined by confined compression testing. Biochemical assays were conducted to quantify the amount of water, collagen, and glycosaminoglycan (GAG). The equilibrium aggregate modulus of the CEP in the central region (0.23 ± 0.15 MPa) was significantly lower than for the lateral region (0.83 ± 0. 26 MPa). No significant regional difference was found for the permeability of the CEP (central region: 0.13 ± 0.07×10(-15)m(4)/Ns and lateral region: 0.09 ± 0.03 × 10(-15)m(4)/Ns). CEPs were an average of 75.6% water by wet weight, 41.1% collagen, and 20.4% GAG by dry weight in the central region, as well as an average of 70.2% water by wet weight, 73.8% collagen, and 11.7% GAG by dry weight in the lateral region. Regional differences observed for the equilibrium aggregate modulus were likely due to the regional variation in biochemical composition. The lateral bovine endplate is much stiffer and may share a greater portion of the load. Compared with the nucleus pulposus (NP) and annulus fibrosus (AF), a smaller hydraulic permeability was found for the CEP in both the central and lateral regions, which could be due to its lower water content and higher collagen content. Our results suggest that the CEP may block rapid fluid exchange and solute convection, allow pressurization of the interstitial fluid, and play a significant role in nutrient supply in response to loading.
Collapse
Affiliation(s)
- Yongren Wu
- Department of Bioengineering, Clemson University, Clemson, SC, United States; Department of Orthopaedics, Medical University of South Carolina (MUSC), Charleston, SC, United States
| | - Sarah E Cisewski
- Department of Bioengineering, Clemson University, Clemson, SC, United States
| | - Barton L Sachs
- Department of Orthopaedics, Medical University of South Carolina (MUSC), Charleston, SC, United States
| | - Vincent D Pellegrini
- Department of Orthopaedics, Medical University of South Carolina (MUSC), Charleston, SC, United States
| | - Michael J Kern
- Department of Regenerative Medicine and Cell Biology, MUSC, Charleston, SC, United States
| | - Elizabeth H Slate
- Department of Statistics, Florida State University, Tallahassee, FL, United States
| | - Hai Yao
- Department of Bioengineering, Clemson University, Clemson, SC, United States; Department of Orthopaedics, Medical University of South Carolina (MUSC), Charleston, SC, United States.
| |
Collapse
|
34
|
Abstract
STUDY DESIGN Animal experimental study. OBJECTIVE To establish a slowly progressive and reproducible intervertebral disc degeneration model and determine the performance of T1ρ magnetic resonance imaging in the evaluation of disc degeneration. SUMMARY OF BACKGROUND DATA Recently, one of the hotspots of research efforts was related to management of early stage of disc degeneration. To our knowledge, a functional animal model that mimics ischemic and slowly progressive disc degeneration of humans does not exist. METHODS The subchondral bone adjacent to the lumbar intervertebral discs (from L3-L4 to L6-L7) of 8 rhesus monkeys was randomly injected with 4 mL of Pingyangmycin (PYM) solution (1.5 mg/mL, PYM), or 4 mL of phosphate buffered saline (Vehicle control), or exteriorized but not injected anything (Sham), respectively. The degenerative process was investigated by using radiography and T1ρ magnetic resonance imaging at 1, 3, 6, 9, 12, and 15 months postoperatively. Histological scoring, immunohistochemistry, and real-time polymerase chain reaction were performed at 15 months. RESULTS The mean T1ρ values of nucleus pulposus and annulus fibrosus in the PYM group significantly decreased after 3 and 6 months, respectively, followed by slow decrease, and the histological score was significantly higher at 15 months, compared with the control groups. The results of molecular analysis revealed a significant increase matrix metalloprotease-3, A disintegrin and metalloproteinase with thrombospondin motifs -5, tumor necrosis factor α, interleukin-1β, interleukin-6 expressions, and marked reduction in aggrecan, type II collagen, von Willebrand factor expressions at the messenger RNA levels in the PYM group. Spearman correlation analysis of Pfirrmann grades showed significantly inverse correlation with T1ρ values of nucleus pulposus and annulus fibrosus (r = -0.634, -0.617, respectively, P < 0.01). CONCLUSION Injection of PYM into the subchondral bone adjacent to the lumbar intervertebral discs of rhesus monkeys can results in mild, slowly progressive disc degeneration, which mimics the onset of human disc degeneration, and the T1ρ magnetic resonance imaging is suited for evaluating intervertebral disc degeneration. LEVEL OF EVIDENCE N/A.
