1
|
Fang J, Wang Z, Miao CY. Angiogenesis after ischemic stroke. Acta Pharmacol Sin 2023; 44:1305-1321. [PMID: 36829053 PMCID: PMC10310733 DOI: 10.1038/s41401-023-01061-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/01/2023] [Indexed: 02/26/2023] Open
Abstract
Owing to its high disability and mortality rates, stroke has been the second leading cause of death worldwide. Since the pathological mechanisms of stroke are not fully understood, there are few clinical treatment strategies available with an exception of tissue plasminogen activator (tPA), the only FDA-approved drug for the treatment of ischemic stroke. Angiogenesis is an important protective mechanism that promotes neural regeneration and functional recovery during the pathophysiological process of stroke. Thus, inducing angiogenesis in the peri-infarct area could effectively improve hemodynamics, and promote vascular remodeling and recovery of neurovascular function after ischemic stroke. In this review, we summarize the cellular and molecular mechanisms affecting angiogenesis after cerebral ischemia registered in PubMed, and provide pro-angiogenic strategies for exploring the treatment of ischemic stroke, including endothelial progenitor cells, mesenchymal stem cells, growth factors, cytokines, non-coding RNAs, etc.
Collapse
Affiliation(s)
- Jie Fang
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, 200433, China
| | - Zhi Wang
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, 200433, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
2
|
Spartalis E, Spartalis M, Athanasiou A, Paschou SA, Patelis N, Voudris V, Iliopoulos DC. Endothelium in Aortic Aneurysm Disease: New Insights. Curr Med Chem 2020; 27:1081-1088. [PMID: 31549591 DOI: 10.2174/0929867326666190923151959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/10/2019] [Accepted: 04/28/2019] [Indexed: 01/12/2023]
Abstract
Inflammation is recognized as a fundamental element in the development and growth of aortic aneurysms. Aortic aneurysm is correlated with aortic wall deformities and injury, as a result of inflammation, matrix metalloproteinases activation, oxidative stress, and apoptosis of vascular smooth muscle cells. The endothelial wall has a critical part in the inflammation of the aorta and endothelial heterogeneity has proven to be significant for modeling aneurysm formation. Endothelial shear stress and blood flow affect the aortic wall through hindrance of cytokines and adhesion molecules excreted by endothelial cells, causing reduction of the inflammation process in the media and adventitia. This pathophysiological process results in the disruption of elastic fibers, degradation of collagen fibers, and destruction of vascular smooth muscle cells. Consequently, the aortic wall is impaired due to reduced thickness, decreased mechanical function, and cannot tolerate the impact of blood flow leading to aortic expansion. Surgery is still considered the mainstay therapy for large aortic aneurysms. The prevention of aortic dilation, though, is based on the hinderance of endothelial dysregulation with drugs, the reduction of reactive oxygen and nitrogen species, and also the reduction of pro-inflammatory molecules and metalloproteinases. Further investigations are required to enlighten the emerging role of endothelial cells in aortic disease.
