1
|
Mostafa IM, Omar MA, Ahmed Elsayed M, Almaghrabi M, Mohamed AA. Green and inventive fluorescence approach for levodropropizine determination in human plasma. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 312:124060. [PMID: 38402704 DOI: 10.1016/j.saa.2024.124060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/13/2024] [Accepted: 02/18/2024] [Indexed: 02/27/2024]
Abstract
A green, rapid and sensitive fluorimetric method to quantify levodropropizine (LVP) in human plasma was exploited for the first time. The proposed method adopts LVP's intrinsic fluorescence in distilled water at a detecting emission of 345 nm following excitation at 240 nm. LVP displayed linearity across concentrations ranging from 50 to 1000 ng mL-1, with a detection limit of 0.77 ng mL-1 and a quantification limit of 2.33 ng mL-1. Thorough validation confirmed its reliability, successfully determining LVP in tablets with an average recovery of 98.64 ± 1.07 %. Furthermore, the method's applicability extended to estimate the studied drug in spiked human plasma with excellent obtained percentage recoveries (98.68 ± 1.28-100.14 ± 1.23).
Collapse
Affiliation(s)
- Islam M Mostafa
- Analytical Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61511, Egypt; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China.
| | - Mahmoud A Omar
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah 41477, Saudi Arabia; Pharmaceutical Analysis Department, Faculty of Pharmacy, Minia University, Minia 61511, Egypt
| | - Mohamed Ahmed Elsayed
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Fayoum University, 63514, Egypt
| | - Mohammed Almaghrabi
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah 41477, Saudi Arabia
| | - Abobakr A Mohamed
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Fayoum University, 63514, Egypt
| |
Collapse
|
2
|
Machado AKMDS, Nemitz MC, Todeschini V, Sangoi MDS. Characteristics, Properties and Analytical Methods for Determination of Dropropizine and Levodropropizine: A Review. Crit Rev Anal Chem 2019; 51:174-182. [DOI: 10.1080/10408347.2019.1700098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | - Marina Cardoso Nemitz
- Laboratory of Pharmaceutical Analysis, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| | - Vitor Todeschini
- Laboratory of Pharmaceutical Analysis, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| | | |
Collapse
|
3
|
Metabolomics in plants and humans: applications in the prevention and diagnosis of diseases. BIOMED RESEARCH INTERNATIONAL 2013; 2013:792527. [PMID: 23986911 PMCID: PMC3748395 DOI: 10.1155/2013/792527] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 07/07/2013] [Indexed: 11/23/2022]
Abstract
In the recent years, there has been an increase in the number of metabolomic approaches used, in parallel with proteomic and functional genomic studies. The wide variety of chemical types of metabolites available has also accelerated the use of different techniques in the investigation of the metabolome. At present, metabolomics is applied to investigate several human diseases, to improve their diagnosis and prevention, and to design better therapeutic strategies. In addition, metabolomic studies are also being carried out in areas such as toxicology and pharmacology, crop breeding, and plant biotechnology. In this review, we emphasize the use and application of metabolomics in human diseases and plant research to improve human health.
Collapse
|
4
|
|
5
|
Sensitive spectrophotometric method for quantitation of guaifenesin and dropropizine in their dosage forms. Int J Anal Chem 2010; 2010:704564. [PMID: 20671996 PMCID: PMC2910454 DOI: 10.1155/2010/704564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 05/11/2010] [Indexed: 11/28/2022] Open
Abstract
Guaifenesin and dropropizine were analyzed through oxidation with periodic acid to give formaldehyde which was allowed to condense with 4-Amino-5-hydrazino-4H [1,2,4]-triazole-3-thiol (AHTT). The condensation product was further oxidized to yield a purple colored compound with maximum absorption at 550 nm. Beer's law was obeyed in the range of 5–45 μg mL−1 for guaifenesin and 10–80 μg mL−1 for dropropizine. Both drugs were also successfully determined in their dosage forms.