Collapse
|
35
|
Iwata M, Aikawa T, Hakozaki T, Arai K, Ochi H, Haro H, Tagawa M, Asou Y, Hara Y. Enhancement of Runx2 expression is potentially linked to β-catenin accumulation in canine intervertebral disc degeneration. J Cell Physiol 2015; 230:180-90. [PMID: 24916026 DOI: 10.1002/jcp.24697] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 06/05/2014] [Indexed: 01/11/2023]
Abstract
Intervertebral disc degeneration (IVDD) greatly affects the quality of life. The nucleus pulposus (NP) of chondrodystrophic dog breeds (CDBs) is similar to the human NP because the cells disappear with age and are replaced by fibrochondrocyte-like cells. Because IVDD develops as early as within the first year of life, we used canines as a model to investigate the in vitro mechanisms underlying IVDD. The mechanism underlying age-related IVDD, however, is poorly understood. Several research groups have suggested that Wnt/β-catenin signaling plays an important role in IVDD. However, the role of Wnt/β-catenin signals in IVD cells is not yet well understood. Here, we demonstrate that Wnt/β-catenin signaling could enhance Runx2 expression in IVDD and lead to IVD calcification. Nucleus pulposus (NP) tissue was obtained from Beagle dogs after evaluation of the degeneration based on magnetic resonance imaging (MRI). Histological analysis showed that lack of Safranin-O staining, calcified area, and matrix metalloproteinase (MMP) 13-positive cells increased with progression of the degeneration. Furthermore, the levels of β-catenin- and Runx2-positive cells also increased. Real-time reverse-transcription polymerase chain reaction analysis showed that the MRI signal intensity and mRNA expression levels of β-catenin and Runx2 are correlated in NP tissues. Moreover, supplementation of LiCl induced β-catenin accumulation and Runx2 expression. In contrast, FH535 inhibited LiCl-induced upregulation. These results suggest that Runx2 transcript and protein expression, potentially in combination with β-catenin accumulation, are enhanced in degenerated and calcified intervertebral discs of CDBs.
Collapse
Affiliation(s)
- Munetaka Iwata
- Division of Veterinary Surgery, Department of Veterinary Science, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Iu J, Santerre JP, Kandel RA. Inner and Outer Annulus Fibrosus Cells Exhibit Differentiated Phenotypes and Yield Changes in Extracellular Matrix Protein Composition In Vitro on a Polycarbonate Urethane Scaffold. Tissue Eng Part A 2014; 20:3261-9. [DOI: 10.1089/ten.tea.2013.0777] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jonathan Iu
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
- BioEngineering of Skeletal Tissues Team, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - J. Paul Santerre
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Rita A. Kandel
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
- BioEngineering of Skeletal Tissues Team, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| |
Collapse
|
37
|
Guillaume O, Naqvi SM, Lennon K, Buckley CT. Enhancing cell migration in shape-memory alginate–collagen composite scaffolds: In vitro and ex vivo assessment for intervertebral disc repair. J Biomater Appl 2014; 29:1230-46. [DOI: 10.1177/0885328214557905] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lower lumbar disc disorders pose a significant problem in an aging society with substantial socioeconomic consequences. Both inner tissue (nucleus pulposus) and outer tissue (annulus fibrosus) of the intervertebral disc are affected by such debilitating disorders and can lead to disc herniation and lower back pain. In this study, we developed an alginate–collagen composite porous scaffold with shape-memory properties to fill defects occurring in annulus fibrosus tissue of degenerated intervertebral discs, which has the potential to be administered using minimal invasive surgery. In the first part of this work, we assessed how collagen incorporation on preformed alginate scaffolds influences the physical properties of the final composite scaffold. We also evaluated the ability of annulus fibrosus cells to attach, migrate, and proliferate on the composite alginate–collagen scaffolds compared to control scaffolds (alginate only). In vitro experiments, performed in intervertebral disc-like microenvironmental conditions (low glucose and low oxygen concentrations), revealed that for alginate only scaffolds, annulus fibrosus cells agglomerated in clusters with limited infiltration and migration capacity. In comparison, for alginate–collagen scaffolds, annulus fibrosus cells readily attached and colonized constructs, while preserving their typical fibroblastic-like cell morphology with spreading behavior and intense cytoskeleton expression. In a second part of this study, we investigated the effects of alginate–collagen scaffold when seeded with bone marrow derived mesenchymal stem cells. In vitro, we observed that alginate–collagen porous scaffolds supported cell proliferation and extracellular matrix deposition (collagen type I), with secretion amplified by the local release of transforming growth factor-β3. In addition, when cultured in ex vivo organ defect model, alginate–collagen scaffolds maintained viability of transplanted mesenchymal stem cells for up to 5 weeks. Taken together, these findings illustrate the advantages of incorporating collagen as a means to enhance cell migration and proliferation in porous scaffolds which could be used to augment tissue repair strategies.
