1
|
Cook AM, Morgan Jones G, Hawryluk GWJ, Mailloux P, McLaughlin D, Papangelou A, Samuel S, Tokumaru S, Venkatasubramanian C, Zacko C, Zimmermann LL, Hirsch K, Shutter L. Guidelines for the Acute Treatment of Cerebral Edema in Neurocritical Care Patients. Neurocrit Care 2020; 32:647-666. [PMID: 32227294 PMCID: PMC7272487 DOI: 10.1007/s12028-020-00959-7] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Acute treatment of cerebral edema and elevated intracranial pressure is a common issue in patients with neurological injury. Practical recommendations regarding selection and monitoring of therapies for initial management of cerebral edema for optimal efficacy and safety are generally lacking. This guideline evaluates the role of hyperosmolar agents (mannitol, HTS), corticosteroids, and selected non-pharmacologic therapies in the acute treatment of cerebral edema. Clinicians must be able to select appropriate therapies for initial cerebral edema management based on available evidence while balancing efficacy and safety. METHODS The Neurocritical Care Society recruited experts in neurocritical care, nursing, and pharmacy to create a panel in 2017. The group generated 16 clinical questions related to initial management of cerebral edema in various neurological insults using the PICO format. A research librarian executed a comprehensive literature search through July 2018. The panel screened the identified articles for inclusion related to each specific PICO question and abstracted necessary information for pertinent publications. The panel used GRADE methodology to categorize the quality of evidence as high, moderate, low, or very low based on their confidence that the findings of each publication approximate the true effect of the therapy. RESULTS The panel generated recommendations regarding initial management of cerebral edema in neurocritical care patients with subarachnoid hemorrhage, traumatic brain injury, acute ischemic stroke, intracerebral hemorrhage, bacterial meningitis, and hepatic encephalopathy. CONCLUSION The available evidence suggests hyperosmolar therapy may be helpful in reducing ICP elevations or cerebral edema in patients with SAH, TBI, AIS, ICH, and HE, although neurological outcomes do not appear to be affected. Corticosteroids appear to be helpful in reducing cerebral edema in patients with bacterial meningitis, but not ICH. Differences in therapeutic response and safety may exist between HTS and mannitol. The use of these agents in these critical clinical situations merits close monitoring for adverse effects. There is a dire need for high-quality research to better inform clinicians of the best options for individualized care of patients with cerebral edema.
Collapse
Affiliation(s)
- Aaron M Cook
- UK Healthcare, University of Kentucky College of Pharmacy, Lexington, KY, USA.
| | | | | | | | | | | | - Sophie Samuel
- Memorial Hermann-Texas Medical Center, Houston, TX, USA
| | - Sheri Tokumaru
- The Daniel K. Inouye College of Pharmacy | University of Hawaii at Hilo, Honolulu, HI, USA
| | | | - Christopher Zacko
- Penn State University Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | | | - Karen Hirsch
- Stanford University Medical Center, Stanford, CA, USA
| | - Lori Shutter
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Abstract
OBJECTIVE This study applied a new external ventricular catheter, which allows intracranial pressure (ICP) monitoring and cerebral spinal fluid (CSF) drainage simultaneously, to study cerebral vascular responses during acute CSF drainage. METHODS Six patients with 34 external ventricular drain (EVD) opening sessions were retrospectively analyzed. A published algorithm was used to extract morphological features of ICP recordings, and a template-matching algorithm was applied to calculate the likelihood of cerebral vasodilation index (VDI) and cerebral vasoconstriction index (VCI) based on the changes of ICP waveforms during CSF drainage. Power change (∆P) of ICP B-waves after EVD opening was also calculated. Cerebral autoregulation (CA) was assessed through phase difference between arterial blood pressure (ABP) and ICP using a previously published wavelet-based algorithm. RESULTS The result showed that acute CSF drainage reduced mean ICP (P = 0.016) increased VCI (P = 0.02) and reduced ICP B-wave power (P = 0.016) significantly. VCI reacted to ICP changes negatively when ICP was between 10 and 25 mmHg, and VCI remained unchanged when ICP was outside the 10-25 mmHg range. VCI negatively (r = - 0.44) and VDI positively (r = 0.82) correlated with ∆P of ICP B-waves, indicating that stronger vasoconstriction resulted in bigger power drop in ICP B-waves. Better CA prior to EVD opening triggered bigger drop in the power of ICP B-waves (r = - 0.612). CONCLUSIONS This study demonstrates that acute CSF drainage reduces mean ICP, and results in vasoconstriction which can be detected through an index, VCI. Cerebral vessels actively respond to ICP changes or cerebral perfusion pressure (CPP) changes in a certain range; beyond which, the vessels are insensitive to the changes in ICP and CPP.
