1
|
Zhou H, Huang B, Han Y, Jin R, Chen S. Probucol inhibits JAK2−STAT pathway activation and protects human glomerular mesangial cells from tert-butyl hydroperoxide induced premature senescence. Can J Physiol Pharmacol 2013; 91:671-9. [PMID: 23984931 DOI: 10.1139/cjpp-2012-0343] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human mesangial cells (HMCs) have a finite lifespan and eventually enter irreversible growth arrest known as cellular senescence, which is thought to contribute to kidney ageing and age-related kidney disorders such as chronic kidney disease. The JAK2−STAT pathway plays a pivotal role in transmitting cytokine signals, including cell proliferation, apoptosis, and differentiation, but whether it could regulate HMC senescence still remains to be explored. In our study, tert-butyl hydroperoxide (tBHP)-induced cells accelerated HMC senescence, as judged by increased senescence-associated β-galactosidase stained positive cells, morphological changes, and G0−G1 cell cycle arrest. STAT1 and STAT3 activity were increased in tBHP-induced cells. After tBHP treatment, Bcl-2 protein expression decreased and Bax protein expression increased. Blocking the JAK2−STAT pathway with AG490 and using probucol significantly inhibited the progression of HMC senescence. Bax protein expression decreased, but Bcl-2 protein expression increased after AG490 and probucol treatment. Our results indicated that the JAK2−STAT pathway might mediate tBHP-induced HMC senescence through the Bcl-2−Bax pathway, and that probucol could attenuate HMC senescence by regulating STATs.
Collapse
Affiliation(s)
- Hongli Zhou
- Department of Nephrology, First Affiliated Hospital of Liaoning Medical College, No. 2, Section 5, RenMin Street, Guta District, Jinzhou City, Liaoning Province 121001, P. R. China
| | - Bo Huang
- Department of Thoracic Surgery, First Affiliated Hospital of Liaoning Medical College, No. 2, Section 5, RenMin Street, Guta District, Jinzhou City, Liaoning Province 121001, P. R. China
| | - Yarong Han
- Department of Nephrology, First Affiliated Hospital of Liaoning Medical College, No. 2, Section 5, RenMin Street, Guta District, Jinzhou City, Liaoning Province 121001, P. R. China
| | - Ruixia Jin
- Department of Nephrology, First Affiliated Hospital of Liaoning Medical College, No. 2, Section 5, RenMin Street, Guta District, Jinzhou City, Liaoning Province 121001, P. R. China
| | - Shuo Chen
- Department of Nephrology, First Affiliated Hospital of Liaoning Medical College, No. 2, Section 5, RenMin Street, Guta District, Jinzhou City, Liaoning Province 121001, P. R. China
| |
Collapse
|
2
|
Jiao S, Zheng X, Yang X, Zhang J, Wang L. Losartan inhibits STAT1 activation and protects human glomerular mesangial cells from angiotensin II induced premature senescence. Can J Physiol Pharmacol 2012; 90:89-98. [PMID: 22217266 DOI: 10.1139/y11-105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human glomerular mesangial cells (HMCs) have a finite lifespan, and eventually enter irreversible growth arrest known as cellular senescence, which is thought to contribute to kidney ageing and age-related kidney disorders, such as chronic kidney disease. The signal transducer and activator of transcription 1 (STAT1) is a latent transcription factor involved in a variety of signal transduction pathways, including cell proliferation, apoptosis, and differentiation, but whether it could regulate HMC senescence still remains to be explored. In our study, the induction of angiotensin II (Ang II)-accelerated HMC senescence, as judged by increased senescence-associated β-galactosidase (SA-β-gal)-positive staining cells, morphological changes, and G0/G1 cell cycle arrest. STAT1 activity and the expression of p53 and p21Cip1 were increased after Ang II treatment. STAT1 knockdown using RNA interference significantly inhibited the progression of HMC senescence and decreased the elevated expression of p53 and p21Cip1. Pretreating HMCs with Ang II receptor blocker losartan also inhibited the progression of HMC senescence and STAT1 activity. Our results indicate that STAT1 is implicated in the mediation of Ang II-induced HMC senescence through p53/ p21Cip1 pathway, and that losartan could attenuate HMC senescence by regulating STAT1. The antioxidant N-acetyl-L-cysteine reduced ROS production and STAT1 activity induced by Ang II, indicating that Ang II uses ROS as a second messenger to regulate STAT1 activity.