Collapse
Affiliation(s)
- Olivier Guillaume
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Department of Mechanical Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - Syeda Masooma Naqvi
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Department of Mechanical Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - Kerri Lennon
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Department of Mechanical Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - Conor Timothy Buckley
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Department of Mechanical Engineering, School of Engineering, Trinity College Dublin, Ireland
| |
Collapse
|
38
|
O'Connell GD, Newman IB, Carapezza MA. Effect of long-term osmotic loading culture on matrix synthesis from intervertebral disc cells. Biores Open Access 2014; 3:242-9. [PMID: 25371861 PMCID: PMC4215332 DOI: 10.1089/biores.2014.0021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The intervertebral disc is a highly hydrated tissue that acts to absorb and distribute large complex loads placed on the spine. Diurnal loading and disc degeneration causes significant changes in water volume and proteoglycan content, which alters the internal osmotic environment. Short-term osmotic loading alters disc cell gene expression; however, the long-term effect of osmotic loading on disc cell matrix synthesis is not well understood. The objective of this study was to determine the effect of long-term osmotic loading on matrix turnover and proliferation by juvenile and adult cells from the nucleus pulposus (NP) and the cartilaginous endplate (EP). Matrix synthesis was evaluated using pellets and a 3D agarose system, which has been used for developing engineered tissues. Intervertebral discs were acquired from juvenile and adult cows. Cells were acquired through enzymatic digestion and expanded in culture. Pellets were formed through centrifugation, and constructs were created by encapsulating cells within 2% w/v agarose hydrogel. Pellets and constructs were cultured up to 42 days in chemically defined medium with the osmolality adjusted to 300, 400, or 500 mOsm/kg. EP cells were evaluated as a chondrocyte comparison to chondrocyte-like NP cells. Pellet and agarose cultures of juvenile NP and EP cells demonstrated similarities with respect to cell proliferation and functional mechanical properties. Cell proliferation decreased significantly with increased osmotic loading. The final compressive Young's modulus of juvenile NP cells was 10–40× greater than initial properties (i.e., day 0) and was greater than the final Young's modulus of adult NP and juvenile EP constructs. In juvenile NP constructs, there were no significant differences in GAG content with respect to osmotic loading. However, GAG synthesis and mechanical properties were greatest for the 400 mOsm/kg group in adult NP constructs. Taken together, the results presented here suggest a tradeoff between cell proliferation and matrix production under osmotic loading conditions. In conclusion, culturing disc cells in an osmotic environment that best mimics the healthy disc environment (400 mOsm/kg) may be ideal for balancing cell proliferation, matrix production, and mechanical properties of engineered disc tissues.
Collapse
Affiliation(s)
- Grace D O'Connell
- Department of Mechanical Engineering, University of California , Berkeley, California
| | - Isabella B Newman
- Department of Biomedical Engineering, Columbia University , New York, New York
| | - Michael A Carapezza
- Department of Biomedical Engineering, Columbia University , New York, New York
| |
Collapse
|
39
|
Liu C, Guo Q, Li J, Wang S, Wang Y, Li B, Yang H. Identification of rabbit annulus fibrosus-derived stem cells. PLoS One 2014; 9:e108239. [PMID: 25259600 PMCID: PMC4178129 DOI: 10.1371/journal.pone.0108239] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 08/26/2014] [Indexed: 12/20/2022] Open
Abstract
Annulus fibrosus (AF) injuries can lead to substantial deterioration of intervertebral disc (IVD) which characterizes degenerative disc disease (DDD). However, treatments for AF repair/regeneration remain challenging due to the intrinsic heterogeneity of AF tissue at cellular, biochemical, and biomechanical levels. In this study, we isolated and characterized a sub-population of cells from rabbit AF tissue which formed colonies in vitro and could self-renew. These cells showed gene expression of typical surface antigen molecules characterizing mesenchymal stem cells (MSCs), including CD29, CD44, and CD166. Meanwhile, they did not express negative markers of MSCs such as CD4, CD8, and CD14. They also expressed Oct-4, nucleostemin, and SSEA-4 proteins. Upon induced differentiation they showed typical osteogenesis, chondrogenesis, and adipogenesis potential. Together, these AF-derived colony-forming cells possessed clonogenicity, self-renewal, and multi-potential differentiation capability, the three criteria characterizing MSCs. Such AF-derived stem cells may potentially be an ideal candidate for DDD treatments using cell therapies or tissue engineering approaches.