Collapse
|
6
|
Sauer C, Peters FT, Staack RF, Fritschi G, Maurer HH. Metabolism and toxicological detection of a new designer drug, N-(1-phenylcyclohexyl)propanamine, in rat urine using gas chromatography–mass spectrometry. J Chromatogr A 2008; 1186:380-90. [DOI: 10.1016/j.chroma.2007.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 11/01/2007] [Accepted: 11/01/2007] [Indexed: 10/22/2022]
|
7
|
Maurer HH. Chapter 12 Forensic screening with GC-MS. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s1567-7192(06)06012-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
8
|
Sauer C, Peters FT, Staack RF, Fritschi G, Maurer HH. New designer drug N-(1-phenylcyclohexyl)-3-ethoxypropanamine (PCEPA): studies on its metabolism and toxicological detection in rat urine using gas chromatographic/mass spectrometric techniques. JOURNAL OF MASS SPECTROMETRY : JMS 2006; 41:1014-29. [PMID: 16817170 DOI: 10.1002/jms.1058] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Studies are described on the metabolism and toxicological detection of the phencyclidine-derived designer drug N-(1-phenylcyclohexyl)-3-ethoxypropanamine (PCEPA) in rat urine using gas chromatographic/mass spectrometric techniques. The identified metabolites indicated that PCEPA was metabolized by N-dealkylation, O-deethylation partially followed by oxidation of the resulting alcohol to the corresponding carboxylic acid, hydroxylation of the cyclohexyl ring at different positions of PCEPA, N-dealkyl PCEPA, O-deethyl PCEPA, and of the corresponding carboxylic acids. Finally, aromatic hydroxylation of PCEPA, the corresponding carboxylic acids, and O-deethyl PCEPA, the latter partially followed by oxidation to the corresponding carboxylic acid and hydroxylation of the cyclohexyl ring could be observed. All metabolites were partially excreted in the conjugated form. The authors' systematic toxicological analysis (STA) procedure using full-scan GC/MS after acid hydrolysis, liquid-liquid extraction, and microwave-assisted acetylation allowed the detection in rat urine of an intake of a common drug users' dose of PCEPA. Assuming a similar metabolism in humans, the STA in human urine should be suitable as proof of intake of PCEPA.
Collapse
Affiliation(s)
- Christoph Sauer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Saarland, D-66421 Homburg (Saar), Germany
| | | | | | | | | |
Collapse
|
9
|
Theobald DS, Pütz M, Schneider E, Maurer HH. New designer drug 4-iodo-2,5-dimethoxy-beta-phenethylamine (2C-I): studies on its metabolism and toxicological detection in rat urine using gas chromatographic/mass spectrometric and capillary electrophoretic/mass spectrometric techniques. JOURNAL OF MASS SPECTROMETRY : JMS 2006; 41:872-86. [PMID: 16810648 DOI: 10.1002/jms.1045] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Studies are described on the metabolism and the toxicological analysis of the phenethylamine-derived designer drug 4-iodo-2,5-dimethoxy-beta-phenethylamine (2C-I) in rat urine using gas chromatographic/mass spectrometric (GC/MS) techniques, and for a particular question, using capillary electrophoretic/mass spectrometric (CE/MS) techniques. The identified metabolites indicated that 2C-I was metabolized on the one hand by O-demethylation in position 2 and 5, respectively, followed either by N-acetylation or by deamination with subsequent oxidation to the corresponding acid or reduction to the corresponding alcohol, respectively. The latter metabolite was hydroxylated in beta-position and further oxidized to the corresponding oxo metabolite. On the other hand, 2C-I was metabolized by deamination with subsequent oxidation to the corresponding acid or reduction to the corresponding alcohol, respectively. 2C-I and most of its metabolites were partially excreted in conjugated form. The authors' systematic toxicological analysis (STA) procedure using full-scan GC/MS after acid hydrolysis, liquid-liquid extraction and microwave-assisted acetylation allowed the detection of an intake of a dose of 2C-I in rat urine that corresponds to a common drug users' dose. Assuming similar metabolism, the described STA procedure should be suitable for proof of an intake of 2C-I in human urine.
Collapse
Affiliation(s)
- Denis S Theobald
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Saarland, D-66421 Homburg (Saar), Germany
| | | | | | | |
Collapse
|
10
|
Theobald DS, Staack RF, Puetz M, Maurer HH. New designer drug 2,5-dimethoxy-4-ethylthio-beta-phenethylamine (2C-T-2): studies on its metabolism and toxicological detection in rat urine using gas chromatography/mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2005; 40:1157-72. [PMID: 16041763 DOI: 10.1002/jms.890] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Studies are described on the metabolism and the toxicological analysis of the phenethylamine-derived designer drug 2,5-dimethoxy-4-ethylthio-beta-phenethylamine (2C-T-2) in rat urine using gas chromatography/mass spectrometry (GC/MS) after enzymatic cleavage of conjugates, liquid-liquid extraction and derivatization. The structures of 14 metabolites were assigned tentatively by detailed interpretation of their mass spectra. Identification of these metabolites indicated that 2C-T-2 was metabolized by sulfoxidation followed by N-acetylation and either hydroxylation of the S-ethyl side chain or demethylation of one methoxy group, O-demethylation of the parent compound followed by N-acetylation and sulfoxidation, deamination followed by reduction to the corresponding alcohol followed by partial glucuronidation and/or sulfation or by oxidation to the corresponding acid followed either by partial glucuronidation or by degradation to the corresponding benzoic acid derivative followed by partial glucuronidation. Furthermore, 2C-T-2 was metabolized by N-acetylation of the parent compound followed either by O-demethylation and sulfoxidation or by S-dealkylation, S-methylation and sulfoxidation. The authors' systematic toxicological analysis (STA) procedure using full-scan GC/MS after acid hydrolysis, liquid-liquid extraction microwave-assisted acetylation allowed the detection of an intake of a dose of 2C-T-2 in rat urine, which corresponds to a common drug users' dose. Assuming similar metabolism, the described STA procedure should be suitable for proof of an intake of 2C-T-2 in human urine.