Collapse
Affiliation(s)
- Sumin Jiao
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P. R. China
| | - Xiaoyu Zheng
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P. R. China
| | - Xue Yang
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P. R. China
| | - Jin Zhang
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P. R. China
| | - Lining Wang
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P. R. China
| |
Collapse
|
3
|
STAT1 mediates cellular senescence induced by angiotensin II and H2O2 in human glomerular mesangial cells. Mol Cell Biochem 2011; 365:9-17. [DOI: 10.1007/s11010-011-1197-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Accepted: 12/13/2011] [Indexed: 01/22/2023]
|
4
|
Marcos-Carcavilla A, Moreno C, Serrano M, Laurent P, Cribiu EP, Andréoletti O, Ruesche J, Weisbecker JL, Calvo JH, Moazami-Goudarzi K. Polymorphisms in the HSP90AA1 5' flanking region are associated with scrapie incubation period in sheep. Cell Stress Chaperones 2010; 15:343-9. [PMID: 19838832 PMCID: PMC3082647 DOI: 10.1007/s12192-009-0149-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 10/02/2009] [Accepted: 10/08/2009] [Indexed: 10/20/2022] Open
Abstract
Susceptibility to scrapie is mainly controlled by point mutations at the PRNP locus. However, additional quantitative trait loci (QTL) have been identified across the genome including a region in OAR18. The gene which encodes the inducible form of the cytoplasmic Hsp90 chaperone (HSP90AA1) maps within this region and seems to be associated with the resistance/susceptibility to scrapie in sheep. Here, we have analyzed several polymorphisms which were previously described in the ovine HSP90AA1 5' flanking region and in intron 10 in two naturally scrapie infected Romanov sheep populations. First, we have studied 58 ARQ/VRQ animals pertaining to the sire family where the QTL influencing scrapie incubation period in OAR18 was detected. We have found a significant association between polymorphisms localized at -660 and -528 in the HSP90AA1 5' flanking region and the scrapie incubation period. These two polymorphisms have also been studied in a second sample constituted by 62 VRQ/VRQ sheep showing an extreme incubation period. Results are concordant with the first dataset. Finally, we have studied the HSP90AA1 expression in scrapie and control animals (N = 41) with different HSP90AA1 genotypes by real time PCR on blood samples. The HSP90AA1 expression rate was equivalent in CC(-600)AA(-528) and CG(-600)AG(-528) scrapie resistant animals (ARR/ARR) and was higher in their CC(-600)AA(-528) than in their CG(-600)AG(-528) scrapie susceptible counterparts (VRQ/VRQ). Our results support the hypothesis that the ovine HSP90AA1 gene acts as a modulator of scrapie susceptibility, contributing to the observed differences in the incubation period of scrapie infected animals with the same PRNP genotype.
Collapse
Affiliation(s)
| | - Carole Moreno
- INRA, UR631, BP52627, 31326 Castanet-Tolosan, France
| | | | | | | | | | | | | | - Jorge H. Calvo
- Unidad de Tecnología en Producción Animal, CITA, 50059 Zaragoza, Spain
| | | |
Collapse
|
5
|
Shan H, Bai X, Chen X. Angiotensin II induces endothelial cell senescence via the activation of mitogen-activated protein kinases. Cell Biochem Funct 2008; 26:459-66. [PMID: 18383564 DOI: 10.1002/cbf.1467] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Vascular endothelial cells have a finite cell lifespan and eventually enter an irreversible growth arrest, cellular senescence. The functional changes associated with cellular senescence are thought to contribute to human aging and age-related cardiovascular disorders, for example, atherosclerosis. Angiotensin II (Ang II), a principal effector of the renin-angiotensin system (RAS), an important signaling molecule involved in atherogenic stimuli, is known to promote aging and cellular senescence. In the present study, induction of Ang II promoted a growth arrest with phenotypic characteristics of cell senescence, such as enlarged cell shapes, increased senescence-associated beta-galactosidase (SA-beta-gal) positive staining cells, and depressed cell proliferation. Ang II drastically decreased the expression level of Bcl-2, in part via the activation of extracellular signal-regulated kinase (ERK). Our results suggest that Ang II can induce HUVEC senescence; one of its molecular mechanisms is a probability that the mitogen-activated protein kinase (MAPK) signal pathway is involved in the process of pathological and physiological senescence of endothelial cells as well as vascular aging.
Collapse
Affiliation(s)
- Haiyan Shan
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | | | | |
Collapse
|
6
|
Herr D, Rodewald M, Fraser HM, Hack G, Konrad R, Kreienberg R, Wulff C. Regulation of endothelial proliferation by the renin–angiotensin system in human umbilical vein endothelial cells. Reproduction 2008; 136:125-30. [DOI: 10.1530/rep-07-0374] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study was performed in order to evaluate the role of angiotensin II in physiological angiogenesis. Human umbilical vein endothelial cells (HUVEC) were stained for angiotensin II type 1 receptor (AGTR1) immunocytochemically and for gene expression of renin–angiotensin system (RAS) components. The regulation of the angiogenesis-associated genes vascular endothelial growth factor (VEGF) and angiopoietins (ANGPT1andANGPT2) were studied using quantitative RT-PCR. Furthermore, we examined the effect of angiotensin II on the proliferation of HUVEC using Ki-67 as well as BrdU immunocytochemistry and investigated whether the administration of the AGTR1 blocker candesartan or the VEGF antagonist FLT1-Fc could suppress the observed angiotensin II-dependent proangiogenic effect. AGTR1 was expressed in HUVEC and the administration of angiotensin II significantly increased the gene expression ofVEGFand decreased the gene expression ofANGPT1. Since the expression ofANGPT2was not affected significantly the ratio of ANGPT1/ANGPT2 was decreased. In addition, a significantly increased endothelial cell proliferation was observed after stimulation with angiotensin II, which was suppressed by the simultaneous administration of candesartan or the VEGF antagonist FLT1-Fc. These results indicate the potential capacity of angiotensin II in influencing angiogenesis by the regulation of angiogenesis-associated genes via AGTR1. Since VEGF blockade opposed the effect of angiotensin II on cell proliferation, it is hypothesised that VEGF mediates the angiotensin II-dependent effect in concert with the changes in angiopoietin expression. This is the first report of the RAS on the regulation of angiogenesis-associated genes in physiology.
