1
|
Ogawa B, Nakanishi Y, Wakamatsu M, Takahashi Y, Shibutani M. Repeated administration of acrylamide for 28 days reduces late-stage progenitor cells and immature granule cells accompanying impaired neurite outgrowth in the adult hippocampal neurogenesis in young-adult rats. J Toxicol Sci 2022; 47:467-482. [DOI: 10.2131/jts.47.467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bunichiro Ogawa
- Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd
| | - Yutaka Nakanishi
- Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd
| | - Masaki Wakamatsu
- Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd
| | - Yasunori Takahashi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Makoto Shibutani
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology
| |
Collapse
|
2
|
Pardo ID, Otis D, Ritenour HN, Bailey S, Masek-Hammerman K, Dowty HV, Bolon B, Palazzi X. Spontaneous Axonal Dystrophy in the Brain and Spinal Cord in Naïve Beagle Dogs. Toxicol Pathol 2020; 48:694-701. [PMID: 32476609 DOI: 10.1177/0192623320926475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Axonal dystrophy (AD) is a common age-related neurohistological finding in vertebrates that can be congenital or induced by xenobiotics, vitamin E deficiency, or trauma/compression. To understand the incidence and location of AD as a background finding in Beagle dogs used in routine toxicity studies, we examined central nervous system (CNS) and selected peripheral nervous system (PNS) tissues in twenty 18- to 24-month-old and ten 4- to 5-year-old control males and females. Both sexes were equally affected. The cuneate, gracile, and cochlear nuclei and the cerebellar white matter (rostral vermis) were the most common locations for AD. Incidence of AD increased with age in the cuneate nucleus, cerebellar white matter (rostral vermis), trigeminal nuclei/tracts, and lumbar spinal cord. Axonal dystrophy in the CNS was not accompanied by neuronal degeneration/necrosis, nerve fiber degeneration, and/or glial reaction. Axonal dystrophy was not observed in the PNS (sciatic nerve, vagus nerve branches, or gastrointestinal mural autonomic plexuses).
Collapse
Affiliation(s)
- Ingrid D Pardo
- Global Pathology and Investigative Toxicology, Pfizer Inc, Groton, CT, USA
| | - Diana Otis
- Global Pathology and Investigative Toxicology, Pfizer Inc, Groton, CT, USA
| | - Hayley N Ritenour
- Global Pathology and Investigative Toxicology, Pfizer Inc, Groton, CT, USA
| | - Steven Bailey
- Department of Statistics, Pfizer Inc, Cambridge, MA, USA
| | | | - Heather V Dowty
- Drug Safety Research and Development, Pfizer Inc, Cambridge, MA, USA
| | | | - Xavier Palazzi
- Global Pathology and Investigative Toxicology, Pfizer Inc, Groton, CT, USA
| |
Collapse
|
3
|
Abstract
Toxic peripheral neuropathies are an important form of acquired polyneuropathy produced by a variety of xenobiotics and different exposure scenarios. Delineating the mechanisms of neurotoxicants and determining the degenerative biological pathways triggered by peripheral neurotoxicants will facilitate the development of sensitive and specific biochemical-based methods for identifying neurotoxicants, designing therapeutic interventions, and developing structure-activity relationships for predicting potential neurotoxicants. This review presents an overview of the general concepts of toxic peripheral neuropathies with the goal of providing insight into why certain agents target the peripheral nervous system and produce their associated lesions. Experimental data and the main hypotheses for the mechanisms of selected agents that produce neuronopathies, axonopathies, or myelinopathies including covalent or noncovalent modifications, compromised energy or protein biosynthesis, and oxidative injury and disruption of ionic gradients across membranes are presented. The relevance of signaling between the main components of peripheral nerve, that is, glia, neuronal perikaryon, and axon, as a target for neurotoxicants and the contribution of active programmed degenerative pathways to the lesions observed in toxic peripheral neuropathies is also discussed.