Collapse
|
3
|
Farrell D, Bendo AA. Perioperative Management of Severe Traumatic Brain Injury: What Is New? CURRENT ANESTHESIOLOGY REPORTS 2018; 8:279-289. [PMID: 30147453 PMCID: PMC6096919 DOI: 10.1007/s40140-018-0286-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE OF THE REVIEW Severe traumatic brain injury (TBI) continues to represent a global public health issue, and mortality and morbidity in TBI patients remain substantial. There are ongoing international collaborations to provide guidelines for perioperative care and management of severe TBI patients. In addition, new pharmacologic agents are being tested along with cognitive rehabilitation to improve functional independence and outcome in TBI patients. This review will discuss the current updates in the guidelines for the perioperative management of TBI patients and describe potential new therapies to improve functional outcomes. RECENT FINDINGS In the most recent guidelines published by The Brain Trauma Foundation, therapeutic options were reviewed based on new and revised evidence or lack of evidence. For example, changes and/or updates were made to the recommendations for the use of sedation and hypothermia in TBI patients, and new evidence was provided for the use of cerebrospinal fluid drainage as a first-line treatment for increased intracranial pressure (ICP). In addition to the guidelines, new 'multi-potential' agents that can target several mechanisms are being tested along with cognitive rehabilitation. SUMMARY The major goal of perioperative management of TBI patients is to prevent secondary damage. Therapeutic measures based on established guidelines and recommendations must be instituted promptly throughout the perioperative course to reduce morbidity and mortality.
Collapse
Affiliation(s)
- Deacon Farrell
- Downstate Medical Center, State University of New York (SUNY), 450 Clarkson Avenue, Box 6, Brooklyn, New York 11203 USA
| | - Audrée A. Bendo
- Downstate Medical Center, State University of New York (SUNY), 450 Clarkson Avenue, Box 6, Brooklyn, New York 11203 USA
| |
Collapse
|
4
|
Cadena R, Shoykhet M, Ratcliff JJ. Emergency Neurological Life Support: Intracranial Hypertension and Herniation. Neurocrit Care 2018; 27:82-88. [PMID: 28913634 DOI: 10.1007/s12028-017-0454-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sustained intracranial hypertension and acute brain herniation are "brain codes," signifying catastrophic neurological events that require immediate recognition and treatment to prevent irreversible injury and death. As in cardiac arrest, a brain code mandates the organized implementation of a stepwise management algorithm. The goal of this Emergency Neurological Life Support protocol is to implement an evidence-based, standardized approach to the evaluation and management of patients with intracranial hypertension and/or herniation.