Collapse
Affiliation(s)
- Chen Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Qianping Guo
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Jun Li
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Shenghao Wang
- Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Yibin Wang
- Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Bin Li
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China
- * E-mail: (BL); (HY)
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China
- * E-mail: (BL); (HY)
| |
Collapse
|
40
|
Maidhof R, Jacobsen T, Papatheodorou A, Chahine NO. Inflammation induces irreversible biophysical changes in isolated nucleus pulposus cells. PLoS One 2014; 9:e99621. [PMID: 24936787 PMCID: PMC4061011 DOI: 10.1371/journal.pone.0099621] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 05/16/2014] [Indexed: 11/20/2022] Open
Abstract
Intervertebral disc degeneration is accompanied by elevated levels of inflammatory cytokines that have been implicated in disease etiology and matrix degradation. While the effects of inflammatory stimulation on disc cell metabolism have been well-studied, their effects on cell biophysical properties have not been investigated. The hypothesis of this study is that inflammatory stimulation alters the biomechanical properties of isolated disc cells and volume responses to step osmotic loading. Cells from the nucleus pulposus (NP) of bovine discs were isolated and treated with either lipopolysaccharide (LPS), an inflammatory ligand, or with the recombinant cytokine TNF-α for 24 hours. We measured cellular volume regulation responses to osmotic loading either immediately after stimulation or after a 1 week recovery period from the inflammatory stimuli. Cells from each group were tested under step osmotic loading and the transient volume-response was captured via time-lapse microscopy. Volume-responses were analyzed using mixture theory framework to investigate two biomechanical properties of the cell, the intracellular water content and the hydraulic permeability. Intracellular water content did not vary between treatment groups, but hydraulic permeability increased significantly with inflammatory treatment. In the 1 week recovery group, hydraulic permeability remained elevated relative to the untreated recovery control. Cell radius was also significantly increased both after 24 hours of treatment and after 1 week recovery. A significant linear correlation was observed between hydraulic permeability and cell radius in untreated cells at 24 hours and at 1-week recovery, though not in the inflammatory stimulated groups at either time point. This loss of correlation between cell size and hydraulic permeability suggests that regulation of volume change is disrupted irreversibly due to inflammatory stimulation. Inflammatory treated cells exhibited altered F-actin cytoskeleton expression relative to untreated cells. We also found a significant decrease in the expression of aquaporin-1, the predominant water channel in disc NP cells, with inflammatory stimulation. To our knowledge, this is the first study providing evidence that inflammatory stimulation directly alters the mechanobiology of NP cells. The cellular biophysical changes observed in this study are coincident with documented changes in the extracellular matrix induced by inflammation, and may be important in disease etiology.
Collapse
Affiliation(s)
- Robert Maidhof
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, New York, United States of America
| | - Timothy Jacobsen
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, New York, United States of America
| | - Angelos Papatheodorou
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, New York, United States of America
| | - Nadeen O. Chahine
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, New York, United States of America
- Hofstra-North Shore LIJ School of Medicine, Hempstead, New York, United States of America
- * E-mail:
| |
Collapse
|
41
|
Feng G, Li L, Hong Y, Liu H, Song Y, Pei F, Ma PX, Gong Q, Gupte MJ. Hypoxia promotes nucleus pulposus phenotype in 3D scaffolds in vitro and in vivo: laboratory investigation. J Neurosurg Spine 2014; 21:303-9. [PMID: 24855996 DOI: 10.3171/2014.4.spine13870] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The role of oxygen in disc metabolism remains a matter of debate. Whether the effect of hypoxic priming on the nucleus pulposus phenotype can be maintained in vivo is not clear. The goal of the present study was to test the hypothesis that priming in a low oxygen tension in vitro could promote a nucleus pulposus phenotype in vivo. METHODS Bovine nucleus pulposus cells were seeded in 3D scaffolds and subjected to varying oxygen tensions (2% and 20%) for 3 weeks. The constructs were then implanted subcutaneously for 8 weeks. Changes in the extracellular matrix were evaluated using quantitative real-time reverse transcriptase polymerase chain reaction, glycosaminoglycan (GAG) assay, DNA assay, collagen quantification, and histological and immunohistological analyses. RESULTS Hypoxia resulted in greater production of sulfated glycosaminoglycan and higher levels of gene expression for collagen Type II, aggrecan, and SOX-9. Furthermore, after hypoxic priming, the subcutaneously implanted constructs maintained the nucleus pulposus phenotype, which was indicated by a significantly higher amount of glycosaminoglycan and collagen Type II. CONCLUSIONS Hypoxia enhanced the nucleus pulposus phenotype under experimental conditions both in vitro and in vivo. When used in combination with appropriate scaffold material, nucleus pulposus cells could be regenerated for tissue-engineering applications.