Collapse
|
4
|
|
5
|
A Stochastic Multiscale Model That Explains the Segregation of Axonal Microtubules and Neurofilaments in Neurological Diseases. PLoS Comput Biol 2015; 11:e1004406. [PMID: 26285012 PMCID: PMC4540448 DOI: 10.1371/journal.pcbi.1004406] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/17/2015] [Indexed: 11/19/2022] Open
Abstract
The organization of the axonal cytoskeleton is a key determinant of the normal function of an axon, which is a long thin projection of a neuron. Under normal conditions two axonal cytoskeletal polymers, microtubules and neurofilaments, align longitudinally in axons and are interspersed in axonal cross-sections. However, in many neurotoxic and neurodegenerative disorders, microtubules and neurofilaments segregate apart from each other, with microtubules and membranous organelles clustered centrally and neurofilaments displaced to the periphery. This striking segregation precedes the abnormal and excessive neurofilament accumulation in these diseases, which in turn leads to focal axonal swellings. While neurofilament accumulation suggests an impairment of neurofilament transport along axons, the underlying mechanism of their segregation from microtubules remains poorly understood for over 30 years. To address this question, we developed a stochastic multiscale model for the cross-sectional distribution of microtubules and neurofilaments in axons. The model describes microtubules, neurofilaments and organelles as interacting particles in a 2D cross-section, and is built upon molecular processes that occur on a time scale of seconds or shorter. It incorporates the longitudinal transport of neurofilaments and organelles through this domain by allowing stochastic arrival and departure of these cargoes, and integrates the dynamic interactions of these cargoes with microtubules mediated by molecular motors. Simulations of the model demonstrate that organelles can pull nearby microtubules together, and in the absence of neurofilament transport, this mechanism gradually segregates microtubules from neurofilaments on a time scale of hours, similar to that observed in toxic neuropathies. This suggests that the microtubule-neurofilament segregation can be a consequence of the selective impairment of neurofilament transport. The model generates the experimentally testable prediction that the rate and extent of segregation will be dependent on the sizes of the moving organelles as well as the density of their traffic. The shape and function of axons is dependent on a dynamic system of microscopic intracellular protein polymers (microtubules, neurofilaments and microfilaments) that comprise the axonal cytoskeleton. Neurofilaments are cargoes of intracellular transport that move along microtubule tracks, and they accumulate abnormally in axons in many neurotoxic and neurodegenerative disorders. Intriguingly, it has been reported that neurofilaments and microtubules, which are normally interspersed in axonal cross-sections, often segregate apart from each other in these disorders, which is something that is never observed in healthy axons. Here we describe a stochastic multiscale computational model that explains the mechanism of this striking segregation and offers insights into the mechanism of neurofilament accumulation in disease.
Collapse
|
6
|
Akane H, Saito F, Shiraki A, Takeyoshi M, Imatanaka N, Itahashi M, Murakami T, Shibutani M. Downregulation of immediate-early genes linking to suppression of neuronal plasticity in rats after 28-day exposure to glycidol. Toxicol Appl Pharmacol 2014; 279:150-62. [DOI: 10.1016/j.taap.2014.05.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 05/05/2014] [Accepted: 05/28/2014] [Indexed: 11/26/2022]
|
7
|
Akane H, Shiraki A, Imatanaka N, Akahori Y, Itahashi M, Abe H, Shibutani M. Glycidol induces axonopathy and aberrations of hippocampal neurogenesis affecting late-stage differentiation by exposure to rats in a framework of 28-day toxicity study. Toxicol Lett 2014; 224:424-32. [DOI: 10.1016/j.toxlet.2013.10.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/22/2013] [Accepted: 10/23/2013] [Indexed: 11/30/2022]
|
8
|
Llorens J. Toxic neurofilamentous axonopathies -- accumulation of neurofilaments and axonal degeneration. J Intern Med 2013; 273:478-89. [PMID: 23331301 DOI: 10.1111/joim.12030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A number of neurotoxic chemicals induce accumulation of neurofilaments in axonal swellings that appear at varying distances from the cell body. This pathology is associated with axonal degeneration of different degrees. The clinical manifestation is most commonly that of a mixed motor-sensory peripheral axonopathy with a disto-proximal pattern of progression, as in cases of chronic exposure to n-hexane and carbon disulphide. It has been demonstrated that protein adduct formation is a primary molecular mechanism of toxicity in these axonopathies, but how this mechanism leads to neurofilament accumulation and axonal degeneration remains unclear. Furthermore, little is known regarding the mechanisms of neurofilamentous axonopathy caused by 3,3'-iminodipropionitrile, an experimental toxin that induces proximal axon swelling that is strikingly similar to that found in early amyotrophic lateral sclerosis. Here, we review the available data and main hypotheses regarding the toxic axonopathies and compare them with the current knowledge of the biological basis of neurofilament transport. We also review recent studies addressing the question of how these axonopathies may cause axonal degeneration. Understanding the mechanisms underlying the toxic axonopathies may provide insight into the relationship between neurofilament behaviour and axonal degeneration, hopefully enabling the identification of new targets for therapeutic intervention. Because neurofilament abnormalities are a common feature of many neurodegenerative diseases, advances in this area may have a wider impact beyond toxicological significance.