Collapse
Affiliation(s)
- Rhonda Cadena
- Departments of Neurology, Neurosurgery, and Emergency Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| | - Michael Shoykhet
- Pediatric Critical Care Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Jonathan J Ratcliff
- Departments of Emergency Medicine and Neurology, Emory University, Atlanta, GA, USA
| |
Collapse
|
5
|
Stevens RD, Shoykhet M, Cadena R. Emergency Neurological Life Support: Intracranial Hypertension and Herniation. Neurocrit Care 2016; 23 Suppl 2:S76-82. [PMID: 26438459 DOI: 10.1007/s12028-015-0168-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Sustained intracranial hypertension and acute brain herniation are "brain codes," signifying catastrophic neurological events that require immediate recognition and treatment to prevent irreversible injury and death. As in cardiac arrest, a brain code mandates the organized implementation of a stepwise management algorithm. The goal of this emergency neurological life support protocol is to implement an evidence-based, standardized approach to the evaluation and management of patients with intracranial hypertension and/or herniation.
Collapse
Affiliation(s)
- Robert D Stevens
- Departments of Anesthesiology and Critical Care Medicine, Neurology, Neurosurgery, and Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Michael Shoykhet
- Pediatric Critical Care Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Rhonda Cadena
- Departments of Neurology, Neurosurgery, and Emergency Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
6
|
Kukreti V, Mohseni-Bod H, Drake J. Management of raised intracranial pressure in children with traumatic brain injury. J Pediatr Neurosci 2015; 9:207-15. [PMID: 25624921 PMCID: PMC4302538 DOI: 10.4103/1817-1745.147572] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Increased intracranial pressure (ICP) is associated with worse outcome after traumatic brain injury (TBI). The current guidelines and management strategies are aimed at maintaining adequate cerebral perfusion pressure and treating elevated ICP. Despite controversies, ICP monitoring is important particularly after severe TBI to guide treatment and in developed countries is accepted as a standard of care. We provide a narrative review of the recent evidence for the use of ICP monitoring and management of ICP in pediatric TBI.
Collapse
Affiliation(s)
- Vinay Kukreti
- Department of Neurocritical Care, Children's National Medical Center, Washington, D.C., USA
| | - Hadi Mohseni-Bod
- Department of Pediatric Critical Care, The Hospital for Sick Children, University of Toronto, Canada
| | - James Drake
- Department of Neurosurgery, The Hospital for Sick Children, University of Toronto, Ontario, Canada
| |
Collapse
|
7
|
Mitigating effects of external ventricular drain usage in the management of severe head injury. Acta Neurochir (Wien) 2013; 155:2129-32. [PMID: 23728500 DOI: 10.1007/s00701-013-1735-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 04/22/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Cerebrospinal fluid (CSF) drainage has been variably employed to lower intracranial pressure (ICP) in patients with severe head injury. The efficacy of this manoeuvre remains under-explored (Brain Trauma Foundation Recommendation-optional treatment). This work seeks to report the results of CSF drainage via external ventricular drain (EVD) in severe head injury in comparison to other treatment options. METHODS Retrospective observational comparative study of all consecutive patients admitted to a major trauma centre with severe traumatic brain injury over a period of 12 months. RESULTS Out of a total 139 patients, 33 had delayed elevation of ICP despite conventional medical therapy, 16 patients were treated with EVD insertion (4 placed under AxiEM image guidance [Medtronic]) and 17 received either decompressive craniectomy or barbiturate coma. Subsequently, two patients with decompression had further ICP elevation and needed EVD. Two patients with EVD had raised ICP-one underwent decompression and the other was treated with barbiturate coma. One patient with EVD developed infection, which was successfully treated. Patients treated with EVD had a lower risk of needing definitive treatment for ICP control, i.e. decompressive craniectomy or barbiturate coma. CONCLUSIONS EVD was a safe and less invasive procedure, and achieved sustained control of ICP in this patient group.
Collapse
|
8
|
Abstract
Sustained intracranial hypertension and acute brain herniation are "brain codes," signifying catastrophic neurological events that require immediate recognition and treatment to prevent irreversible injury and death. As in cardiac arrest, evidence supports the organized implementation of a stepwise management algorithm. Because there are multiple etiologies and many treatments that can potentially reverse cerebral herniation, intracranial hypertension and herniation was chosen as an Emergency Neurological Life Support (ENLS) protocol.