Collapse
|
42
|
Li J, Liu C, Guo Q, Yang H, Li B. Regional variations in the cellular, biochemical, and biomechanical characteristics of rabbit annulus fibrosus. PLoS One 2014; 9:e91799. [PMID: 24622282 PMCID: PMC3951500 DOI: 10.1371/journal.pone.0091799] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 02/14/2014] [Indexed: 01/05/2023] Open
Abstract
Tissue engineering of annulus fibrosus (AF), the essential load-bearing disc component, remains challenging due to the intrinsic heterogeneity of AF tissue. In order to provide a set of characterization data of AF tissue, which serve as the benchmark for constructing tissue engineered AF, we analyzed tissues and cells from various radial zones of AF, i.e., inner AF (iAF), middle AF (mAF), and outer AF (oAF), using a rabbit model. We found that a radial gradient in the cellular, biochemical, and biomechanical characteristics of rabbit AF existed. Specifically, the iAF cells (iAFCs) had the highest expression of collagen-II and aggrecan genes, while oAF cells (oAFCs) had the highest collagen-I gene expression. The contents of DNA, total collagen and collagen-I sequentially increased from iAF, mAF to oAF, while glycosaminoglycan (GAG) and collagen-II levels decreased. The cell traction forces of primary AFCs gradually decreased from iAFCs, mAFCs to oAFCs, being 336.6±155.3, 199.0±158.8, and 123.8±76.1 Pa, respectively. The storage moduli of iAF, mAF, and oAF were 0.032±0.002, 2.121±0.656, and 4.130±0.159 MPa, respectively. These measurements have established a set of reference data for functional evaluation of the efficacy of AF tissue engineering strategies using a convenient and cost-effective rabbit model, the findings of which may be further translated to human research.
Collapse
Affiliation(s)
- Jun Li
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chen Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qianping Guo
- Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Bin Li
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China
- * E-mail:
| |
Collapse
|
43
|
Disc cell therapies: critical issues. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2014; 23 Suppl 3:S375-84. [PMID: 24509721 DOI: 10.1007/s00586-014-3177-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 12/02/2013] [Accepted: 01/08/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Disc cell therapies, in which cells are injected into the degenerate disc in order to regenerate the matrix and restore function, appear to be an attractive, minimally invasive method of treatment. Interest in this area has stimulated research into disc cell biology in particular. However, other important issues, some of which are discussed here, need to be considered if cell-based therapies are to be brought to the clinic. PURPOSE Firstly, a question which is barely addressed in the literature, is how to identify patients with 'degenerative disc disease' who would benefit from cell therapy. Pain not disc degeneration is the symptom which drives patients to the clinic. Even though there are associations between back pain and disc degeneration, many people with even severely degenerate discs, with herniated discs or with spinal stenosis, are pain-free. It is not possible using currently available techniques to identify whether disc repair or regeneration would remove symptoms or prevent symptoms from occurring in future. Moreover, the repair process in human discs is very slow (years) because of the low cell density which can be supported nutritionally even in healthy human discs. If repair is necessary for relief of symptoms, questions regarding quality of life and rehabilitation during this long process need consideration. Also, some serious technical issues remain. Finding appropriate cell sources and scaffolds have received most attention, but these are not the only issues determining the feasibility of the procedure. There are questions regarding the safety of implanting cells by injection through the annulus whether the nutrient supply to the disc is sufficient to support implanted cells and whether, if cells are able to survive, conditions in a degenerate human disc will allow them to repair the damaged tissue. CONCLUSIONS If cell therapy for treatment of disc-related disorders is to enter the clinic as a routine treatment, investigations must examine the questions related to patient selection and the feasibility of achieving the desired repair in an acceptable time frame. Few diagnostic tests that examine whether cell therapies are likely to succeed are available at present, but definite exclusion criteria would be evidence of major disc fissures, or disturbance of nutrient pathways as measured by post-contrast MRI.