Collapse
Affiliation(s)
- Eleftherios Spartalis
- Laboratory of Experimental Surgery and Surgical Research, University of Athens, Medical School, Athens, Greece
| | - Michael Spartalis
- Division of Cardiology, Onassis Cardiac Surgery Center, Athens, Greece
| | - Antonios Athanasiou
- Laboratory of Experimental Surgery and Surgical Research, University of Athens, Medical School, Athens, Greece
| | - Stavroula A. Paschou
- Division of Endocrinology and Diabetes, "Aghia Sophia" Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nikolaos Patelis
- Laboratory of Experimental Surgery and Surgical Research, University of Athens, Medical School, Athens, Greece
| | - Vassilis Voudris
- Division of Cardiology, Onassis Cardiac Surgery Center, Athens, Greece
| | - Dimitrios C. Iliopoulos
- Laboratory of Experimental Surgery and Surgical Research, University of Athens, Medical School, Athens, Greece
| |
Collapse
|
3
|
Uchida E, Chambers JK, Nakashima K, Saito T, Ohno K, Tsujimoto H, Nakayama H, Uchida K. Pathologic Features of Colorectal Inflammatory Polyps in Miniature Dachshunds. Vet Pathol 2016; 53:833-9. [PMID: 26792840 DOI: 10.1177/0300985815618436] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The histopathologic characteristics of colorectal inflammatory polyps that formed in Miniature Dachshunds were compared with those of other colorectal proliferative lesions, including adenomas and adenocarcinomas. Fifty-three colorectal polypoid lesions were histopathologically classified into inflammatory polyps (26 cases), adenoma (18 cases), and adenocarcinoma (9 cases). All 26 dogs that were diagnosed with inflammatory polyps were Miniature Dachshunds, indicating that colorectal inflammatory polyps exhibit a marked predilection for this breed. The inflammatory polyps had complex histopathologic features and were classified into 3 stages based on their epithelial composition. In early stage (stage 1), the polyps tended to exhibit a thickened mucosa containing hyperplastic goblet cells, dilated crypts filled with a large amount of mucus, and mild lymphocyte and macrophage infiltration. In later stages (stages 2 and 3), more severe neutrophil infiltration, interstitial mucus accumulation, granulation tissue, and occasional osteoid tissue were seen. Also, a few small foci of dysplastic epithelial cells were detected. The hyperplastic goblet cells, which were a major component of the epithelium of the inflammatory polyps, were positive for cytokeratin 20 (CK20), while the dysplastic epithelial cells found in inflammatory polyps (stage 3) and the tumor cells of the adenomas and adenocarcinomas were negative for CK20. These CK20-negative epithelial cells exhibited cytoplasmic and nuclear immunoreactivity for beta-catenin. In addition, the epithelial cells in the inflammatory polyps demonstrated significantly higher cyclooxygenase 2 and fibroblast growth factor 2 expression than did those of the adenomas and adenocarcinomas, suggesting that the arachidonate cascade is involved in the development of colorectal inflammatory polyps in miniature dachshunds.
Collapse
Affiliation(s)
- E Uchida
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - J K Chambers
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - K Nakashima
- Veterinary Medical Center, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan Japan Small Animal Medical Center, Saitama, Japan
| | - T Saito
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - K Ohno
- Veterinary Medical Center, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - H Tsujimoto
- Veterinary Medical Center, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - H Nakayama
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - K Uchida
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Active smoking increases microsomal PGE2-synthase-1/PGE-receptor-4 axis in human abdominal aortic aneurysms. Mediators Inflamm 2014; 2014:316150. [PMID: 24876670 PMCID: PMC4021751 DOI: 10.1155/2014/316150] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 04/10/2014] [Indexed: 01/19/2023] Open
Abstract
Background. The cyclooxygenase- (COX-) 2/microsomal PGE-synthase- (mPGES-) 1/PGE-receptor- (EP-) 4 axis could play a key role in the physiopathology of abdominal aortic aneurysm (AAA) in humans. In this study, we investigated the influence of cardiovascular risk factors on the expression of the PGE2 pathway in human AAA. Methods. Aortic (n = 89) and plasma (n = 79) samples from patients who underwent AAA repair were collected. Patients were grouped according to risk factors. COX-isoenzymes, mPGES-1, EPs, α-actin, and CD45 and CD68 transcripts levels were quantified by QRT-PCR and plasma PGE2 metabolites by EIA. Results. Current smoking (CS) patients compared to no-CS had significantly higher local levels of mPGES-1 (P = 0.009), EP-4 (P = 0.007), and PGE2 metabolites plasma levels (P = 0.008). In the multiple linear regression analysis, these parameters remained significantly enhanced in CS after adding confounding factors. Results from association studies with cell type markers suggested that the increased mPGES-1/EP-4 levels were mainly associated with microvascular endothelial cells. Conclusions. This study shows that elements of the PGE2 pathway, which play an important role in AAA development, are increased in CS. These results provide insight into the relevance of tobacco smoking in AAA development and reinforce the potential of mPGES-1 and EP-4 as targets for therapy in AAA patients.