Collapse
|
9
|
Meyer MJ, Megyesi J, Meythaler J, Murie-Fernandez M, Aubut JA, Foley N, Salter K, Bayley M, Marshall S, Teasell R. Acute management of acquired brain injury part I: an evidence-based review of non-pharmacological interventions. Brain Inj 2010; 24:694-705. [PMID: 20353284 DOI: 10.3109/02699051003692118] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PRIMARY OBJECTIVE To review the literature on non-pharmacological interventions used in acute settings to manage elevated intracranial pressure (ICP) and minimize cerebral damage in patients with acquired brain injury (ABI). MAIN OUTCOMES A literature search of multiple databases (CINAHL, EMBASE, MEDLINE and PSYCHINFO) and hand-searched articles covering the years 1980-2008 was performed. Peer reviewed articles were assessed for methodological quality using the PEDro scoring system for randomized controlled trials (RCTs) and the Downs and Black tool for RCTs and non-randomized trials. Levels of evidence were assigned and recommendations made. RESULTS Five non-invasive interventions for acute ABI management were assessed: adjusting head posture, body rotation (continuous rotational therapy and prone positioning), hyperventilation, hypothermia and hyperbaric oxygen. Two invasive interventions were also reviewed: cerebrospinal fluid (CSF) drainage and decompressive craniectomy (DC). CONCLUSIONS There is a paucity of information regarding non-pharmacological acute management of patients with ABI. Strong levels of evidence were found for only four of the seven interventions (decompressive craniectomy, cerebrospinal fluid drainage, hypothermia and hyperbaric oxygen) and only for specific components of their use. Further research into all interventions is warranted.
Collapse
Affiliation(s)
- Matthew J Meyer
- Aging, Rehabilitation and Geriatric Care Program, Lawson Health Research Institute, London, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hong WC, Tu YK, Chen YS, Lien LM, Huang SJ. Subdural intracranial pressure monitoring in severe head injury: clinical experience with the Codman MicroSensor. ACTA ACUST UNITED AC 2007; 66 Suppl 2:S8-S13. [PMID: 17071260 DOI: 10.1016/j.surneu.2006.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Accepted: 07/24/2006] [Indexed: 02/03/2023]
Abstract
BACKGROUND Our main objective was to study the clinical outcome and complications of the subdural ICP monitoring with the CMS (Johnson and Johnson Medical Ltd, Raynhan, MA) in severe head injury. METHODS A retrospective analysis of patients with head injury with a GCS score of 8 or less was performed. Patients with severe systemic injury with hypotension (systolic blood pressure of <90 mm Hg on admission), a GCS score of 3 with fixed and dilated pupils after resuscitation, a GCS score of 3 to 4 whose family refused aggressive treatment, and those who were dead on arrival were excluded from this study. During the period from January 1997 to April 2004, 120 patients with severe head injuries were included and met criteria for insertion of a subdural ICP monitoring device (CMS). RESULTS A total of 120 patients (84 males and 36 females), aged 16 to 80 years old (mean, 43.8 +/- 14.4), were enrolled in the study. The average duration of ICP monitoring device use was 7.6 +/- 0.4 days (range, 2-14 days). The overall clinical outcomes of these patients were as follows: mortality rate, 13.5%; percentage of unfavorable outcomes, 17.3%; percentage of favorable outcomes, 69.2%. There were no complications such as CNS infection or hemorrhage in this study. CONCLUSION A subdural transducer-tipped catheter (CMS) can be used as the first-line equipment for monitoring ICP in patients with severe head injury. The clinical results are similar with other recent studies, but no complication such as infection or hemorrhage occurred in this study.