Collapse
|
44
|
Bhattacharjee M, Chameettachal S, Pahwa S, Ray AR, Ghosh S. Strategies for replicating anatomical cartilaginous tissue gradient in engineered intervertebral disc. ACS APPLIED MATERIALS & INTERFACES 2014; 6:183-193. [PMID: 24328323 DOI: 10.1021/am403835t] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A critical challenge in fabricating a load bearing tissue, such as an intervertebral disc, is to simulate cellular and matrix alignment and anisotropy, as well as a specific biochemical gradient. Towards this goal, multilamellar silk fibroin scaffolds having criss-cross fibrous orientation were developed, where silk fibers in inner layers were crosslinked with bioactive molecule chondroitin sulfate. Upon culturing goat articular chondrocytes under static and dynamic conditions, lamellar scaffold architecture guided alignment of cells and the newly synthesized extracellular matrix (ECM) along the silk fibers. The dynamic culture conditions further improved the cellular metabolic rate and ECM production. Further the synergistic effect of chemical composition of scaffold and hydrodynamic environment of bioreactor contributed in developing a tissue gradient within the constructs, with an inner region rich in collagen II, glycosaminoglycan (GAG), and stiffer in compression, whereas an outer region rich in collagen I and stiffer in tension. Therefore, a unique combination of chemical and physical parameters of engineered constructs and dynamic culture conditions provides a promising starting point to further improve the system towards replicating the anatomical structure, composition gradient, and function of intervertebral disc tissue.
Collapse
|
45
|
Iwata M, Ochi H, Asou Y, Haro H, Aikawa T, Harada Y, Nezu Y, Yogo T, Tagawa M, Hara Y. Variations in gene and protein expression in canine chondrodystrophic nucleus pulposus cells following long-term three-dimensional culture. PLoS One 2013; 8:e63120. [PMID: 23658803 PMCID: PMC3642067 DOI: 10.1371/journal.pone.0063120] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 03/28/2013] [Indexed: 11/18/2022] Open
Abstract
Intervertebral disc (IVD) degeneration greatly affects quality of life. The nucleus pulposus (NP) of chondrodystrophic dog breeds (CDBs) is similar to the human NP, because the cells disappear with age and are replaced by fibrochondrocyte-like cells. However, because IVD develops as early as within the first year of life, we used canines as a model to investigate in vitro the mechanisms underlying IVD degeneration. Specifically, we evaluated the potential of a three-dimensional (3D) culture of healthy NP as an in vitro model system to investigate the mechanisms of IVD degeneration. Agarose hydrogels were populated with healthy NP cells from beagles after performing magnetic resonance imaging, and mRNA expression profiles and pericellular extracellular matrix (ECM) protein distribution were determined. After 25 days of 3D culture, there was a tendency for redifferentiation into the native NP phenotype, and mRNA levels of Col2A1, COMP, and CK18 were not significantly different from those of freshly isolated cells. Our findings suggest that long-term 3D culture promoted chondrodystrophic NP redifferentiation through reconstruction of the pericellular microenvironment. Further, lipopolysaccharide (LPS) induced expression of TNF-α, MMP3, MMP13, VEGF, and PGES mRNA in the 3D cultures, creating a molecular milieu that mimics that of degenerated NP. These results suggest that this in vitro model represents a reliable and cost-effective tool for evaluating new therapies for disc degeneration.