Collapse
Affiliation(s)
- J Llorens
- Departament de Ciències Fisiològiques II, Universitat de Barcelona and Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Catalunya, Spain.
| |
Collapse
|
9
|
Akane H, Shiraki A, Imatanaka N, Akahori Y, Itahashi M, Ohishi T, Mitsumori K, Shibutani M. Glycidol Induces Axonopathy by Adult-Stage Exposure and Aberration of Hippocampal Neurogenesis Affecting Late-Stage Differentiation by Developmental Exposure in Rats. Toxicol Sci 2013; 134:140-54. [DOI: 10.1093/toxsci/kft092] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
10
|
Kaufmann W, Bolon B, Bradley A, Butt M, Czasch S, Garman RH, George C, Gröters S, Krinke G, Little P, McKay J, Narama I, Rao D, Shibutani M, Sills R. Proliferative and nonproliferative lesions of the rat and mouse central and peripheral nervous systems. Toxicol Pathol 2012; 40:87S-157S. [PMID: 22637737 DOI: 10.1177/0192623312439125] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Harmonization of diagnostic nomenclature used in the pathology analysis of tissues from rodent toxicity studies will enhance the comparability and consistency of data sets from different laboratories worldwide. The INHAND Project (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice) is a joint initiative of four major societies of toxicologic pathology to develop a globally recognized nomenclature for proliferative and nonproliferative lesions in rodents. This article recommends standardized terms for classifying changes observed in tissues of the mouse and rat central (CNS) and peripheral (PNS) nervous systems. Sources of material include academic, government, and industrial histopathology databases from around the world. Covered lesions include frequent, spontaneous, and aging-related changes as well as principal toxicant-induced findings. Common artifacts that might be confused with genuine lesions are also illustrated. The neural nomenclature presented in this document is also available electronically on the Internet at the goRENI website (http://www.goreni.org/).
Collapse
|
11
|
Elci OC, Yener G, Ucku R. Working conditions and related neuropsychiatric problems among shoemakers in Turkey: Do child workers differ from others? Indian J Occup Environ Med 2011; 11:9-14. [PMID: 21957366 PMCID: PMC3168113 DOI: 10.4103/0019-5278.32458] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Objective: In this cross-sectional study, we investigated working conditions and related neuropsychiatric problems of shoemakers, including child workers, working in poor conditions with high health risks. Clinical diagnosis was not the objective of this study. Materials and Methods: We collected data from 318 workers ranging from 8-66 years of age. We evaluated working conditions, neuropathy symptoms and signs; urinary 2,5-hexanedione was used to estimate hexane exposure. We used the Zung depression scale for adult shoemakers to evaluate depression. Results: All workshops employed fewer than 10 workers with median daily work duration of 12h. Smoking and alcohol consumption were high among all workers including children. Peripheral neuropathy symptoms and signs were observed in 88 workers (27.8%) and it was related to alcohol consumption. Sixty-eight workers (47.9%) had depression and it was associated with daily work duration. Conclusion: Extremely poor, unhygienic, working conditions and a high prevalence of neuropsychiatric disorders were the main problems observed among shoemakers. A high number of child workers increased the scale of these observed problems.