Collapse
|
7
|
Herr D, Rodewald M, Fraser HM, Hack G, Konrad R, Kreienberg R, Wulff C. Potential role of Renin-Angiotensin-system for tumor angiogenesis in receptor negative breast cancer. Gynecol Oncol 2008; 109:418-25. [PMID: 18395779 DOI: 10.1016/j.ygyno.2008.02.019] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 02/04/2008] [Accepted: 02/19/2008] [Indexed: 01/24/2023]
Abstract
OBJECTIVE This study examined the potential role of Angiotensin II for the regulation of angiogenesis associated genes in receptor positive and negative human breast cancer. METHODS Expression of different Renin-Angiotensin system (RAS) components in human breast cancer tissue was investigated using immunofluorescence, and in a receptor positive (MCF-7) and receptor negative (MDA-MB 468) breast cancer cell line by performing immunocytochemistry and RT-PCR. Both cell lines were stimulated with Angiotensin II and Angiotensin II receptor type 1 (At(1)R) blocker Candesartan, and gene expression of vascular endothelial growth factor (VEGF), Angiopoietin 1 and 2 (Ang-1 and Ang-2), tissue inhibitor of matrix metalloproteinases 1 (TIMP-1), and hypoxia inducible transcription factor 2alpha (HIF-2alpha) were quantified by TaqMan-Real-Time PCR analysis. RESULTS RAS components, Angiotensinogen, Renin, Angiotensin I-converting enzyme (ACE), and At(1)R and At(2)R were expressed in hormone-receptor negative and positive human breast cancer tissue as well as in MDA-MB 468 and in MCF-7 human breast cancer cells. In addition, we found expression of VEGF, Ang-1, TIMP-1, and HIF-2alpha in both cell lines. However, only in receptor negative MDA-MB 468 cells, did Angiotensin II significantly increase gene expression of VEGF, HIF-2alpha, and TIMP-1. This effect was completely inhibited by Candesartan. CONCLUSION In conclusion, it is hypothesized that Angiotensin II may be involved in regulation of tumor angiogenesis especially in receptor negative breast cancer by regulation of angiogenesis associated genes via At(1)R. These findings are the first evidence for targeting tumor angiogenesis by inhibition of At(1)R in receptor negative human breast cancer cells and may lead to new therapeutical anticancer strategies based upon inhibition of At(1)R.
Collapse
Affiliation(s)
- D Herr
- Department of Obstetrics and Gynecology, Ulm University Medical Center, Prittwitzstrasse 43, 89075 Ulm, Germany
| | | | | | | | | | | | | |
Collapse
|
8
|
Marcos-Carcavilla A, Calvo JH, González C, Moazami-Goudarzi K, Laurent P, Bertaud M, Hayes H, Beattie AE, Serrano C, Lyahyai J, Martín-Burriel I, Serrano M. Structural and functional analysis of the HSP90AA1 gene: distribution of polymorphisms among sheep with different responses to scrapie. Cell Stress Chaperones 2008; 13:19-29. [PMID: 18347938 PMCID: PMC2666211 DOI: 10.1007/s12192-007-0004-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 07/13/2007] [Accepted: 07/19/2007] [Indexed: 11/30/2022] Open
Abstract
Scrapie is a transmissible spongiform encephalopathy in sheep and goats. Susceptibility to this neurodegenerative disease is mainly controlled by point mutations at the PRNP locus. Other genes, apart from PRNP, have been reported to modulate resistance/susceptibility to scrapie. On the basis of several studies in Alzheimer and different transmissible spongiform encephalopathy models, HSP90AA1 was chosen as a putative positional and functional candidate gene that might be involved in the polygenic variance mentioned above. In the present work, the ovine HSP90AA1 gene including the promoter and other regulatory regions has been isolated and characterized. Several sequence polymorphisms have also been identified. FISH-mapping localized the HSP90AA1 gene on ovine chromosome OAR19q24dist, which was confirmed by linkage analysis. This chromosome region has been shown to include a quantitative trait loci (QTL) for scrapie incubation period in sheep. Expression analyses were carried out in spleen and cerebellum samples. No differences in the expression of the HSP90AA1 gene were found in any of these tissues (p > 0.05) between control and infected animal samples. Nevertheless, association analyses revealed that several polymorphisms in the 5' and 3' regions of the HSP90AA1 gene were differentially distributed among animals with different responses to scrapie infection. Thus, results presented here support the hypothesis that HSP90AA1 could be a positional and functional candidate gene modulating the response to scrapie in sheep.
Collapse
|