Collapse
Affiliation(s)
- Munetaka Iwata
- Division of Veterinary Surgery, Department of Veterinary Science, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo, Japan
| | - Hiroki Ochi
- Laboratory of Veterinary Microbiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino-shi, Tokyo, Japan
- * E-mail:
| | - Yoshinori Asou
- Developmental Division of Advanced Orthopedic Therapeutics, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo, Japan
| | - Hirotaka Haro
- Department of Orthopedic Surgery, Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Takeshi Aikawa
- Aikawa Veterinary Medical Center, Tokyo, Japan; Veterinary Surgical Service Japan, 4-3-1 Nishi-ochiai Shinjuku-ku, Tokyo, Japan
| | - Yasuji Harada
- Division of Veterinary Surgery, Department of Veterinary Science, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo, Japan
| | - Yoshinori Nezu
- Division of Veterinary Surgery, Department of Veterinary Science, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo, Japan
| | - Takuya Yogo
- Division of Veterinary Surgery, Department of Veterinary Science, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo, Japan
| | - Masahiro Tagawa
- Division of Veterinary Surgery, Department of Veterinary Science, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo, Japan
| | - Yasushi Hara
- Division of Veterinary Surgery, Department of Veterinary Science, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo, Japan
| |
Collapse
|
46
|
Cho H, Park SH, Park K, Shim JW, Huang J, Smith R, Elder S, Min BH, Hasty KA. Construction of a tissue-engineered annulus fibrosus. Artif Organs 2013; 37:E131-8. [PMID: 23621741 DOI: 10.1111/aor.12066] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The intervertebral disc is composed of load-bearing fibrocartilage that may be subjected to compressive forces up to 10 times the body weight. The multilaminated outer layer, the annulus fibrosus (AF), is vulnerable to damage and its regenerative potential is limited, sometimes leading to nuclear herniation. Scaffold-based tissue engineering of AF using stem cell technology has enabled the development of bi-laminate constructs after 10 weeks of culture. It is difficult to know if these constructs are limited by the differentiation state of the stem cells or the culture system. In this study, we have characterized an expandable scaffold-free neoconstruct using autologous AF cells. The construct was prepared from pellet cultures derived from monolayer cultures of AF cells from mature pigs that became embedded in their own extracellular matrix. The pellet cultures were incubated for 24 h in a standardized conical tube and then carefully transferred intact to a culture flask and incubated for 21 days to allow continued matrix synthesis. Cell viability was maintained above 90% throughout the culture period. The engineered scaffold-free construct was compared with the native AF tissue by characterization of gene expression of representative markers, histological architecture, and biochemical composition. The morphological and biochemical characteristics of the cultured disc construct are very similar to that of native AF. The cell number per gram of construct was equal to that of native AF. Expression of aggrecan was elevated in the engineered construct compared with RNA extracted from the AF. The glycosaminoglycan content in the engineered construct showed no significant difference to that from native construct. These data indicate that scaffold-free tissue constructs prepared from AF cells using a pellet-culture format may be useful for in vitro expansion for transplantation into damaged discs.
Collapse
Affiliation(s)
- Hongsik Cho
- University of Tennessee Health Science Center, 1030 Jefferson Avenue, Memphis, TN 38138, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Wiltsey C, Kubinski P, Christiani T, Toomer K, Sheehan J, Branda A, Kadlowec J, Iftode C, Vernengo J. Characterization of injectable hydrogels based on poly(N-isopropylacrylamide)-g-chondroitin sulfate with adhesive properties for nucleus pulposus tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:837-847. [PMID: 23371764 DOI: 10.1007/s10856-013-4857-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 01/18/2013] [Indexed: 06/01/2023]
Abstract
The goal of this work is to develop an injectable nucleus pulposus (NP) tissue engineering scaffold with the ability to form an adhesive interface with surrounding disc tissue. A family of in situ forming hydrogels based on poly(N-isopropylacrylamide)-graft-chondroitin sulfate (PNIPAAm-g-CS) were evaluated for their mechanical properties, bioadhesive strength, and cytocompatibility. It was shown experimentally and computationally with the Neo-hookean hyperelastic model that increasing the crosslink density and decreasing the CS concentration increased mechanical properties at 37 °C, generating several hydrogel formulations with unconfined compressive modulus values similar to what has been reported for the native NP. The adhesive tensile strength of PNIPAAm increased significantly with CS incorporation (p < 0.05), ranging from 0.4 to 1 kPa. Live/Dead and XTT assay results indicate that the copolymer is not cytotoxic to human embryonic kidney (HEK) 293 cells. Taken together, these data indicate the potential of PNIPAAm-g-CS to function as a scaffold for NP regeneration.