Collapse
Affiliation(s)
- Omur Cinar Elci
- Division of Community Health and Preventive Medicine, Brody School of Medicine at East Carolina University, Greenville NC, USA
| | | | | |
Collapse
|
12
|
Ding N, Xiang Y, Jiang H, Zhang W, Liu H, Li Z. Carbon Disulfide Inhibits Neurite Outgrowth and Neuronal Migration of Dorsal Root Ganglion In Vitro. Int J Neurosci 2011; 121:649-54. [DOI: 10.3109/00207454.2011.604757] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Abstract
There is an urgent need to develop efficient and rapid strategies in order to characterize the potential health risks associated with nanomaterials, given the speed with which applications and uses are increasing. Use of standard toxicity methods will not be sufficient to meet this need. This article proposes the adoption of two novel guidances: the system’s biological approach to toxicity testing advocated by the US National Research Council and a nanobiological perspective that identifies key events at the nanoscale that are relevant to signal transduction and structural biology.
Collapse
Affiliation(s)
- JF Nyland
- Department of Pathology, Microbiology and Immunology, University of South Carolina, School of Medicine, Columbia, South Carolina, USA
| | - EK Silbergeld
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA,
| |
Collapse
|
14
|
Perrot R, Eyer J. Neuronal intermediate filaments and neurodegenerative disorders. Brain Res Bull 2009; 80:282-95. [PMID: 19539727 DOI: 10.1016/j.brainresbull.2009.06.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 06/05/2009] [Accepted: 06/05/2009] [Indexed: 12/12/2022]
Abstract
Intermediate filaments represent the most abundant cytoskeletal element in mature neurons. Mutations and/or accumulations of neuronal intermediate filament proteins are frequently observed in several human neurodegenerative disorders. Although it is now admitted that disorganization of the neurofilament network may be directly involved in neurodegeneration, certain type of perikaryal intermediate filament aggregates confer protection in motor neuron disease. The use of various mouse models provided a better knowledge of the role played by the disorganization of intermediate filaments in the pathogenesis of neurodegenerative disorders, but the mechanisms leading to the formation of these aggregates remain elusive. Here, we will review some neurodegenerative diseases involving intermediate filaments abnormalities and possible mechanisms susceptible to provoke them.
Collapse
Affiliation(s)
- Rodolphe Perrot
- Department of Anatomy and Physiology of Laval University, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec, Canada
| | | |
Collapse
|
15
|
Sabri MI, Hashemi SB, Lasarev MR, Spencer PS. Axonopathy-Inducing 1,2-Diacetylbenzene Forms Adducts with Motor and Cytoskeletal Proteins Required for Axonal Transport. Neurochem Res 2007; 32:2152-9. [PMID: 17577667 DOI: 10.1007/s11064-007-9392-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Accepted: 05/18/2007] [Indexed: 11/26/2022]
Abstract
The aromatic hydrocarbon 1,2-diacetylbenzene (1,2-DAB) is a protein-reactive gamma-diketone metabolite of the neurotoxic solvent 1,2-diethylbenzene (1,2-DEB). The effect of neurotoxic 1,2-DAB and its non-neurotoxic isomer 1,3-DAB has been studied on motor proteins and cytoskeletal proteins of rat spinal cord (SC). For in vitro studies, SC slices were incubated with 1, 2, 5, 10 mM of DAB isomers for 30 min at 37 degrees C. For in vivo studies, rats received (i.p.) 20 mg/kg/day of 1,2-DAB or 1,3-DAB, or vehicle (2% acetone in saline), 5 days a week for 2 weeks. Spinal cord and sciatic nerve proteins were subjected to Western blotting using monoclonal mouse antibodies to NF-M, kinesin, dynein, and tau. Proteins were quantified and paired mean comparisons performed to assess concentration-dependent changes in native protein bands. In vitro, 1,2-DAB produced a concentration-dependent decrease of motor and cytoskeletal proteins. While dynein and tau appeared similarly affected by 1,2-DAB, kinesin was most affected by the toxicant. In vivo, 1,2-DAB affected motor and cytoskeletal proteins of sciatic nerves and spinal cord differentially. In general, sciatic nerve proteins were much more affected than spinal cord proteins. The results show that motor proteins that drive axonal transport anterogradely (kinesin) and retrogradely (dynein), cytoskeletal protein NF-M, which is slowly transported in the anterograde direction, and microtubule-associated protein, tau, which is involved in axonal transport, are differentially impacted by 1,2-DAB. By contrast, non-neurotoxic isomer 1,3-diacetylbenzene (1,3-DAB), had no adverse effect on neural proteins either in vitro or in vivo. 2D-Differential in gel electrophoresis (2D-DIGE) of sciatic nerves from neurotoxic 1,2-DAB and non-neurotoxic 1,3-DAB treated rats revealed 197 and 304 protein spots, respectively.