Collapse
Affiliation(s)
- Wei-Chen Hong
- Division of Neurosurgery, College of Medicine and Hospitals, National Taiwan University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
11
|
Abstract
Evidence suggests that the mortality and morbidity of acquired brain injury could be reduced if clinicians used an aggressive intracranial pressure guided approach to care. Despite nearly 50 years of evidence that intracranial pressure monitoring benefits patient care, only about half of the patients who could benefit are monitored. Some clinicians express concerns regarding risks such as bleeding, infections, and inaccuracy of the technology. Others cite cost as the reason. This article discusses the risks and benefits of intracranial pressure monitoring and the current state of evidence of why patients should be monitored.
Collapse
Affiliation(s)
- Karen March
- Department of Clinical Development, Integra NeuroScience, Plainsboro, NJ, USA.
| |
Collapse
|
12
|
Marcoux KK. Management of Increased Intracranial Pressure in the Critically Ill Child With an Acute Neurological Injury. ACTA ACUST UNITED AC 2005; 16:212-31; quiz 270-1. [PMID: 15876889 DOI: 10.1097/00044067-200504000-00012] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Increased intracranial pressure reflects the presence of mass effect in the brain and is associated with a poor outcome in children with acute neurological injury. If sustained, it has a negative effect on cerebral blood flow and cerebral perfusion pressure, can cause direct compression of vital cerebral structures, and can lead to herniation. The management of the patient with increased intracranial pressure involves the maintenance of an adequate cerebral perfusion pressure, prevention of intracranial hypertension, and optimization of oxygen delivery. This article reviews the neurological assessment, pathophysiology, and management of increased intracranial pressure in the critically ill child who has sustained an acute neurological injury.
Collapse
Affiliation(s)
- Kelly Keefe Marcoux
- Robert Wood Johnson Medical School, University of Medicine & Dentistry of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
13
|
Kerr ME, Weber BB, Sereika SM, Wilberger J, Marion DW. Dose response to cerebrospinal fluid drainage on cerebral perfusion in traumatic brain-injured adults. Neurosurg Focus 2001; 11:E1. [PMID: 16519419 DOI: 10.3171/foc.2001.11.4.2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Intracranial hypertension remains a common complication of traumatic brain injury (TBI). Ventriculostomy drainage is a recommended therapy to decrease intracranial pressure (ICP), but little empirical evidence exists to guide treatment. The authors conducted a study to examine systematically the effect of cerebral spinal fluid (CSF) drainage on ICP and indices of cerebral perfusion. METHODS Intracranial pressure, cerebral perfusion pressure (CPP), cerebral blood flow velocity (CBFV), and near-infrared spectroscopy-determined regional cerebral oxygenation (rSO2) were measured in 58 patients (with Glasgow Coma Scale scores < or = 8) before, during, and after ventriculostomy drainage. Three randomly ordered CSF drainage protocols varied in the volume of CSF removed (1 ml, 2 ml, and 3 ml). Physiological variables were time averaged in 1-minute blocks from baseline to 10 minutes after cessation of ventricular drainage. There was a significant dose-time interaction for ICP with the three-extraction volume protocol, with incremental decreases in ICP (F [20, 1055] = 6.10; p = 0.0001). There was a significant difference in the CPP depending on the amount of CSF removed (F [2, 1787] = 3.22; p = 0.040) and across time (F [10, 9.58] = 11.9; p = 0.0003) without a significant dose-time interaction. A 3-ml withdrawal of CSF resulted in a 10.1% decrease in ICP and a 2.2% increase in CPP, which were sustained for 10 minutes. There was no significant dose, time or dose-time interaction with CBFV or rSO2. CONCLUSIONS Cerebrospinal fluid drainage (3 ml) significantly reduced ICP and increased CPP for at least 10 minutes. Analysis of these findings supports the use of ventriculostomy drainage as a means of at least temporarily reducing elevated ICP in patients with TBI.
Collapse
Affiliation(s)
- M E Kerr
- University of Pittsburgh School of Nursing, Allegheny General Hospital, Pittsburgh, Pennsylvania, USA.
| | | | | | | | | |
Collapse
|