Collapse
|
5
|
Lu Q, Wang C, Pan R, Gao X, Wei Z, Xia Y, Dai Y. Histamine synergistically promotes bFGF-induced angiogenesis by enhancing VEGF production via H1 receptor. J Cell Biochem 2013; 114:1009-19. [PMID: 23225320 DOI: 10.1002/jcb.24440] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 10/24/2012] [Indexed: 11/06/2022]
Abstract
Histamine, a major mediator present in mast cells that is released into the extracellular milieu upon degranulation, is well known to possess a wide range of biological activities in several classic physiological and pathological processes. However, whether and how it participates in angiogenesis remains obscure. In the present study, we observed its direct and synergistic action with basic fibroblast growth factor (bFGF), an important inducer of angiogenesis, on in vitro angiogenesis models of endothelial cells. Data showed that histamine (0.1, 1, 10 µM) itself was absent of direct effects on the processes of angiogenesis, including the proliferation, migration, and tube formation of endothelial cells. Nevertheless, it could concentration-dependently enhance bFGF-induced angiogenesis as well as production of vascular endothelial growth factor (VEGF) from endothelial cells. The synergistic effect of histamine on VEGF production could be reversed by pretreatments with diphenhydramine (H1-receptor antagonist), SB203580 (selective p38 mitogen-activated protein kinase (MAPK) inhibitor) and L-NAME (nitric oxide synthase (NOS) inhibitor), but not with cimetidine (H2-receptor antagonist) and indomethacin (cyclooxygenase (COX) inhibitor). Moreover, histamine could augment bFGF-incuced phosphorylation and degradation of IκBα, a key factor accounting for the activation and translocation of nuclear factor κB (NF-κB) in endothelial cells. These findings indicated that histamine was able to synergistically augment bFGF-induced angiogenesis, and this action was linked to VEGF production through H1-receptor and the activation of endothelial nitric oxide synthase (eNOS), p38 MAPK, and IκBα in endothelial cells.
Collapse
Affiliation(s)
- Qian Lu
- Department of Pharmacology of Chinese Materia Medica, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | | | | | | | | | | | | |
Collapse
|
6
|
Keightley MC, Brown P, Jabbour HN, Sales KJ. F-Prostaglandin receptor regulates endothelial cell function via fibroblast growth factor-2. BMC Cell Biol 2010; 11:8. [PMID: 20092633 PMCID: PMC2824741 DOI: 10.1186/1471-2121-11-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 01/21/2010] [Indexed: 11/25/2022] Open
Abstract
Background Prostaglandin (PG) F2α is a key regulator of endometrial function and exerts its biological action after coupling with its heptahelical G protein-coupled receptor (FP receptor). In endometrial adenocarcinoma the FP receptor expression is elevated. We have shown previously that PGF2α-FP receptor signalling in endometrial adenocarcinoma cells can upregulate several angiogenic factors including fibroblast growth factor-2 (FGF2). In the present study, we investigated the paracrine effect of conditioned medium produced via PGF2α-FP receptor signalling in endometrial adenocarcinoma cells stably expressing the FP receptor (Ishikawa FPS cells), on endothelial cell function. Results Conditioned medium (CM) was collected from FPS cells after 24 hrs treatment with either vehicle (V CM) or 100 nM PGF2α (P CM). Treatment of human umbilical vein endothelial cells (HUVECs) with P CM significantly enhanced endothelial cell differentiation (network formation) and proliferation. Using chemical inhibitors of intracellular signalling, we found that P CM-stimulated endothelial cell network formation was mediated by secretion of endothelial PGF2α and activation of endothelial FP receptors, following FGF2-FGFR1 signalling, phosphorylation of ERK1/2 and induction of COX-2. Whereas, P CM stimulation of endothelial cell proliferation occurred independently of PGF2α secretion via an FGF2-FGFR1-ERK1/2 dependent mechanism involving activation of the mTOR pathway. Conclusions Taken together, we have shown a novel mechanism whereby epithelial prostaglandin F2α-FP signalling regulates endothelial cell network formation and proliferation. In addition we provide novel in vitro evidence to suggest that prostaglandin F2α can directly regulate endothelial cell network formation but not endothelial cell proliferation. These findings have relevance for pathologies where the FP receptor is aberrantly expressed, such as endometrial adenocarcinoma, and provide in vitro evidence to suggest that targeting the FP receptor could provide an anti-angiogenic approach to reducing tumour vasculature and growth.
Collapse
Affiliation(s)
- Margaret C Keightley
- MRC Human Reproductive Sciences Unit, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH164TJ, UK
| | | | | | | |
Collapse
|