Collapse
Affiliation(s)
- Mohammad I Sabri
- Center for Research on Occupational & Environmental Toxicology, L606, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | | | |
Collapse
|
16
|
Prieto-Castelló MJ, Hernández-Viadel ML, Cardona A, Marhuenda D, Felipo V. Activation of soluble guanylate cyclase by nitric oxide is increased in lymphocytes from both rats chronically exposed to 2,5-hexanedione and workers chronically exposed to n-hexane. Toxicology 2006; 229:73-8. [PMID: 17125898 DOI: 10.1016/j.tox.2006.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 09/26/2006] [Accepted: 10/09/2006] [Indexed: 12/01/2022]
Abstract
Although occupational exposure to n-hexane induces neurotoxic effects in the central and peripheral nervous systems, the mechanisms of its neurotoxicity remain unclear. n-Hexane is metabolized to 2,5-hexanedione (2,5-HD), which is the neurotoxic agent and the indicator chosen for the biological monitoring of exposed workers. It has been previously reported that chronic exposure to 2,5-HD impairs the glutamate-nitric oxide-cyclic GMP pathway at the level of activation of soluble guanylate cyclase (sGC) enzyme by nitric oxide (NO), both in cultured neurons and in the cerebellum of rats in vivo. The aim of this study was to assess whether the activation of sGC by NO is also altered in lymphocytes from rats treated with 2,5-HD and/or workers chronically exposed to n-hexane. Lymphocytes were isolated from male Wistar rats treated with 2,5-HD in drinking water, and from blood samples from shoe-factory workers environmentally and chronically exposed to n-hexane. Urine samples were also collected from workers at the end of the shift in order to measure the urinary levels of 2,5-HD. Activation of sGC by NO was significantly higher (p<0.05) in lymphocytes from rats treated with 2,5-HD than in control rats. In isolated lymphocytes from exposed workers the activation of sGC by NO also increases (p<0.05) in contrast to the controls. The results presented here indicate that the activation of lymphocytes could be an indicator of the toxicity produced by being exposed to n-hexane, since the effects observed in workers chronically exposed to n-hexane are similar to those found in rats chronically treated with 2,5-HD in drinking water.
Collapse
Affiliation(s)
- M J Prieto-Castelló
- Faculty of Medicine, Legal and Forensic Medicine Division, Miguel Hernández University, Carretera Alicante-Valencia, San Juan, Spain.