Collapse
Affiliation(s)
- Denis S Theobald
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Saarland, D-66421 Homburg (Saar), Germany
| | | | | | | |
Collapse
|
11
|
Abstract
The post-genomics era has brought with it ever increasing demands to observe and characterise variation within biological systems. This variation has been studied at the genomic (gene function), proteomic (protein regulation) and the metabolomic (small molecular weight metabolite) levels. Whilst genomics and proteomics are generally studied using microarrays (genomics) and 2D-gels or mass spectrometry (proteomics), the technique of choice is less obvious in the area of metabolomics. Much work has been published employing mass spectrometry, NMR spectroscopy and vibrational spectroscopic techniques, amongst others, for the study of variations within the metabolome in many animal, plant and microbial systems. This review discusses the advantages and disadvantages of each technique, putting the current status of the field of metabolomics in context, and providing examples of applications for each technique employed.
Collapse
Affiliation(s)
- Warwick B Dunn
- Bioanalytical Sciences Group, School of Chemistry, University of Manchester, Faraday Building, Sackville Street, P. O. Box 88, Manchester, UKM60 1QD.
| | | | | |
Collapse
|
12
|
Theobald DS, Fehn S, Maurer HH. New designer drug, 2,5-dimethoxy-4-propylthio-beta-phenethylamine (2C-T-7): studies on its metabolism and toxicological detection in rat urine using gas chromatography/mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2005; 40:105-116. [PMID: 15643651 DOI: 10.1002/jms.784] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Studies are described on the metabolism and toxicological analysis of the phenethylamine-derived designer drug 2,5-dimethoxy-4-propylthio-beta-phenethylamine (2C-T-7) in rat urine using gas chromatography/mass spectrometry (GC/MS). The identified metabolites indicated that 2C-T-7 was metabolized by hydroxylation of the propyl side chain followed by N-acetylation and sulfoxidation and also by deamination followed by oxidation to the corresponding acid or by reduction to the corresponding alcohol. To a minor extent, 2C-T-7 was also metabolized by S-dealkylation followed by N-acetylation, S-methylation and sulfoxidation. The authors' systematic toxicological analysis (STA) procedure using full-scan GC/MS after acid hydrolysis, liquid-liquid extraction microwave-assisted acetylation allowed the detection of an intake of a dose of 2C-T-7 in rat urine that corresponds to a common drug users' dose. Assuming similar metabolism, the described STA procedure should be suitable for proof of an intake of 2C-T-7 in human urine.
Collapse
Affiliation(s)
- Denis S Theobald
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Saarland, D-66421 Homburg (Saar), Germany
| | | | | |
Collapse
|
13
|
Maurer HH. Position of chromatographic techniques in screening for detection of drugs or poisons in clinical and forensic toxicology and/or doping control. ACTA ACUST UNITED AC 2004; 42:1310-24. [PMID: 15576292 DOI: 10.1515/cclm.2004.250] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThis paper reviews chromatographic screening procedures for simultaneous detection of several drug classes relevant to clinical and forensic toxicology or doping control in urine or blood using gas chromatography-mass spectrometry (GC-MS), liquid chromatography coupled with a diode-array detector (LC-DAD) or a mass spectrometer (LC-MS). The pros and cons of the different techniques and procedures are discussed leading to the following conclusions and perspectives. GC-MS, especially in the electron ionization full-scan mode, is still the method of choice for comprehensive screening providing best separation power, specificity and universality, although requiring derivatization. LC-DAD is also often used for screening, but its separation power and its specificity are still inferior to those of GC-MS. Finally, LC-MS has shown to be an ideal supplement, especially for the detection of more polar, thermolabile and/or low-dose drugs, especially in blood plasma. It may become the gold standard in clinical and forensic toxicology and doping control if, at a later date, the costs of the apparatus will be markedly reduced, the current disadvantages like irreproducibility of fragmentation, reduction of ionization by matrix, etc. will be overcome, and finally if one of the increasing number of quite different techniques will become the apparatus standard.
Collapse
Affiliation(s)
- Hans H Maurer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Saarland, Homburg (Saar), Germany.
| |
Collapse
|