Collapse
Affiliation(s)
- Craig Wiltsey
- Department of Chemical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Chan LK, Leung VY, Tam V, Lu WW, Sze K, Cheung KM. Decellularized bovine intervertebral disc as a natural scaffold for xenogenic cell studies. Acta Biomater 2013; 9:5262-72. [PMID: 23000521 DOI: 10.1016/j.actbio.2012.09.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 09/02/2012] [Accepted: 09/06/2012] [Indexed: 11/26/2022]
Abstract
Low back pain that is associated with disc degeneration contributes to a huge economic burden in the worldwide healthcare system. Traditional methods, such as spinal fusion, have been adopted to relieve mechanical back pain, but this is compromised by decreased spinal motion. Tissue engineering has attracted much attention, and aims to correct the changes fundamentally occurring in the discs by a combination of cell biology, molecular biology and engineering. Synthetic materials including poly(l-lactic acid) or poly(glycolic acid) and biomolecules like hyaluronic acid or collagen have been adopted in the development of disc scaffolds for studying therapeutic approaches. Nevertheless, the complex biological and mechanical environment of the intervertebral disc (IVD) makes the synthesis of an artificial IVD with biomaterials a difficult task. Thus the aim of this study was to develop a natural disc scaffold for culturing disc cells for future development of biological disc constructs. We adopted a combination of currently used decellularization techniques to decellularize bovine IVD to create a complete endplate-to-endplate IVD scaffold. By altering the chemical and physical decellularization parameters, we reported the removal of up to 70% of the endogenous cells, and were able to preserve the glycosaminoglycan content, collagen fibril architecture and mechanical properties of the discs. The reintroduction of nucleus pulposus cells into the scaffold indicated a high survival rate over 7days, with cell penetration. We have shown here that conventional methods used for decellularizing thin tissues can also be applied to large organs, such as IVD. Our findings suggest the potential of using decellularized IVD as a scaffold for IVD bioengineering and culturing of cells in the context of the IVD niche.
Collapse
|
49
|
Peletti-Figueiró M, Silva PGD, Souza OED, Lambert AP, Machado DC, Roesch-Ely M, Henriques JAP, Falavigna A. Stem-cell treatment in disc degeneration: What is the evidence? COLUNA/COLUMNA 2013. [DOI: 10.1590/s1808-18512013000100013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
To review the potential role of stem cells in treating degenerative disc disease of the intervertebral disc (IVD). A review was performed of articles from the Medline database concerning stem cells and degenerative disc disease (DDD). To discuss the data, the papers were classified as: review, in vitro, experimental, and clinical. The currently available treatments were basically for symptom reduction, not to revert the IVD degenerative process. The use of mesenchymal stem cells (MSC) is being proposed as an option of treatment for DDD. In vitro studies have shown that the MSC are able to differentiate into NP cells and that the MSC also reduce the inflammatory levels of the degenerated IVD. Besides, experimental studies demonstrated that the MSC remained viable when injected into the IVD, and that they were able to regenerate partially from the degenerated IVD and its structure. The few clinical studies found in the literature presented diverging results. The use of MSC is being widely studied and shows promising results for the treatment of DDD. Although many advances are being achieved in studies in vitro and experimental, there is a lack of clinical studies to prove the role of MSC in DDD management.
Collapse
|
50
|
Chen YF, Zhang YZ, Zhang WL, Luan GN, Liu ZH, Gao Y, Wan ZY, Sun Z, Zhu S, Samartzis D, Wang CM, Wang HQ, Luo ZJ. Insights into the hallmarks of human nucleus pulposus cells with particular reference to cell viability, phagocytic potential and long process formation. Int J Med Sci 2013; 10:1805-16. [PMID: 24324357 PMCID: PMC3856371 DOI: 10.7150/ijms.6530] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 10/14/2013] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE As a main cellular component within the disc, nucleus pulposus (NP) cells play important roles in disc physiology. However, little is known on the biologic hallmarks of human NP cells. Therefore, the present study aimed to address the features of human NP cells. METHODS Human NP samples were collected from normal cadavers, patients with scoliosis and disc degeneration as normal, disease control and degenerative NP, respectively. The NP samples were studied using transmission electron microscopy and TUNEL assay. Pre-digested NP samples were studied using flow cytometry with PI/Annexin V staining. RESULTS Both control and degenerative human NP consisted of mainly viable cells with a variety of morphology. Both necrosis and apoptosis were noted in human NP as forms of cell death with increased apoptosis in degenerative NP, which was further confirmed by the TUNEL assay. Phagocytic NP cells had the hallmarks of both stationary macrophages with lysosomes and NP cells with the endoplasmic reticulum. Annulus fibrosus cells have similar morphologic characteristics with NP cells in terms of cell nest, phagocytosis and intracellular organs. Moreover, NP cells with long processes existed in degenerative and scoliotic NP rather than normal NP. When cultured in glucose-free medium, NP cells developed long and thin processes. CONCLUSION Human degenerative NP consists of primarily viable cells. We present direct and in vivo evidence that both human annulus fibrosus and NP cells have phagocytic potential. Moreover, NP cells with long processes exist in both scoliotic and degenerative NP with lack of glucose as one of the possible underlying mechanisms.
Collapse
Affiliation(s)
- Yu-Fei Chen
- 1. Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|