| | | | | | | | | |
Collapse
|
17
|
Prieto MJ, Marhuenda D, Roel J, Cardona A. Free and total 2,5-hexanedione in biological monitoring of workers exposed to n-hexane in the shoe industry. Toxicol Lett 2004; 145:249-60. [PMID: 14580896 DOI: 10.1016/s0378-4274(03)00302-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVES To analyse the role of total 2,5-hexanedione (2,5-HD) compared with free 2,5-HD as a biological indicator of exposure to n-hexane at work. METHODS One-hundred and thirty two workers in contact with this solvent during their occupation in the shoe industry in the province of Alicante (Spain) were studied. Environmental and biological tests were carried out analysing variations of the concentration of the metabolite in urine corresponding to different working conditions. Environmental exposure was evaluated in each work place using active personal monitors and measured by gas chromatography (GC). Dichloromethane extracts of the urine samples collected at the end of the working shifts were analysed, before (determining free 2,5-HD, the toxic metabolite) and after acid hydrolysis (pH 0.1) (yielding the total 2,5-HD) and also by GC. The concentration of conjugated metabolite 4,5-dihydroxy-2-hexanone was calculated from the difference between total and free 2,5-HD. RESULTS Free 2,5-HD represented an average of 14.2% of the total 2,5-HD determined in urine, and this percentage increased significantly (P<0.01) with higher environmental levels of acetone. Other factors, such as absorption through the skin (depending on the use of gloves) and the day on which samples were taken also significantly affected the relation between the two indicators and their respective relationships with environmental concentrations of n-hexane. CONCLUSION Although analyses of the relationship between the levels of atmospheric n-hexane and those of metabolites in urine show a greater correlation for total 2,5-HD than for free 2,5-HD, our results suggest that free 2,5-HD could be a better indicator in evaluating risk of exposure to n-hexane, since the concentration is directly related to the neurotoxic effect.
Collapse
Affiliation(s)
- M J Prieto
- Faculty of Medicine, Legal and Forensic Medicine Division, University of Miguel Hernández, Apdo Correos no 18, E-03550 San Juan, Alicante, Spain.
| | | | | | | |
Collapse
|
18
|
Abstract
Kinesins are motor proteins that move cargoes such as vesicles, organelles and chromosomes along microtubules. They are best known for their role in axonal transport and in mitosis. There is a diverse family of kinesins, members of which differ in composition and functions. Roles of kinesins in diseases typically involve defective transport of cell components, transport of pathogens, or cell division.
Collapse
|
19
|
Spencer PS, Kim MS, Sabri MI. Aromatic as well as aliphatic hydrocarbon solvent axonopathy. Int J Hyg Environ Health 2002; 205:131-6. [PMID: 12018006 DOI: 10.1078/1438-4639-00138] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Superfund sites that contain mixtures of aromatic and aliphatic solvents represent an undefined health hazard. After prolonged exposure to relatively high levels of certain aliphatic solvents (e.g. n-hexane, 2-hexanone), humans and animals develop a dose-dependent neurodegeneration that occurs clinically as a symmetrical peripheral neuropathy. This is triggered by the action of 2,5-hexanedione (1,2-diacetylethane), a 1,4-diketone (gamma-diketone) metabolite that targets proteins required for the maintenance of neuronal (and testicular Sertoli cell) integrity. Certain aromatic solvents (1,2-diethylbenzene, 1,2,4-triethylbenzene) cause electrophysiological changes consistent with sensorimotor neuropathy in rodents, but the underlying mechanisms and pathogenesis are unclear. Our recent studies show that the o-diacetyl derivative and likely metabolite of 1,2-diethylbenzene, 1,2-diacetylbenzene, behaves as a neurotoxic (aromatic) gamma-diketone of high neurotoxic potency. Rats treated with 1,2-diacetylbenzene develop limb weakness associated with proximal, neurofilament-filled giant axonal swellings comparable to those seen in animals treated with the potent 3,4-dimethyl derivative of 2,5-hexanedione. The blue chromogen induced by treatment with 1,2-diacetylbenzene is under study as a possible urinary biomarker of exposure to aromatic solvents (e.g. 1,2-diethylbenzene, tetralin) with neurotoxic potential. Development and validation of sensitive new biomarkers, especially for non-cancer endpoints, will aid in assessing the health risk associated with exposure to hazardous substances at Superfund sites.
Collapse
Affiliation(s)
- Peter S Spencer
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, 3181 S. W. Sam Jackson Park Road, Portland, Oregon 97201, USA.
| | | | | |
Collapse
|